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The work is devoted to the analysis of dynamics of traveling waves in a chain of self-oscillators
with period-doubling route to chaos. As a model we use a ring of Chua’s circuits symmetrically
coupled via a resistor. We consider how complicated are temporal regimes with parameters
changing influences on spatial structures in the chain. We demonstrate that spatial periodicity
exists until transition to chaos through period-doubling and tori birth bifurcations of regular
regimes. Temporal quasi-periodicity does not induce spatial quasi-periodicity in the ring. After
transition to chaos exact spatial periodicity is changed by the spatial periodicity in the average.
The periodic spatial structures in the chain are connected with synchronization of oscillations.
For quantity researching of the synchronization we propose a measure of chaotic synchronization
based on the coherence function and investigate the dependence of the level of synchronization
on the strength of coupling and on the chaos developing in the system. We demonstrate that
the spatial periodic structure is completely destroyed as a consequence of loss of coherence of
oscillations on base frequencies.
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1. Introduction

In recent years a great interests has been placed
on problems of collective dynamics of simple
oscillators which demonstrate different kinds of
behavior from complete spatio-temporal synchro-
nization to the formation of dissipative struc-
tures. These investigations have both theo-
retical and applied interests in different fields
of physics [Kaneko, 1989a; Fisher, 1985] chem-
istry [Kuramoto, 1984] and biology [Mirollo &
Strogatz, 1990]. A series of works has been de-
voted to consideration of coupled maps arrays mod-
eling different physical phenomena [Kaneko, 1989a,
1989b; Kuznetzov & Kuznetzov, 1990]. Lattices

of maps with chaotic behavior have rich dynam-
ics and they allow to research the formation of
regular and chaotic spatio-temporal structures re-
sulting from synchronization of oscillations. How-
ever, the discrete time systems cannot demonstrate
phase and frequency phenomena which we observe
in real nature. Real oscillators demonstrate phase
synchronization phenomenon for regular [Huy-
gens, 1673] and chaotic [Rosenblum et al., 1996;
Fujigaki et al., 1996] motions. As a result the
existence of different phase structures is possible,
when oscillations in subsystems have almost equal
amplitudes and different phases and frequencies.
These phenomena have been considered in a great
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number of works on phase oscillators. Most of the
studies was devoted to the global mean-field cou-
pling systems [Matthews & Strogatz, 1990; Daido,
1996; Tass, 1997; Yeung & Strogatz, 1999, 2000].
It was demonstrated that very simple periodic os-
cillators can demonstrate complex macroscopic be-
havior: periodic, quasi-periodic and even chaotic
through quasi-periodic and period-doubling routes
[Matthews et al., 1990]. The mean-field approach
allowing to consider the behavior of the system as a
whole, does not take into account local connections
between elements, which can lead to the formation
of local spatial structures. Locally coupled limit-
cycle oscillators was intensively investigated in the
works by Daido [1997], Bressloff et al. [1997] and
Bressloff and Coombes [1998]. Phase regularities in
nearest-neighbor coupled oscillators have also been
considered for circle maps [Pando, 2000].

It is known that chains of the simplest limit-
cycle oscillators with periodic boundary conditions
exhibit traveling wave regimes when oscillations in
neighboring sites differ for constant phase shifts.
Daido considered a more complex oscillators chain
(see [Daido, 1997]) and demonstrated that taking
into account the second harmonics in the spec-
trum of oscillations can lead to novel behavior.
Namely, he has found that temporal periodic os-
cillators can demonstrate spatially chaotic behav-
ior. Hence, transition to more realistic models lead
to new dynamics which cannot be realized in the
simplest phase oscillators arrays. A number of
works [Matias et al., 1997a; Matias et al., 1997b;
Marino et al., 2000; Hu et al., 2000] have demon-
strated that traveling wave regimes are possible for
rings of chaotic oscillators (in the works [Matias
et al., 1997a; Marino et al., 2000] they were called as
“rotating waves”). Nevertheless, evolution of trav-
eling waves occurring in complex systems with
change in parameters has not been described in de-
tail until now. What traveling wave regimes are
possible in real chaotic oscillator chains? How do
complicating temporal dynamics influence spatial
structures? How do destroying of spatial structures
connected with synchronization between nearest-
neighbor oscillators. In our work we focus on
these questions. We have chosen a chain of period-
doubling self-oscillators with diffusion symmetric
coupling. Similar systems have rich dynamics.
They are characterized by developed phase mul-
tistability, when many regular and chaotic attrac-
tors coexist in phase space [Astakhov et al., 1989;
Anishchenko et al., 1995]. They also demonstrate

