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This paper presents a new control approach for steering trajectories of three-dimensional non-
linear chaotic systems towards stable stationary states or time-periodic orbits. The proposed
method mainly consists in a sliding mode-based control design that is extended by an explicit
consideration of system energy as basis for both controller design and system stabilization. The
control objective is then to regulate the energy with respect to a shaped nominal representation
implicitly related to system trajectories. In this paper, we establish some theoretical results
to introduce the control design approach referred to as Energy based Sliding Mode Control
(ESMC for short). Then, some capabilities of the proposed approach are illustrated through
examples related to the chaotic circuit of Chua.
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1. Introduction

Motivated by potential applications in physics, elec-
trical engineering, communication theory and many
others fields, the control of chaotic systems has re-
ceived an increasing interest. In this way, many
ideas and methods for controlling chaos with an ex-
ternal forcing input have been proposed in the past:
OGY method, adaptive control, time-delay feed-
back control, predictive Poincaré control, etc. (see
[Ditto et al., 1995; Chen & Dong, 1998; Chen,
1999] and references therein). Control of chaotic
systems using sliding mode control theory was ad-
dressed through several papers (e.g. [Yu, 1996; Lenz
& Berstecher, 1997]). In particular, in [Yau et al.,
2000] was proposed a sliding mode control scheme
to asymptotically track target orbits for a class of
uncertain chaotic systems. As a result, for any
given initial conditions, the states of the controlled
system converge to and lie within a neighborhood
of the switching function related to tracking, ro-
bustness and performance specifications. However,

these conventional sliding mode control schemes
need an explicit definition of target trajectories as
general solutions of a nominal system representa-
tion. Moreover, neither criteria nor constraints
for selecting target trajectories are explicitly for-
mulated. Therefore, in this paper we address the
problem of controlling chaos using a sliding mode
based control, in such a way that trajectory selec-
tion burden is avoided by means of constraints ex-
pressed as energetic criteria. More precisely, we pro-
pose an approach which aims at designing Variable
Structure Controllers for three-dimensional nonlin-
ear (chaotic) systems, to stabilize global invariant
sets included in a selected two-dimensional subspace
of the state space. Then, according to the con-
trolled system asymptotic properties and Poincaré–
Bendixon theorem, the (controlled) system tra-
jectories may be driven to an equilibrium point,
an asymptotically stable limit cycle or be itself a
(stable) periodic orbit. For this purpose, the pro-
posed approach consists in a sliding mode based
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control design that we extend by an explicit consid-
eration of system energy as basis for both controller
design and system stabilization. The control objec-
tive is then to regulate the energy with respect to
a shaped nominal representation which is implicitly
related to system trajectories. As a result, the Vari-
able Structure Control scheme, referred to as En-
ergy based Sliding Mode Control (ESMC for short),
leads to an automatic generation of the (controlled)
system trajectories and a good robustness image to
modelling uncertainties.

This paper is organized as follows. Section 2
deals with the theoretical framework of the control
approach. Section 3 illustrates some capabilities of
the proposed Energy based Sliding Mode Control
approach through examples related to the chaotic
circuit of Chua. Finally, in Sec. 4, some concluding
remarks are given.

2. Theoretical Framework

This paper considers the class of nonlinear au-
tonomous systems of the form,

Ẋ = F (X, U) = f(X) + U (1)

where X ∈ R3 is the state vector partitionned as
X = [X1 XT

2 ]T with1 X1 ∈ Σ1(X1) ⊂ R, X2 ∈
Σ2(X2) ⊂ R2. X(0) ∈ R3 is the vector of initial con-
ditions, f(X) = [f1(X1, X2) fT2 (X1, X2)]

T with
f1(X1, X2) ∈ C1(R) and f2(X1, X2) ∈ C1(R × R),
U ∈ R3 is the vector of control inputs.

From sliding mode control theory (e.g. [Utkin,
1977; DeCarlo et al., 1996; Slotine & Li, 1991]), it is
well known that by designing or choosing a switch-
ing surface S(X) = 0 so that the system restricted
to the surface has a desired global behavior (such
as stability, tracking, regulation, etc.. . .), and by
applying a switched control law2 of the form:

u = f̂(X) +K sign(S)

(where f̂(X) represents the equivalent system dy-
namics on the sliding surface) then, for any initial
conditions, the controlled system trajectories con-
verge to in finite time and are maintained in an
invariant set Ω0 = {X/S(X) = 0}.

In what follows, we propose some new results
related to stabilization of an extended invariant set

ΩIS, included in the same subspace as X2 and not
restricted to {0}. For this purpose, we consider the
following assumptions,

Assumption A1. The system is, at least, locally
observable and controllable.

