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Abstract

Basins generated by a noninvertible mapping formed by two symmetrically coupled logistic
maps are studied when the only parameter λ  of the system is modified. Complex patterns on
the plane are visualised as a consequence of basins' bifurcations. According to the already
established nomenclature in the literature, we present the relevant  phenomenology organised
in different scenarios: fractal islands disaggregation, finite disaggregation,  infinitely
disconnected basin, infinitely many converging sequences of lakes, countable self-similar
disaggregation and sharp fractal boundary. By use of critical curves, we determine the influence
of zones  with different number of first rank preimages in the mechanisms of  basin
fractalization.

1.   INTRODUCTION

Mappings are simple models that have been extensively studied as independent objects of interest
[Mira, 1987] or as ingredients of other more complex systems [Kapral, 1985; Crutchfield & Kaneko,
1987]. The unimodal one-dimensional case is well understood and the main results are summarized
in [Collet & Eckmann, 1980] and in [Mira, 1980][Mira, 1987]. Two-dimensional endomorphisms
are often obtained in different fields and, up to now, they have been mainly investigated by
numerical simulations and analytical approach [Mira et al., 1996].

Attractors and time evolution in two-dimensional mappings can be analysed by a set of measures
such as Lyapunov exponents, power spectrum, invariant measures and fractal dimensions [Parker &
Chua, 1989]. In the last years, an analytical instrument, furnished by the critical curves, has been
introduced [Gumowski & Mira, 1980; and references therein]. This tool allows to study the
bifurcations and some geometrical properties of  basins, particularly the phenomenon of
fractalization [Mira et al., 1996; Abraham et al., 1997].
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Basins constitute an interesting object of study by themselves. If a colour is given to the basin of
each attractor, we obtain a coloured figure, which is a phase-plane visual representation of the
asymptotic behaviour of the points of interest. The strong dependence on the parameters of
this coloured figure generates a rich variety of complex patterns on the plane and gives rise to
different types of basin fractalization as a consequence, for instance, of contact bifurcations
between a critical curve segment and the basin boundary. Taking into account the complexity of
the matter and its nature, the study of these phenomena can be carried out only via the association of
numerical investigations guided by fundamental considerations that can be found in  [Mira et al.,
1996].

Different models of two-dimensional coupled maps are scattered in the literature of several fields
(physics, engineering, biology, ecology and economics). See, for example, [Kaneko, 1983], [Yuan et
al., 1983], [Hogg & Huberman, 1984], [Van Biskirk & Jeffries, 1985], [Schult et al., 1987], [De
Sousa Vieira et al., 1991] and [Aicardi & Invernizzi, 1992]. In these works the symmetries,
dynamics, bifurcations and transition to chaos are investigated and interpreted within the standards
of the theory of dynamical systems. The role played by critical curves in determining the properties
and global bifurcations of  basins of a double logistic map has been studied in [Gardini et al., 1994].

In this paper we explain the basin behaviour of a two-dimensional mapping proposed initially as a
coupled pair of logistic oscillators [López-Ruiz & Pérez-Garcia, 1991]. There, its dynamics, stability
and attractors were presented for some range of the parameter in parallel with the study of two other
models built under similar insights. The metric and statistical properties of that system were also
computed and explained in [López-Ruiz & Pérez-Garcia, 1992]. It is our objective in the present
work to continue the investigation of that system and to analyze the fractalization and parameter
dependence of  basins by using the technique of critical curves.

The plan is as follows. Sec. 2 is devoted to the recalls of symmetry properties and of local stability
for the parameter range of interest. In Sec. 3 some notions concerning the critical curves and their
application to the present case are given. In Sec. 4 we explain the different fractalization kinds,
which are found in our system. Last Section contains the discussion and conclusion.

2.   SYMMETRY AND BIFURCATIONS

A logistic map whose parameter µ n  is not fixed, ( )x x xn n n n+ = −1 1µ , but itself follows a dynamics
forced to remain in the interval [ ]1 4,  has a specific dynamics [López-Ruiz, 1991]. The existence of a
nontrivial fixed point at each step n  ensures the nontrivial evolution of the system. Thus, the
different choices of µ n  give a wide variety of dynamical behaviours. For instance, the application of
this idea produces the on-off intermittence phenomenon when µ n  is chosen random [Platt et al.,
1993] or the adaptation to the edge of chaos when µ n  is a constant with a small time perturbation
[Melby et al., 2000]. Other systems built under this mechanism are models (a), (b) and (c) presented
in [López-Ruiz, 1991]. In these cases µ n  is forced to follow a logistic dynamics expanded to the
whole interval [ ]1 4, . The result corresponds to three different two-dimensional endomorphisms of
coupled logistic maps.