the possibility of the phenomena of full [Fujisaka
& Yamada, 1983] and partial [Inoue et al., 1998;
Belykh & Belykh, 2000] synchronization of chaos
when all elements in the lattice or a part of such
elements oscillate identically. A chaotic attrac-
tor related to the regime of synchronization is lo-
cated inside the symmetric subspace x1 = x2 =
. . . xn, where n is the number of all or a part of
oscillators in the array. Destroying the synchro-
nization is accompanied by the bubbling and rid-
dled basins phenomena [Ashvin et al., 1994; Lai
et al., 1996]. Bifurcational mechanisms of the
synchronization loss and the multistability forma-
tion are found for several period-doubling bifur-
cations of every periodic orbit in the cascade of
bifurcations [Astakhov et al., 1999]. These bifur-
cations lead both to the appearance of new stable
attractors outside the symmetric subspace and to
the appearance of regions of local transversal in-
stability for the synchronous attractor [Astakhov
et al., 1997a; Astakhov et al., 1998].

In Sec. 2 we consider the evolution of traveling
waves with complicated dynamics during period-
doubling bifurcations. We build regions of sta-
bility for the waves with different spatial periods
and demonstrate that short wavelength waves dis-
appear with increasing coupling. Section 3 is de-
voted to a more detailed description of behavior
of one family of regimes originating from a trav-
eling wave with determined periodicity. We con-
sider typical bifurcational transitions and build re-
gions of different stable regimes on the parameter
planes. In Sec. 4 we consider synchronization of
oscillations. We demonstrate that the complete
synchronization breaks after transition to chaos.
After these oscillators are nearly synchronized, to
appreciate the quantity measure of their synchro-
nization we use the averaged coherence function ap-
proach [Anishchenko et al., 2000]. The proposed
measure makes clear physical sense: it shows what
part of the full power relates to coherent oscilla-
tions. Using this characteristic we demonstrate that
the traveling wave regimes are destroyed gradually
with decreasing coupling and this process is accom-
panied by decreasing mutual coherence functions
and therefore by decreasing the levels of synchro-
nization. The complete destruction of the aver-
age space-periodicity is connected with the loss of
the coherence on the main frequencies in the spec-
trum. The conclusion contains the summary of the
obtained results.
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2. The Evolution of Traveling Waves
with Parameters Changing

As a model we used a chain of 30 Chua’s
self-oscillators coupled via a resistor:

ẋi = α(yi − xi − f(xi))

ẏi = xi − yi + zi + γ(yi−1 + yi+1 − 2yi) (1)

żi = −βyi ,

(where

f(x) =


bx+ a− b if x > 1

ax if |x| ≤ 1

bx− a+ b if x < −1,

i = 1, 2, . . . , N ; N = 30) with periodic boundary
conditions:

x1 = xN , y1 = yN , z1 = zN .