Assumption A2. The energy of the system can be
represented by a Lyapunov function V which can
be split into two positive parts V1 and V2 (V =
V1 +V2) related to scalar positive functions VT (X1)
and VIS(X2) respectively (i.e. V1 = g1(VT (X1)) and
V2 = g2(VIS(X2))).

Assumption A3. Scalar positive functions VT (X1)
and VIS(X2) have continuous first derivatives which
can be expressed as,

V̇T = Ψ1Ẋ1X1 (2)

V̇IS = ẊT
2 Ψ2X2 (3)

where Ψ1 ∈ R+∗ (i.e. strictly positive) and Ψ2 is
a 2 × 2 diagonal matrix with strictly positive real
values along the diagonal.

Now we can state our main results.

Lemma 1. Consider the autonomous system (1)
and Assumptions A1–A3. Moreover, consider the
following control structure,

U = [uT uTIS ]T (4)

with,

uT = −Γ1 sign(VT )X1 − f̂1(X1, X2) (5)

uIS = −Γ2 sign(VIS − V ∗IS)X2 − f̂2(0, X2) (6)

where uT ∈ R, uIS ∈ R2×1. f̂1(X1, X2) and f̂2(0,
X2) are respectively a continuous function and
a vector of continuous functions which represent
equivalent system dynamics. Γ1 is a strictly posi-
tive real value and Γ2 is a 2 × 2 diagonal matrix
with strictly positive real values (to be tuned). V ∗IS
is a positive constant which characterizes a desired
magnitude of energy. Then,

(i) all solutions of the controlled system asymp-
totically converge to and are maintained in a
global invariant set ΩIS included in the same
subspace as X2 and defined by3 〈VIS − V ∗IS〉 =
0,

1Σ1(X1) and Σ2(X2) are subspaces of the state space.
2So that away from the surface S(X) = 0, the tangent vectors of the state trajectories point towards the surface.
3〈•〉: averaged value of •.
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(ii) VT converges to 0 in a finite time,
(iii) the energy of the controlled system converges

to a neighborhood εIS of V ∗IS .

Proof. With respect to Assumption A2, let us con-
sider a Lyapunov function candidate V = V1 + V2

with V1 = (1/2)V 2
T and V2 = (1/2)(VIS − V ∗IS)2.

First, let us focus on V1 = (1/2)V 2
T . Then,

V̇1 = V̇TVT . (7)

From Assumption A3 and system definition (1),
V̇T can be expressed as,

V̇T = Ψ1Ẋ1X1

⇔ V̇T = Ψ1(f1(X1, X2) + uT )X1 . (8)

Substituting (5) into (8) leads to,

V̇T = Ψ1(f1(X1, X2)− Γ1 sign(VT )X1

− f̂1(X1, X2))X1 (9)

⇔ V̇T = Ψ1(f1(X1, X2)− f̂1(X1, X2))X1

−Ψ1Γ1 sign(VT )X2
1 (10)

as f̂1(X1, X2) represents equivalent system dynam-
ics according to f1(X1, X2), then, the averaged

value 〈f1(X1, X2)− f̂1(X1, X2)〉 is zero. Thus, in
the mean,

V̇T ' −Ψ1Γ1 sign(VT )X2
1 . (11)

Therefore,

V̇1 = V̇TVT ' −Ψ1Γ1 sign(VT )X2
1VT ≤ 0 . (12)

Then, V̇1 is negative semi-definite and V1 is
positive definite. Consequently, from sliding mode
theory [Utkin, 1977; DeCarlo et al., 1996], VT
converges to a vicinity of 0 in finite time t1 > 0.
Moreover, X1 is bounded and also goes to a vicin-
ity of zero.

Now, let us focus on V2 = (1/2)(VIS − V ∗IS)2.
Then,

V̇2 = V̇IS(VIS − V ∗IS) . (13)

From Assumption A3 and system definition (1),
V̇IS can be expressed as,

V̇IS = ẊT
2 Ψ2X2

⇔ V̇IS = (f2(X1, X2) + uIS)TΨ2X2 . (14)

Substituting (6) into (14) leads to,

V̇IS = (f2(X1, X2)− Γ2 sign(VIS − V ∗IS)X2

− f̂2(0, X2))
TΨ2X2 (15)

⇔ V̇IS = (f2(X1, X2)− f̂2(0, X2))
TΨ2X2

− (Γ2 sign(VIS − V ∗IS)X2)
TΨ2X2 . (16)