We will concentrate our attention in model (b). This application can be represented by T R Rλ : 2 2→ ,

( ) ( )T x y x yn n n nλ , ,= + +1 1 . It takes the form:
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where λ  is a real and adjustable parameter. In the following we shall write T  instead of Tλ  as the
dependence on the parameter λ  is understood.
In this section, some results on the behaviour of T  gathered in [López-Ruiz & Pérez-Garcia, 1991]
are recalled and some new bifurcation and dynamical aspects not collected in that publication are
explained. The nomenclature is maintained.

2.1   Symmetry

This model has reflection symmetry P  through the diagonal ( ){ }∆ = ∈x x x R, , . If ( ) ( )P x y y, x, =
then T  conmutes with P :

( )[ ] ( )[ ]T P x y P T x y, ,= .

Note that the diagonal is T -invariant, ( )T ∆ ∆= . In general, if Ω  is an invariant set of T ,
( )T Ω Ω= , so is ( )P Ω  due to the conmutation property: ( )[ ] ( )[ ] ( )T P P T PΩ Ω Ω= = . It means that

if { }p i Ni , ∈  is an orbit of  T , so is ( ){ }P p i Ni , ∈ . In fact, if some bifurcation happens in the half
plane below the diagonal so it is in the above half plane, and vice versa. The dynamical properties of
the two halves of phase space separated by the diagonal are interconnected by the symmetry.
Also if the set Γ  verifies ( )P Γ Γ= , so is ( )T Γ .  Then the T -iteration of a reflection symmetrical
set continues to keep the reflection symmetry through the diagonal.

2.2   Fixed Points, 2-Cycles and Closed Invariant Curves

We focus our attention on bifurcations playing an important role in the dynamics, those happening in
the interval − < <1545 1 0843. .λ . In this range, there exist stable attractors for each value of  λ  and it
has sense to study their basins of attraction.

The restriction of T to the diagonal is a one-dimensional cubic map, which is given by the
equation ( ) ( )nnnn xxxx −+=+ 1131 λ . Thus the solutions of  nn xx =+1  are the fixed points on the
diagonal,
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For − < <1 1λ , p0  is an attractive node. For all the rest of parameter values, p0  is a repelling
node. If λ < 0  the fixed points p3 4,  are repelling nodes. For 0 0 75< <λ . , p3 4,  are not possible
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solutions. When λ = 0 75.  a saddle-node bifurcation on the diagonal generates p3 4, . For
0 75 0 866. .< <λ , p3  is a saddle point and p4  is a node. In this parameter interval, the whole
diagonal segment between p3  and p4  is locus of points belonging to heteroclinic trajectories
connecting the two fixed points.
When 866.023 ≅=λ  the point p4  changes its stability via a pitchfork bifurcation generating two
new stable fixed points p5 6,  outside the diagonal. These points are obtained by solving the quadratic

equation ( ) ( )λ λ λ λ λ4 3 4 1 1 02+ − + + + =x x . The solutions are :
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For λ = 0 957. , these two symmetric points lose stability via a Neimark-Hopf bifurcation. Each point
p5 6,  gives rise a to a stable closed invariant curve. The size of these symmetric invariant curves grow
when λ  increases into the interval  0 957 1. < <λ , and, for some values of  λ , frequency locking
windows are obtained.

The period two cycles of the form ( ) ( )x y, ,0 0↔  play an important role when λ < 0 , and are found

by solving the cubic equation: ( )λ λ λ λ λ3 3 3 2 3 2 22 1 0x x x− + + + − = . The solutions are
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Observe that the restriction of the map 2T  to the axes is invariant and reduces to the double
logistic map )(2

1 nn xfx =+  with ( )xxxf −= 1)( λ ,  so that  its dynamics is completely known and
it gives rise to a known cyclic behaviour on the axes for the map T.
The 2-cycle ( )p p1 2,  exists for every parameter value and is unstable for every value of λ .
The pair of  2-cycles ( )p p7 8,  and ( )p p9 10,  has a limited existence to the parameter intervals :
λ > 3  or λ < −1. For λ = 3 , they appear simultaneously by a pitchfork bifurcation from the period
2-orbit ( )p p1 2, . They are always unstable for λ > 3 . In the range − < < −1 45 1. λ , they are
stable. This pair of 2-cycles grows from the origin p0  when λ = −1 . It is the result of a
codimension-two bifurcation giving rise also to a repelling 2-cycle in the direction on the
invariant diagonal.