All oscillators are identical. The behavior of a sin-
gle oscillator is widely described in the literature
(see e.g. [Komuro et al., 1991]). It is characterized
by period-doubling bifurcations cascade and bista-
bility, when two symmetric attractors formed near
two nontrivial equilibria P1 and P2 coexist in the
phase space. With parameter α increasing these at-
tractors merge and as a result double scroll chaotic
attractor appears. The system of two coupled oscil-
lators behave in a more complex way [Anishchenko
et al., 1995]. It demonstrates both period-doubling
bifurcations cascade and tori breaking routes to
chaos. The system is characterized by the developed
multistability and the complete synchronization of
chaos phenomenon. The in-phase complete syn-
chronization of chaos exists at sufficiently large cou-
pling. With decreasing coupling the regime of syn-
chronization breaks (see [Anishchenko et al., 2000]).
This process is accompanied by the bubbling of at-
tractor and riddled basins phenomena. Arrays and
lattices of Chua’s oscillators with different types of
coupling have been investigated in a series of works
(see e.g. [Perez-Munuzuri et al., 1993; Alexeev
et al., 1995; Matias et al., 1997a; Marino et al.,
2000]).

We investigated the system (1) by means of
computer simulations. The parameter α and the
coefficient of coupling γ were controlling parame-
ters. Other parameters were fixed at values: a =
−8/7, b = −5/7, β = −22.
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Fig. 1. Spatial structures of simplest traveling waves with
different wavelengths.

Until α < 8.78 there are no oscillations in the
system. At α ≥ 8.78 nearly harmonic period-one
limit-cycle oscillation regimes with different spatial
periods can be found depending on the value of the
coupling and on the initial values. They are char-
acterized by equal amplitude and shifted phases of
oscillations in every site in the chain. These regimes
are traveling waves rotating along the ring with con-
stant phase velocity. For visualization of the spa-
tial structure of the traveling waves we used the
Poincaré section. We fixed the value of the xi vari-
able of every oscillator while the variable y1 crosses
through the zero level from positive to negative val-
ues. The chosen simplest waves with different wave-
lengths are presented in the Fig. 1. The abscissa
axis in Fig. 1 marks the location of oscillator in
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the chain, the ordinate axis denotes the value of
xi at the Poincaré section. If all oscillators move
in-phase we can see a straight horizontal line. If
there are some phase shifts between oscillations we
see different periodic curves. Because of the space-
periodicity of the chain the summary phase shift
along the entire chain must be proportional to 2πn.
Figure 1 presents states with n = 1 [Fig. 1(a)],
n = 2 [Fig. 1(b)], n = 3 [Fig. 1(c)] and n = 5
[Fig. 1(d)]. They correspond to phase shifts be-
tween oscillations of neighboring oscillators of π/15,
2π/15, π/5, and π/3, respectively. It is clear that
for chains with finite numbers of elements only fi-
nite number of spatially periodic phase waves are

possible because the length of the chain must be
divisible by the spatial period. In our case other
possible states remain with n = 6 and n = 15. The
latter case is related to the complete antiphase syn-
chronization. Traveling waves with these spatial pe-
riods (Λ = 5 and Λ = 2 oscillators) were not found
in the considered chain, maybe because of very nar-
row regions of stability.

Bifurcations of the states represented in Fig. 1
which take place with the increasing of parameter α
lead to complicating temporal dynamics in every os-
cillator. These bifurcations are the period-doubling
and tori birth bifurcations of regular attractors, and
bound-merging bifurcations of chaotic attractors. A
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Fig. 2. Developing of the regular traveling waves with the parameter α increasing.
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more detailed structure of the plane of the regimes
will be described in Sec. 3. Figure 2 presents the
complications of regular traveling waves with pa-
rameter α increasing. It describes the evolution
of regimes based on the initial state with spatial
period Λ = N/2 [Fig. 1(b)]: the traveling wave
with a period-two cycle 2CN/2 temporal behavior
[Fig. 2(a)], with a period-four cycle 4CN/2 behav-
ior [Fig. 2(b)], a two-band torus 2TN/2 [Fig. 2(c)]
and a one-band torus 1TN/2 [Fig. 2(d)] behavior. In

this figure we have built the spatial structures and
projections of phase portraits to the planes x1 − y1

and x1 − x16. The latter projection demonstrates
that the mentioned regular regimes have exact spa-
tial periodicity xi = xi+15. We see that increase of
the temporal period does not lead to changing of
the spatial period and temporal quasi-periodicity
does not lead to spatial quasi-periodicity. The
development of temporal regimes take place on
a background of the original spatial periodic

Fig. 3. Developing of the chaotic traveling waves with the parameter α increasing.