Recalling that, f̂2(0, X2) represents equivalent
system dynamics4 whenX1 is zero and that VT goes
to a vicinity of 0 in a finite time t1, then,

〈f2(X1, X2)− f̂2(0, X2)〉 = 0 ∀ t ≥ t1 . (17)

Thus, in the mean,

V̇IS ∼= −(Γ2 sign(VIS − V ∗IS)X2)
TΨ2X2 (∀ t ≥ t1)

(18)

V̇2 = V̇IS(VIS − V ∗IS)

' −(Γ2 sign(VIS − V ∗IS)X2)
TΨ2X2(VIS − V ∗IS)

(19)

Thus, for t ≥ t1, V̇2 is negative semi-definite
and V2 is positive definite. Consequently, the slid-
ing surface defined by S2(X) = VIS − V ∗IS = 0 is
attractive and VIS converges to a vicinity of V ∗IS in
a finite time t2 ≥ t1 > 0.

Therefore, we can conclude that, in a finite time
t2 ≥ t1 > 0, the controlled system trajectories are
driven to and maintained in an invariant set ΩIS de-
fined by 〈VIS − V ∗IS〉 = 0 and included in Σ2(X2).

Moreover, as the system energy is bounded and
its representation (related to VT (X1) and VIS(X2))
goes to a vicinity of V ∗IS in a finite time, this en-
ergy also converges to a neighborhood εIS of V ∗IS
(related to discrepancy between the actual energy
and its representation). �

Remark. In (6), uIS is not explicitly related to VT .
This means that uIS does not contribute directly to
the convergence of VT (X1) and X1 to 0. This leads
us to propose the following result.

Corollary 1. Lemma 1 holds when replacing VIS
in (6) by a positive scalar function V of the form
V = VT + VIS ,

Proof. In proof of Lemma 1, let us replace the
positive function V2 = (1/2)(VIS − V ∗IS)2 by,

V2 =
1

2
(V − V ∗IS)2 with V = VT + VIS .

4According to f2(X1, X2).
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Then,

V̇2 = V̇ (V − V ∗IS)

⇔ V̇2 = (V̇T + V̇IS)(VT + VIS − V ∗IS) . (20)

Due to uT , VT and V̇T converge to a vicinity of
0 in a finite time t1 > 0. Therefore, in the mean,

V̇2
∼= (V̇IS)(VIS − V ∗IS) ∀ t ≥ t1 . (21)

End of proof is then straightforward. �

3. Example: Control of Chua’s
Circuit Using ESMC Approach

This section aims at illustrating some capabili-
ties of ESMC approach to steer third-order chaotic
system trajectories to selected stationary points or
stable limit cycles. For this purpose, we consider
the chaotic circuit of Chua (e.g. [Madan, 1993; Yang
& Chua, 1998]) depicted in Fig. 1.

This system can be represented as follows (see
[Yang & Chua, 1998]),

v̇1 =
1

C1
[G(v2 − v1)− fd(v1)]

v̇2 =
1

C2
[G(v1 − v2) + i3]

i̇3 =
1

L
[−v2 −R0i3]

(22)

where G = 1/R and fd(v1) is a piecewise continu-
ous function related to Chua’s diode characteristic.
This function can be expressed as,

fd(v1) = Gbv1+
1

2
(Ga−Gb)[|v1+E|−|v1−E|] (23)

whereE represents the breakpoint voltage of Chua’s
diode.

Chua’s
diode

L

i

R

v vC

+

R
v

iR

C1

R

1 2 2

0

3
−

Fig. 1. Chua’s circuit.

Without loss of generality, we assume R0 = 0.
Then, using appropriated transformations, the
Chua’s circuit can be formulated as a dimension-
less system of the form [Yang & Chua, 1998],

Ẋ = f(X)⇔


ẋ = α(y − x− fd(x))
ẏ = x− y + z

ż = −βy
(24)

where X = [x, y, z]T is the state vector with x =
v1/E, y = v2/E, z = i3/EG, α = C2/C1, β =
C2R

2/L and fd(x) = bx+(1/2)(a−b)(|x+1| |x−1|)
with a = RGa and b = RGb.

Finally, by considering the circuit of Fig. 1, the
energy of system (22) can be expressed as,

ES =
1

2
C1v

2
1 +

1

2
C2v

2
2 +

1

2
Li23 (25)

or, using dimensionless notations,

E =
1

2
x2 +

1

2
αy2 +

1

2

α

β
z2 . (26)

Application of ESMC approach to the Chua’s
circuit is considered as follows.