2.3   Transition to Chaos



5

We follow the presentation of the former section. Remark that the considered system presents two
different route to chaos depending on if λ > 0  or if λ < 0 .

λ > 0 : For λ  slightly larger than 1 , the two closed invariant curves approach the stable invariant
set of the hyperbolic point p4  on the diagonal (Fig. 1a). At first sight, for λ ≈ 1029. , the system still
seems quasi-periodic but a finer analysis reveals the fingerprints of chaotic behaviour. Effectively,
the crossing of the invariant curves with ( )2

1−LC  produces a folding process in the two invariant
sets (Fig. 1b) cf. [Frouzakis & al., 1997], which gives rise to the phenomenon of weakly chaotic
rings when the invariant set intersects itself (Fig. 1c) (cf. [Mira & al., 1996] p529). The
existence of weakly chaotic ring is also confirmed by the positivity of the largest Liapunov
exponent for the considered parameter values as it was computed and shown in Fig. 3(a) of
[López-Ruiz & Pérez-Garcia, 1992]. For 032.1≈λ , the tangential contact of the two symmetric
invariant sets with the stable set of the saddle p4  on the diagonal leads to the disappearance of
those two weakly chaotic rings. Just after the contact, infinitely many repulsive cycles appear
due to the creation of homoclinic points and a single and symmetric chaotic attractor appears (Fig.
2a). For 1 032 10843. .< <λ , this chaotic invariant set folds strongly around p4 , and the dynamics
becomes very complex (Fig. 2b). When the limit value λ = 1 084322.  is reached, the chaotic area
becomes tangent to its basin boundary, the iterates can escape to infinite and the attractor disappears
by a contact bifurcation ([Mira & al., 1987], chap. 5) (Fig. 9d).

λ < 0 : The pair of  2-cycles ( )p p7 8,  and ( )p p9 10,  are the germ of  two period doubling cascades of
bifurcations, respectively, one of them below the diagonal and the other one above it. Thus, for
λ = −1 45. , a pair of stable 4-cycles is created on the axes when the 2-cycle pairs ( )p p7 8,  and

( )p p9 10,  loose their stability after that an eigenvalue of each 2-cycle crosses through the value -
1. For λ = −15. , each 4-cycle bifurcates and a stable 8-cycle pair grow outside the axes. For
λ = −151. , a new flip bifurcation generates the pair of 16-cycles, and so on until the dynamics
becomes chaotic. For λ = −15131. , the cascade of flip bifurcations has finished and a symmetric
pair of chaotic areas has merged in the region around p0  (see Fig. 3a-b for 52.1−=λ ). When
λ = −1545.  the chaotic areas have contact with their basin boundaries and they disappear.

3.   STABLE ATTRACTORS

For the sake of clarity, we summarise the dynamical behaviour of the system explained above when
the parameter is inside the interval − < <1545 1 0843. .λ . The different parameter regions where the
mapping has stable attractors are given in two tables, one of them for λ > 0  and the other one for
λ < 0 .

λ > 0 :

 INTERVAL NUMBER OF ATTRACTORS ATTRACTORS
  0 0 75< <λ . 1 p0

       0 75 0 866. .< <λ 2 p0 , p4

      0 866 0 957. .< <λ 3 p0 , p5 6,

      0 957 1. < <λ 3 p0 , pair of invariant closed
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curves

              03.11 << λ 2 pair of invariant closed
curves

  032.103.1 << λ

0843.1032.1 << λ

2

1

pair of weakly chaotic rings

symmetric chaotic attractor
(or frequency lockings)

λ < 0 :

INTERVAL NUMBER OF ATTRACTORS ATTRACTORS
− < <1 0λ 1 p0

          − < < −1 45 1. λ 2 ( )p p7 8, , ( )p p9 10,
            − < < −15 1 45. .λ 2 pair of 4-cycles
          − < < −151 15. .λ 2 pair of 8-cycles
        − < < −1512 151. .λ 2 pair of 16-cycles
      − < < −15131 1512. .λ 2              pair of 2n-cycles, n>5
        − < < −1545 15131. .λ 2 symmetric pair of  chaotic areas