1900 A. Shabunin et al.

structure that is destroyed only after transition to
chaos. The evolution of chaotic regimes is pre-
sented in Fig. 3. This figure presents the cases of a
four-band attractor [Fig. 3(a)], a two-band attrac-
tor [Fig. 3(b)] and one-band attractor Figs. 3(c) and
3(d). The chaotic regimes do not remain exactly
spatio-periodic. It can be seen from the “mutual”
projection x1−x16 which is not a line more, but has
finite “thickness”. For many-band chaotic attrac-
tors it is very thin, i.e. the regimes are almost ex-
actly space-periodic [Fig. 3(a)]. With the develop-
ment of chaos the projection becomes more “thick”
that means that the regime loses spatio-periodicity.
In the regime of developed one-bound chaotic at-
tractor the mutual projection looks like a square
[Fig. 3(c)]. The mutual projection of the phase por-
traits and the spatial diagrams demonstrate that
chaotic oscillations are not space-periodic more.
However, as it will be demonstrated later, they re-
main space-periodic on an average.

Stability of traveling waves depends on their
wavelength and on the coupling strength. Increas-
ing the coupling coefficient γ leads to loss of sta-
bility for short wavelength modes and as a re-
sult of transition to more long wavelength ones.
Figure 4 presents regions of stability for the fam-
ilies of regimes originating from the traveling waves
described in Fig. 1. The upper boundaries (sym-
bols) mark destroying of the spatial structure due to
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Fig. 4. Regions of stability for the families of waves with
different wavelengths.

developing chaos. The right boundaries (lines)
mark the loss of stability in a sudden way. As
a result of it the system transits to regimes with
longer wavelengths. The line “1” bounds a family of
regimes with spatial period N [see Fig. 1(a)]. This
line is almost horizontal. From the right side of this
line only spatially-homogeneous regime is possible.
The lines “2”, “3”, “4” are boundaries of families
of regimes with spatial periods N/2, N/3, N/5, re-
spectively. From the left-hand sides of these lines
waves with these spatial structures are observed.
On crossing these lines only stable waves with
longer wavelengths can exist. Namely, from the left
side of line “4” the families of regimes with wave-
lengthsN/5, N/3, N/2, N and spatio-homogeneous
regime coexist. From the left side of the line
“3” — with wavelengths N/3, N/2, N and spatio-
homogeneous, from the left side of the line “2” —
with wavelengths N/2, N and spatio-homogeneous
regimes coexist. The spatio-homogeneous regimes
exist at any coupling. We see that stability of the
traveling waves depend on coupling. The increasing
of coupling leads to loss of stability for regimes with
shorter spatial periods.

Unfortunately, the large dimension of the con-
sidered system does not lead to the possibility to
carry out a detailed bifurcational analysis. Tak-
ing into account the location of bifurcational lines
1 − 4 and bifurcations in the coupled oscillators
with smaller dimensions [Anishchenko et al., 1995;
Astakhov et al., 1997b] we can propose a hypoth-
esis that the mentioned spatially periodic regimes
originated as a result of bifurcations of the same
equilibrium P1,2. In our opinion the bifurcational
mechanism can be the following. If we have a
single oscillator, the periodic period-one cycle ap-
pears through the Hopf bifurcations of the equilib-
ria P1 or P2. After this, a stable period-one cy-
cle appears. In the system of two coupled oscilla-
tors [Astakhov et al., 1997b] the equilibrium under-
goes two consistent Hopf bifurcations. As a result
of the first bifurcation the stable in-phase (or an-
tiphase, depending on the type of coupling) period-
one cycle appears from the stable equilibrium point
and the point becomes saddle. After the second
Hopf bifurcation the saddle equilibrium becomes
unstable along another direction and the saddle
antiphase (or in-phase) period-one cycle appears.
Then, with increasing of the parameter α the saddle
cycle can become stable through the pitchfork (for
example) bifurcation. If we have many-oscillators
system the equilibrium point can undergo several
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Hopf bifurcations. The first Hopf bifurcation leads
to appearance of period-one spatio-homogeneous
stable regime. After this the equilibrium becomes
a saddle. The cycles that satisfy the spatio-
periodicity conditions appears as a result of the fol-
lowing Hopf bifurcations. They are saddle. The
regimes with longer spatial periods appear earlier
than the short wavelength ones. Then, with the
parameter α increasing these saddle cycles become
stable. In the framework of the considered hypoth-
esis the lines 1–4 are bifurcational lines with a bi-
furcational condition for a multiplier of the corre-
spondent cycle: µ = +1.