Preliminary Remark. According to ESMC ap-
proach, state vector X ∈ R3 must be partitioned
into two X1 ∈ R and X2 ∈ R2. For this purpose,
let us remark that this partition is of crucial impor-
tance as it completely defines the subspace of the
state space in which the global invariant set has to
be stabilized. Moreover, from Assumption A2, split
of Lyapunov function V (representing the system
energy) is directly related to state vector partition-
ing. Therefore, this partitioning requires to take
into account the physical properties of the system
as some subspaces of the state space may not admit
any stable invariant set with finite energy.

By considering the previous remark, possible
transfers of energy between Chua’s circuit compo-
nents lead us, for instance, to deal with X1 = x
and X2 = [y z]T . Then, according to (26) and
Assumptions A2 and A3, let us consider the fol-
lowing Lyapunov function V (X) and its split form
components V1(X1) and V2(X2) to represent the
energy of the system:

V (X) = V1(X1) + V2(X2)
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where,

V1(X1) =
1

2
V 2
T with VT =

1

2
x2 (27)

V2(X2) =
1

2
(VIS − V ∗IS)2 (28)

with VIS =
1

2
αy2 +

1

2

α

β
z2 (29)

V ∗IS is a constant. (30)

Then, from Lemma 1, the controlled chaotic
system of Chua is given by

ẋ = α(y − x− fd(x)) + uT

ẏ = x− y + z + uIS1

ż = −βy + uIS2

(31)

with,

uT = −Γ1 sign(VT )x− f̂1(x, y, z)

uIS1 = −Γ11 sign(VIS − V ∗IS)y − f̂21(0, y)

uIS2 = −Γ22 sign(VIS − V ∗IS)z − f̂22(0, z) .

(32)

Assume the equivalent system dynamics can be
defined as,

f̂1(x, y, z) = α̂(y − x− f̂d(x))

f̂21(0, y) = z − y

f̂22(0, y) = β̂y .

Then, by considering system parameters: α =
10, β = 14.87, a = −1.27 and b = −0.68, initial
conditions x(0) = 0.2, y(0) = 0.1 and z(0) = −0.01,

control law gains Γ1 = 20, Γ2 = I2, α̂ = α, β̂ = β,
we obtain simulation results related to the following
two cases.

First case. Let us consider a targeted magnitude
of system energy V ∗IS = 0. Obviously, a such null
value implies that the targeted (global) invariant
set is restricted to zero value.5 As shown in Figs. 2
and 3, the system trajectory first goes, in a finite
time t1 ∼= 0.4s, to (y, z) plane (see Fig. 3) before
converging, in a finite time t2 ∼= 5s, to a stationary
point of coordinates (y = 0, z = 0). This result is
confirmed by behaviors of system energy represen-
tations related to VT and VIS, as shown in Fig. 4.

Second case. Let us now consider a targeted mag-
nitude of energy V ∗IS = 3 (i.e. V ∗IS 6= 0). As shown
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Fig. 2. Controlled system trajectory.
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Fig. 3. Controlled state variables of Chua’s circuit: x(t)
(solid), y(t) (dotted), z(t) (dashed).

in Fig. 5, the system trajectory also goes first to
(y, z) plane in finite time. However, for the present
case, the system states reach a stationary point dif-
ferent from 0 on (y, z) plane (see Fig. 6). Indeed,
this point corresponds to the magnitude of VIS in a
vicinity of V ∗IS , as shown in Fig. 7.

Finally, to extend illustrations of ESMC ap-
proach capabilities, let us consider the results of
Figs. 8–10, coming from appropriate modifications
of control scheme (5,6) according to Chua’s circuit
modeling and energy properties. These results show
that such a scheme can lead to convergence of sys-
tem trajectory to a stable limit cycle whom corre-
sponding energy lies in the vicinity of the targeted
magnitude V ∗IS = 3 (see Fig. 10).

5Let us note that 0 is an unstable equilibrium point for the system (24).
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Fig. 7. Magnitude of VT and VIS versus time.
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Fig. 10. Magnitude of VT and VIS versus time.

4. Conclusion

We have proposed a new control approach for a class
of nonlinear systems fullfilling Assumptions A1–A3.
This approach considers the system energy as ba-
sis for both control design and system stabilization.
Application of this method to three-dimensional
chaotic systems leads to extended capabilities com-
pared to classical VSS controllers. Indeed, systems
trajectories can be driven toward and maintained
into global invariant sets without explicit definition
of targeted orbits or stationary points. We think
that this method can be extended to systems of
higher dimension. This will be the objective of our
future investigation.
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