4.   CRITICAL CURVES

4.1   Definitions and Properties

An important tool used to study noninvertible maps is that of critical curves, introduced by Mira in
1964 (see [Mira et al., 1996] for further details). The map T is said to be noninvertible if there exist
points in state space that do not have a unique rank-one preimage under the map. Thus the state
space is divided into regions, which we call iZ , in which points have i rank-one preimages under T.
These regions are separated by the so called critical curves LC , and so the number of the first rank
preimages changes only when the LC are crossed, except for singular points. LC is the image of a
set LC−1 . If the map T is continuous and differentiable, LC−1  is a subset of the locus of points where
the determinant of the Jacobean matrix of T is zero, and is the two-dimensional analogue of the set of
local extrema of a one-dimensional map. When LC is crossed rank-one preimages appear or
disappear in pairs. (See also the glossary for different technical terms used along this work).

4.2   Critical Curves of T

The map T  defined in (1) is noninvertible. It has a non-unique inverse. Each point in the state
plane can possess up to five rank-one preimages. The preimages can only be calculated
numerically, by solving a polynomial of degree five. The critical curve LC  of  T  (the locus of
points having at least two coincident rank-1 preimages) is the image of  LC−1 , the locus of points



7

where the Jacobean ( )DT p  vanishes. That is, ( )LC T LC= −1 . The Jacobean matrix of T  depends
on ( )yx,  and the parameter λ  and has the following form :

( ) ( ) ( )( )
( )( ) ( )

DT x y
y y x y

y x x x
, ;λ

λ λ
λ λ

=
− + −

+ − −










3 1 3 1 1 2
3 1 1 2 3 1

.

LC−1  is the curve verifying ( ) 0, =yxDT . It is formed by the points ( )yx,  that satisfy the equation :

27 3 3 6 6 8 1 02 2 2 2 2 2x y x y xy x y xy x y+ + − − − + + + = . (2)

LC−1  is independent of parameter λ  and is quadratic in x  and y . Thus we can solve one of the two
variables as function of the other one. For instance, the variable y  as function of  x  gives us:

( )
y

x x x x x x
x x

=
− + − ± − − − +

+ −
3 8 1 657 84 194 4 25

54 6 12

2 4 3 2

2 .

Numerical calculations allow us to discover that for every value of x , or equivalently for every
value of y , there are two points belonging to two different branches of  LC−1  (Fig. 4a). Observe that
LC−1  is a quartic curve of four branches, with two horizontal and two vertical asymptotes . The
branches ( )1

1−LC  and ( )2
1−LC  have as horizontal asymptote the line y = 0 419.  and the vertical

asymptote in x = 0 419. . The other two branches, ( )3
1−LC  and ( )4

1−LC , have the horizontal asymptote
in y = −0 530.  and the vertical one is the line x = −0 530. . The values 0 419.  and −0 530.  are the roots
of the polynomial factor, 27 3 62x x+ − , that multiplies the term y2  in Eq. (2). It also follows that
the critical curve of rank-1, ( ) ( )( )ii LCTLC 1−= , 4,3,2,1=i , consists of four branches. The shape of
LC  is shown in Figs. 4(b-c). LC  depends on λ  and separates the plane into three regions that are
locus of points having 1, 3 or 5 distinct preimages of rank-1. They are respectively named by Zi ,

5,3,1=i .  Observe that the set of points with three preimages of rank-1, 3Z , is not connected
and is formed by five disconnected zones in the plane (see Figs. 4b-c). Next section is devoted to
the study of this state space organisation.
Remark that LC−1  has the reflection symmetry through the diagonal : ( ) 11 −− = LCLCP . Then every
critical curve of rank-(k+1), ( )LC T LCk

k= +
−

1
1 , will conserve this symmetry: ( ) kk LCLCP = .

4.3   Zi - Regions

LC  separates the plane into seven disjoint and open zones, which are locus of points having distinct
number of preimages of rank-1 (Figs. 4b-c). We name each region depending on the number of
preimages of rank-1 it has. Thus a Zi -zone means the set of points with i preimages of rank-1.
Observe that four arcs of LC -curve divide the diagonal ∆ in five intervals, each one associated
only with the Zi -zone including it. Then to know the number i of preimages of rank-1 of each
segment on the diagonal, it is necessary to determine the number of preimages of rank-1 of each
Zi -zone of the plane.  Then we proceed to this calculation.
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The set of rank-1 preimages of the diagonal includes the diagonal itself and another set formed
by an hyperbola of two branches. Thus, a point on the diagonal ( )x x' , '  can have preimages of
rank-1 on the diagonal or on that hyperbola:

(a) Preimages belonging to the diagonal: It follows from Eq. (1) that the preimages ( )x x,  of the
point ( )x x' , '  verify the cubic equation:

3 2 03 2λ λ λx x x x− − + =' . (3)

This equation can have one or three solutions depending on x'  and on λ . We define the limit
values:  λ65.0'1 ≈dx  and  λ1.0'2 −≈dx . If λ > 0 , Eq. (3) presents one root if x x d' '> 1  or if x x d' '< 2 ,
and three roots if x x xd d' ' '2 1< < . If λ < 0 , Eq. (3) has one solution if x x d' '> 2  or if x x d' '< 1 , and
three solutions if x x xd d' ' '1 2< < .
(b) Preimages belonging to the hyperbola: Eq. (1) tells us that the image of a point ( )x y,  is on the
diagonal when ( )x y,  verifies:

y x
x

= −
+

1
1 3

. (4)

Equation (4) represents an hyperbola of two branches with asymptotes in 31−=x  and in 31−=y .
The point ( )x x' , '  has preimages ( )x y,  on the hyperbola if ( ) ( )x y x x'= + −λ 3 1 1 . If we introduce
relation (4) between x  and y  in the former expression we obtain the equation:

( )4 3 4 02λ λx x x x+ − + =' ' . (5)

If the radicand of this equation is positive, the point ( )x x' , '  has two preimages on the hyperbola (4),
and if the radicand is negative, it has not preimages on that hyperbola. The roots of the radicand of
Eq. (5) give us the behaviour of its sign:

9 40 16 02 2x x' '− + =λ λ . (6)

The roots of this equation are x h'1 4= λ  and λ44.0'2 ≈hx . Then, if λ > 0 , Eq. (5) presents two
solutions if x x h' '> 1  or x x h' '< 2 , and it has no solutions when x x xh h' ' '2 1< < . If λ < 0 , Eq. (5) has
two solutions if x x h' '> 2  or if x x h' '< 1 , and no solutions when x x xh h' ' '1 2< < .

Thus the coordinates of the points that mark the frontier between the different Zi -zones on the
diagonal are: λ65.0'1 ≈dx  and  λ1.0'2 −≈dx , x h'1 4= λ  and λ44.0'2 ≈hx . For example, the origin
p0  is always in the Z5 -zone. It is located into the interval that determine dx 1'  and dx 2'  as extremes,
then p0  has three preimages on the diagonal. Also it is outside of the interval determined by the
extremes hx 1'  and hx 2' , then p0  has two preimages on the hyperbola (4). In fact, its preimages are
( ) ( )31,31,1,1 −−  and p0  itself on the diagonal, and ( ) ( )1,0,0,1  on the hyperbola. Taking and
connecting the results of former paragraphs (a)-(b),  the number of preimages of rank-1 of a point
( )x x' , '  on the diagonal can be summarised in the following tables.

λ > 0 :
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INTERVAL x x d' '< 2 x x xd h' ' '2 2< < x x xh d' ' '2 1< < x x xd h' ' '1 1< < x x h' '> 1

NUMBER OF PREIMAGES 3 5 3 1 3

λ < 0 :

INTERVAL x x h' '< 1 x x xh d' ' '1 1< < x x xd h' ' '1 2< < x x xh d' ' '2 2< < x x d' '> 2

NUMBER OF PREIMAGES 3 1 3 5 3

To summarise, the many different zones  Zi  separated by branches of the critical curve LC
can be classified, according to the nomenclature established in Mira et al. [1996], in two
different schemes. For 0>λ , the map (1) is of the type Z Z Z Z Z3 5 3 1 3− −f p  and for λ < 0 ,
the map is of the type 35313 ZZZZZ −− pf  .

Observe in Figs. 4(b-c) that the branches of the critical curve LC  are not smooth. They exhibit two
cusp points that coincide with x h'1  and x h'2 . A cusp point can be considered as a singular point of
LC  where three first rank preimages coincide. These points give information on the sheet structure
of the map foliation. In the case of the cusp point x h'1  the two preimages on the hyperbola (4) and
the preimage on the diagonal are mixed up on the point ( )1,1−− . Equivalently, x h'2  has two
preimages, ( )91.0,91.0  and ( )52.0,52.0 −−  on the diagonal and the other three preimages coincide
with the point ( )31,31 . For the map T  there is no bifurcation involving the cusp points and
associated with the qualitative change of the sheet organisation. The only bifurcation occurs in

0=λ , and gives rise to an inversion in the plane of the sheet structure (Figs. 4b-c).