3. Typical Bifurcational Transitions
and Structure of the Parameters
Plane for a Family of
Spatio-Periodic Regimes

In this section we carry out a more detailed anal-
ysis of traveling waves formed on the base of the
period-one cycle regime with Λ = N/2 [Fig. 1(b)].
The common structure of the regimes on the param-
eters plane γ −α is presented in Fig. 5. The region
of stability of this family of regimes is bounded by
lines “1”, “5” and “6”. The line “1” bounds this re-
gion from the right. On crossing the line the regimes
with wavelength Λ = N/2 loses their stability in a
sudden way and the system transits to waves with
larger wavelengths. Over this line and before the
line “2” the stable period-one cycle is observed. On
the line “2” the system transits to quasi-periodic be-
havior. This is the line of the torus 2TN/2 [Fig. 2(d)]
birth. For large coupling the system evolves at the
base of this torus and demonstrates transition to
chaos through the torus breaking (dashed line “4”
in Fig. 5). Over this line a one-band chaotic at-
tractor exists. For small coupling the transition to
chaos occurs through the period-doubling bifurca-
tions and quasi-periodic behavior originates from
cycles with double periods. This region of smaller
coupling is bounded by the line “3”. Over this line
the period-two cycle is observed [Fig. 2(a)] which
transits to the two-torus 2TN/2 on the line “5”
[Fig. 2(c)]. Then on the base of this torus there
are two possibilities: at larger coupling the torus
breaks with the appearance of two-band chaotic at-
tractor, and for smaller coupling (on the line “6”)
it transits to a period-four cycle [Fig. 2(b)] which
then undergoes tori birth bifurcation. The picture
of regimes and bifurcational lines in Fig. 5 is rather
robust. We restrict ourselves to only several first
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Fig. 5. Diagram of regular and chaotic regimes originating
from the wave with spatial period N/2.

period-doubling and tori birth bifurcations, up to
period eight. The analysis holds, and comparing
with the analysis of typical bifurcations in systems
of two coupled via resistor [Anishchenko et al., 1995]
and via capacity [Astakhov et al., 1997b] oscillators
present typical scenarium for evolutions of regimes
on the base of the space-periodic period-one cycle.
The route to chaos goes through several period-
doubling and tori birth bifurcations. The number
of bifurcations decreases with increasing coupling.
At large coupling we have a chain of two bifurca-
tions: 1C → 1T → 1A (the arrow a in Fig. 5), at
smaller coupling there is a chain of five bifurcations:
1C → 1T → 2C → 2T → 2A → 1A (the arrow b
in Fig. 5), at even smaller coupling 1C → 1T →
2C → 2T → 4C → 4T → 4A → 2A → 1A (the
arrow c in Fig. 5). The described dependence of
the bifurcation chains on coupling suggest the com-
mon bifurcational mechanisms for the changing of
temporal behavior of the family of spatio-periodic
regimes: At finite coupling we have a finite chain of
period-doubling and tori birth bifurcations which
lead to chaos through the final tori breaking bifur-
cation. The length of the chain increases with de-
creasing coupling and at the limit of zero coupling
tends to infinity.

The structures of the phase-space and typical
bifurcations are similar for spatio-periodic regimes
with other wavelengths.
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4. Synchronization of Chaos in the
Chain of Oscillators

The considered complex spatial structures of os-
cillations in the chain are results of synchroniza-
tion. Usually the term “complete synchronization”
is used for the behavior when all oscillations in the
chain are equal in every moment of time (xi(t) =
xk(t) for all i and k) namely, when the attractor be-
longs to the symmetric subspace x1 = x2 = . . . xN
[Heagy et al., 1994]. The dimension of the sub-
space is equal to the dimension of the single oscil-
lator. The case when oscillations are equal up to
time-delay: xi(t) = xi+1(t + τ) was called as “lag
synchronization” [Rosenblum et al., 1997]. From
another point of view the case when all oscillators
can be divided into several groups in which every
one of the oscillations are equal was called partial
synchronization [Belykh & Belykh, 2000]. There-
fore, the case of considered spatio-periodic struc-
tures can be called as both lag-synchronization and
as partial synchronization. There is a more gen-
eral approach to the chaotic synchronization def-
inition which can be applicable to different cases
of mutual behavior. This is the “generalized syn-
chronization” [Rulkov et al., 1995]. In the frame-
work of this approach we shall call oscillations as
fully synchronized if there is deterministic connec-
tion between states of any oscillators in the chain:
xi(t) = f(xk(t−τ)). This is the case of full synchro-
nization. When this equality is fulfilled not exactly,
or it takes place from time to time (for example in
the case of bubbling phenomenon) we have partially
synchronized oscillations. In this case it is necessary
to have quantity measure of this synchronization,
which will demonstrate changing of synchronization
level from 0 for unsynchronized oscillators till 1 for
fully synchronized ones. This measure must make
clear the physical sense, and must be easily calcu-
lated by standard algorithms using time-series from
coupled oscillators and it must be universal, namely
can be applicable to different cases of synchroniza-
tion. We have proposed such synchronization mea-
sure in the work [Anishchenko et al., 2000] where
it has been used for investigation of complete syn-
chronization loss and bubbling phenomenon in the
system of two coupled chaotic self-oscillators. This
measure is constructed on the base of the coherence
function:

σ(ω) =

∣∣∣∣∣
〈

χx1(ω)χ∗x2
(ω)

|χx1(ω)‖χx2(ω)|

〉∣∣∣∣∣ (2)

where χxi is spectral density on the time-series of
the ith oscillator, ω is a frequency, < · · · > denotes
averaging on an ensemble of realizations. The co-
herence function is equal to 1 for the frequencies
where oscillations are coherent and equal to 0 where
they are independent. To evaluate the level of syn-
chronization on all frequencies it is necessary to av-
erage the coherence functions with weight function.
The weight function must take into account what
part of the entire power belongs to the correspond-
ing spectral terms. The complete formula for cal-
culating the synchronization level has the form:

S =

∫ ∞
0

σ(ω)(〈|χx1(ω)|2〉+ 〈|χx2(ω)|2〉)dω∫ ∞
0

(〈|χx1(ω)|2〉+ 〈|χx2(ω)|2〉)dω
(3)

Using the formula (3) we can interpret the value S
as a part of the power which relates to coherent mo-
tions i.e. the motions on the frequencies where the
phases are locked. The proposed measure is sim-
ilar to the “order parameter” which was used for
the description of measure of collective synchroniza-
tions in ensembles of phase oscillators [Kuramoto &
Nishikava, 1987; Matthews & Strogatz, 1990], but it
is applicable for more complex regular and chaotic
oscillators. Phase coherence was used as a chaotic
synchronization measure in the work [Mormann
et al., 2000] where authors used instantaneous phase
approach. In our opinion the coherence function
approach is more universal because it is applicable
also for the cases when instantaneous phase cannot
be defined.