5.   BASIN FRACTALIZATION

5.1   General Properties

The set D  of initial conditions that converge towards an attractor at finite distance when the
number of iterations of  T  tends toward infinity is the basin of the attracting set at finite
distance. When only one attractor exists at finite distance, D  is the basin of this attractor.
When several attractors at finite distance exist, D  is the union of the basins of each attractor. The set
D  is invariant under backward iteration 1−T  but not necessarily invariant by T : ( ) DDT =−1  and
( ) DDT ⊆ . A basin may be connected or non-connected. A connected basin may be simply

connected or multiply connected, which means connected with holes. A non-connected basin
consists of a finite or infinite number of connected components, which may be simply or multiply
connected [Mira & al., 1994].

The closure of D  includes also the points of the boundary D∂ , whose sequences of images are also
bounded and lay on the boundary itself. If we consider the points at infinite distance as an attractor,
its basin ∞D  is the complement of the closure of D . When D  is multiply connected, ∞D  is non-
connected, the holes (called lakes) of D  being the non-connected parts (islands) of ∞D . Inversely,
non-connected parts (islands) of D  are holes of ∞D  [Mira et al., 1996].
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In Sec. 3, we explained that the map (1) may possess one, two or three attractors at a finite
distance. The points at infinity constitute the fourth attractor of T . Thus, if a different colour
for each different basin is given we obtain a coloured pattern with a maximum of four colours.
In the present case, the phenomena of basin boundary fractalization have their origin in the
competition between the attractor at infinity (whose basin is ∞D ) and the attractors at finite distance
(whose basin is D ). The competition between the attractors at finite distance can also fractalize the
set D  (see Sec. 5.3.2). When a bifurcation of D  takes place, some important changes appear in the
coloured figure, and, although the dynamical causes can not be clear, the coloured pattern becomes
an important  visual tool to analyze the behaviour of basins.

We study in detail, and with the help of graphical representations, the mechanisms of basin
fractalization for the map T . The changes of the shape and evolution of D  are given in function of
the sign of the parameter λ . Two scenarios are distinguished : Scenario I for 0>λ  and Scenario II
for 0<λ .

5.2   Scenario I, 0>λ

When 084.10 << λ , we observe important modifications of the area of D , the basin of the
attracting set at finite distance. Its size decreases when λ  increases. Two main contact
bifurcation phenomena giving rise to a fractal basin boundary take place into this interval: fractal
islands disaggregation if 61.039.0 << λ  and infinitely many converging sequences of lakes if

084.108.1 << λ . We proceed to explain the role played by critical curves in the bifurcations giving
rise to these phenomena.

5.2.1   Fractal Islands Disaggregation, 61.039.0 << λ

When λ  increases from 39.0≈λ  to 61.0≈λ , D  undergoes two bifurcations connected - non-
connected  and non-connected – connected. When D  is non-connected, it is made up of the
immediate basin 0D  containing the single attractor ( )0p  and infinitely many small regions
without connection (islands). This disaggregation is the result of infinitely many contact
bifurcations, which are explained in the next paragraph. Such phenomenon can be also found
in some quadratic 20 ZZ −  maps and has been explained in [Mira & Rauzy, 1995]. We explain
for decreasing λ  the corresponding mechanisms (Fig. 6a-h).

When 61.0≈λ  (Figs. 6e-h), a first rank island is created due to the intersection of ( )1LC  with the
two symmetric narrow "tongues" of D  located in the third quadrant, and having the lines

31−=x  and 31−=y  as  asymptotes. Those points of D  crossing ( )1LC  from the below 3Z -zone
to the 5Z -zone acquire two new preimages of rank-1. These preimages appear as shaped islands

intersecting ( )1
1−LC  on the middle 3Z -zone. Higher rank preimages of these seminal islands give

rise to new smaller islands. The same mechanism of creation of new islands comes from the
intersection of the existing islands with LC arcs (Figs. 6c-d). Thus islands crossing ( )3LC  from
the middle 3Z -zone to the 5Z -zone undergo a contact bifurcation that creates a new pair of rank-1

islands intersecting ( )3
1−LC .

Then, (Figs. 6a-b) islands evolving in the plane from the middle 3Z -zone to the 1Z -zone across
( )2LC  give place to the aggregation of a pair of rank-1 islands located to both sides of ( )2

1−LC . This
cascade of bifurcations, considered when λ  increases, generates a fractal pattern of non-connected
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islands in the vicinity of the immediate basin 0D  and at the both sides of its three like-axes of

symmetry: ( )1
1−LC , ( )2

1−LC  and ( )3
1−LC  (Fig. 6c). When 396.0≈λ , the two headlands of ∞D

enclosed between ( )1LC  and the two former "tongues" disappear and an infinitely complex
aggregation happens: the frontier of every island contact with the boundary 0D∂
simultaneously and a connected basin D  is obtained finally (see contact at point A in Fig. 6a).

Observe that D  has now a non-smooth boundary (Figs. 5a-b). The stable set of the period two
saddle ( )p p1 2,  and its preimages form part of it. To find the analytical expression of the
boundary is a difficult task but in this particular case, we can obtain by direct visual inspection
of the figures some partial and approximated information. The coordinates axes are 2T -
invariant: T  reduces on the axes to the double logistic map )(2

1 nn xfx =+  with ( )xxxf −= 1)( λ ,
so that  it gives rise to a known dynamics on the axes for the map T.  Two apparently
unbounded “tongues” escaping toward infinity are in the asymptotical direction of the lines

31−=x  and 31−=y  as it can be inspected in Fig. 5a. These two lines are the rank-1
preimages of the coordinates axes , which are also asymptotes of other two similar "tongues".
Then an analytical approximation of the frontier of the former "tongues" can be obtained by
backward iteration of the boundary of the latter "tongues". After some straightforward
calculation, it can be found that the map 2T  generates stable dynamics on the axes when the
initial conditions ( )0,0x  or ( )0,0 y  are lying on the intervals, λλ 111 0 <<− x  or

λλ 111 0 <<− y , for 1<λ . We call these intervals δ  and 'δ , respectively. Preimages of
different ranks higher than 1 of points in the vicinity of δ  and 'δ  generate a set of curves that
come close to and that can give us a rough idea of the fractal structure of the basin boundary
at the "tongues". For instance, the piece of the curve, )9(131 2yx λ+−=  with 30 −<< λy ,
close to the asymptote  31−=x , is a preimage of rank-2 of points in the vicinity of the positive
part of 'δ  (Fig. 5b).

5.2.2   Finite Disaggregation and Infinitely Disconnected Basin, 032.17.0 << λ

When 17.0 << λ , D  seems to be formed by the square [ ] [ ]1,00,10 ×≡D , which contains the
attracting set at finite distance, and four small like-triangled regions linked to the square by
four narrow arms (Fig. 7a). These arms shrink when λ  approaches 1, and disappear for 1=λ
when the origin 0p  undergoes a transcritical bifurcation. The main part of D  is then a
disconnected pattern of five components: the square 0D , a triangle-shaped component located
in a 3Z  neighbourhood of the vertex point ( )31,31 −−  (preimage of rank-1 of  the point 0p ),
and the three triangle-shaped regions that are preimages of rank-1 of the latter component
(Fig. 7b). As there is no region  0Z , an infinite sequence of rank-1 preimages exists and gives
rise in this case to the appearance of much smaller islands of preimages. They can be observed
by enlargement of the figures (see some of them in Fig. 7c).

Points ( )0,1  and ( )1,0  cross through ( )2LC  when 1=λ . When 1>λ , it makes appear two
regions 1

1S  and 1
2S , which are part of ∞D  and are located in a 3Z  zone. The rank-one

preimages of 1
1S  and 1

2S , respectively 1
1
−S  and 1

2
−S  are two new semicircular regions and

intersect ( )2
1−LC . They are located in the vicinity of points ( )5.0,1  and ( )1,5.0 , preimages of ( )0,1

and ( )1,0  (Fig. 7d).
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When 032.1866.0 << λ , T  possesses two or three attractors (see Sec. 3). If the basin of each
attractor is coloured in a different way, we observe that each basin included in 0D  is non-
connected and is made up of infinitely many components. The boundary of each connected
component belongs to the stable set of unstable points [Gardini et al., 1994]. Figs. 7c & 8 show

0D  for 1=λ . In this case, two closed invariant curves attract the dynamics and two different colours
define the infinitely disconnected basin pattern.