Let us consider the family of traveling waves
with wavelength N/2 [Fig. 1(b)]. The boundary
of the family of regimes with this space-periodicity
consists of three segments. The first one is the line
“1” [Fig. 5]. On this line the regimes lose their
stability in a sudden way and the system transits
to regimes with longer wavelengths. From the left
side of this line and until lines “6” and “7” there are
the exactly space-periodic and nearly space-periodic
regimes with this wavelength. The exact space-
periodicity is destroyed at once after transition to
chaos. In the chaotic region there is no exact space-
periodicity, but it is observed “in the average”.
Figure 6 demonstrates averaged spatio-temporal di-
agrams with decreasing coupling. In this figure we
observe gradual destruction of the averaged space-
periodic structure. The corresponding temporal be-
havior is in a one-band chaotic attractor. For large
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Fig. 6. The averaged spatial structure of the wave destroyed
with developing temporal chaos.

coupling the averaged spatial diagram looks like the
original traveling regime [compare Figs. 1(a) and
5(a)]. Then, at γ < 0.045 it begins to change its
form. At γ = 0.035 the form of the spatial picture
becomes more flat, though it preserves the origi-
nal structures with two maximums [Fig. 5(c)]. For
smaller coupling it completely “forgets” the previ-
ous structure. Due to the gradual nature in pro-
cessing the destruction of space-periodicity, the line
“6” is not a bifurcational line, but it characterizes a
determined step in this process. Namely, the points
of this line (they are marked by “◦”) denotes the
minimum coupling behind which the spatial pic-
ture becomes qualitatively different. The gradual
destroying of averaged space-periodicity is observed
only for developed temporal chaos. If we choose the
parameter α correspondent to two-band (or many-
band) chaotic attractor the averaged space-periodic
structure is preserved until zero coupling. From the

top the region of the averaged space-periodicity is
bounded by line “7”. Increasing of the parame-
ter α leads to developing of temporal chaos and to
destroying of space-periodic structure. For middle
coupling values it is destroyed gradually like in the
case of decreasing coupling [see Figs. 6(a)–6(c)]. For
strong coupling the averaging periodic structure is
preserved until the transition to the double-scroll
regime [Fig. 6(d)].

Let us look on the process of destroying spa-
tial periodic structure from the point of view of
mutual synchronization of oscillators. In the reg-
ular region, until transition to chaos we have the
case of full synchronization. These regimes are
characterized by exact equalities xi(t) = xi+N/2(t)
and xi(t) = xi+1(t + τi) for every oscillator (see
Fig. 2). The synchronization level S is exactly equal
to 1. With the increasing of parameter α when

(a)

(b)

Fig. 7. Dependence of the level of chaotic synchroniza-
tion on (a) developing temporal chaos and (b) decreasing
coupling.
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oscillations become chaotic the equality xi(t) =
xi+N/2(t) is not fulfilled exactly. This leads to
“thickness” of the mutual projection of the phase
portrait (Fig. 3). The synchronization level be-
comes smaller than 1. After the transition to chaos
it is near 0.99 (at α = 11.57), then with further
chaotization it becomes smaller: 0.77 at α = 11.79
[Figs. 4(a)–4(e), 0.56 at α = 12.0 and 0.13 at
α = 12.25 (for double-scroll regime). The depen-
dence of the synchronization level S on the param-
eter α is built in Fig. 7(a). Figure 7(b) demon-
strates decreasing of the synchronization level with
decreasing coupling. The gray color marks the re-
gions where the averaged periodic structure is de-
stroyed. It relates to the level of synchronization
less than approximately 0.8.

The synchronization level depends on the dis-
tance between interacting oscillators in the chain.
We have built this dependence for the cases of two-
band chaotic attractor, one-band attractor and for
a developed temporal chaos with destroyed spatial

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Fig. 8. Dependence of the level of synchronization on the
distance between oscillators in the chain.

structure (Fig. 8). For two-band attractor (marked
by “◦”) we see almost full synchronization (S ≈ 1)
which is gradually decreased with increasing of dis-
tance. The developed temporal chaos with almost
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Fig. 9. Changing in the power spectrum of oscillations and of the module of the coherence function with developing of
temporal chaos.
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Fig. 10. Losing of the coherence between dynamics of the neighbor oscillators with the decrease in coupling.

periodic spatial structure is characterized by de-
creased level of synchronization (S ≈ 0.8) which
decreases rapidly with distance. When the spa-
tial structure is fully destroyed the level of synchro-
nization very quickly falls to almost zero level (in
our case it is a value of several percents, the pre-
cision of the experiment). At γ = 0.02 (“*”) the
distance at which the level of synchronization falls
from S ≈ 0.4 till zero is five oscillators. At smaller
coupling (γ = 0.002) the level of synchronization
falls to zero at distance of one oscillator.

Figure 9 demonstrates rebuilding of the power
spectrum and the coherence function with chaoti-
zation of oscillations. The coherence functions is
built for oscillations of nearest-neighbor oscillators.
Figure 9(a) corresponds to a four-band attractor.
The coherence function is equal to 1 for peaks on
harmonics 2π/T and first sub-harmonics 2π/2T of
spectra and has smaller values for remaining fre-
quencies. Figures 9(b) and 9(c) correspond to two-
and one-band attractors. It is seen that the coher-
ence is equal to 1 for main peaks and it remains
very close to 1 for first sub-harmonics [Fig. 9(b)].
The coherence for all frequencies except main har-
monics is smaller than 1 [Fig. 9(c)]. With further
chaotization the level of coherence for other spec-
tral components become lower but the coherence

on the main frequency remain near 1 until tempo-
ral chaos is developed when the coherence on the
main frequency is also decreased. Figure 10 demon-
strates the dependence of the coherence function
on the coupling value. The correspondent temporal
regime was chosen as developed one-band chaotic
attractor. Figures 10(a) and 10(b) correspond to
space-periodic regimes. The coherence function is
less than one for all frequencies except main peaks.
Figures 10(c) and 10(d) relate to regimes with de-
stroyed spatial structure. This case is characterized
by value of coherence less than one on the main
frequencies too. Comparing these figures with the
spatio-temporal dynamics we see that spatial peri-
odicity is connected with coherence on main peaks.
Until the spectra of oscillations contain frequencies
on which motions are fully coherent the chain pre-
serves its averaged periodic spatial structure. If co-
herent function decreases for every frequency the
spatial periodic structure is destroyed.

5. Conclusion

In the work we considered developing of the dynam-
ics on the base of spatio-periodic phase structures
in the chain of coupled period-doubling oscillators
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with periodic boundary conditions. These struc-
tures are traveling waves propagating along the
chain with constant phase velocity. We have found
that exact space-periodicity is preserved through
period-doubling and tori birth bifurcations until
transition to chaotic temporal behavior. Chaotic
temporal behavior induces spatial chaos which re-
mains spatio-periodic “on an average”. The aver-
aged spatio-periodic structure exists in the wide in-
terval of the parameters and it is destroyed both
with developing of chaos (at small coupling) and
with decreasing of coupling (in the regime of one-
band chaotic attractor). The presence of the aver-
aged spatio-periodic structure is connected with the
coherence of oscillations on main peaks in the mu-
tual spectrum. It exists until the coherence function
remains equal to 1 on base frequencies. We have
built regions of stability for waves with different
wavelengths and found that increasing of coupling
leads to instability of short waves. In the work we
describe typical bifurcations and present the map
of main regimes originating from a simple traveling
wave with changing parameters.

Evidently, considered particular spatio-periodic
regimes and correspondent phase diagrams take
place only for chains with the chosen length. How-
ever common regularities are found to exist also for
arrays with other numbers of elements. We tested
our results on chains with other lengths and ob-
tained results are qualitatively similar to those de-
scribed in this work (in our investigations we chose
arrays up to 1024 elements length).
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