5.2.3   Infinitely Many Converging Sequences of Lakes, 084.108.1 << λ

When λ  increases, the two semicircular shaped zones of ∞D , 1
1
−S  and 1

2
−S , located in the

immediate basin [ ] [ ]1,00,10 ×≡D  in the neighbourhood of points ( )5.0,1  and ( )1,5.0 , grow in size.
For 0801.1≈λ , the basin undergoes a contact bifurcation. ∞D  crosses through ( )2LC  and two
bays (headlands of ∞D ), 01H  and 02H , are created. Their rank-1 preimages, ( )1

01H  and ( )1
02H ,

are holes (lakes)  intersecting ( )2
1−LC  into the middle 3Z -region (Fig. 9a). Rank-1 preimages of

the latter holes generate four new lakes in 0D , ( )21
0iH  and ( )22

0iH , 2,1=i  (Fig. 9b). Preimages
with increasing rank give rise to an arborescent sequence of lakes. Inside 0D , the accumulation
points of this infinite sequence of holes are the two unstable foci 6,5p  and their rank-
1preimages inside the immediate basin. Outside 0D , the other two rank-1 preimages of 6,5p
are  limit points of the arborescent sequence of holes generated on the bigger triangle island
with vertex point ( )31,31 −−  (Fig. 9c).

When 0806.1≈λ , ( )21
01H  and ( )21

02H  cross through ( )2LC  (Fig 9b). This new contact
bifurcation is the germ of a new arborescent and spiralling sequence of lakes converging
towards the same accumulation points. When λ  increases values, new holes intersect ( )2LC
and give rise to new holes crossing through ( )2

1−LC  and new sequences of lakes converging
towards the unstable foci 6,5p  and their preimages. Due to the fact that the preimages have a
finite number of accumulation points, the structure is not fractal (Fig 9b). A similar
phenomenology has been found and studied in 20 ZZ −  maps [Mira et al., 1994].

When λ  increases ( 0835.1≈λ ), the chaotic attractor, which is limited by arcs of nLC  curves,
is destroyed by a contact bifurcation with its basin boundary. A new dynamical state arises.
The infinite number of unstable cycles and their rank-n images belonging to the existing
chaotic area before the bifurcation define a strange repulsor which manifests itself by chaotic
transients (Fig. 9e). For 085.1≈λ  the basin pattern disappears definitively.

5.3   Scenario II, 0<λ

When 0545.1 <<− λ , the size of the domain of bounded iterated sequences decreases when λ
decreases. Two different qualitative phenomena arise in this case for decreasing λ : countable self-
similar disaggregation if 85.02.1 −<<− λ  and sharp boundary fractalization if

45.1545.1 −<<− λ . We analyze the patterns generated in next paragraphs.
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5.3.1   Countable Self-similar Disaggregation, 85.02.1 −<<− λ

In the interval 01 <<− λ , the origin 0p  is the only attractor. The basin D  is connected. It presents
several "tongues": unbounded segments escaping apparently towards infinity and having the
vertical lines 31−=x  and 1=x , and the horizontal straight lines 31−=y  and 1=y  as
asymptotes (see Sec. 5.2.1). When 85.0−≈λ , ( )2LC  crosses through the boundary D∂ , creating a
small headland 0H  of ∞D  trapped between ( )2LC  itself and D∂  (Figs. 10a-b-c). A rank-1 preimage

of this small region creates a big lake 1
0
−H  in D  intersecting ( )2

1−LC . Other lakes of smaller size
appear on the tongues as preimages of 1

0
−H . The sequence of rank-n preimages of these holes

generates an infinite sequence of lakes along the diagonal and on the tongues (Figs. 10c). The basin
becomes multiply connected.
New headlands of ∞D  , 1H  and 2H , are created between ( )2LC  and D∂  when λ  decreases. It
gives rise to new arborescent sequences of holes located close to the former ones (Figs. 10d-e).
Afterwards, the aggregation of neighbour headlands of ∞D  gives rise to the aggregation of
their images lakes in the interior of D . Other bays open in the sea, due to the crossing of ( )2LC
through D∂ , giving rise to the transformation of their images lakes in roadsteads (Figs. 10f-g-
h). For 05.1−≈λ , the combination of these two phenomena  breaks D  in a set of infinitely
many components located on the diagonal and on the tongues, as a consequence of that ( )2LC  is
totally contained in ∞D  and the former headlands of ∞D  are open in the sea. The new basin is
a set with a countable number of self-similar parts. If we make enlargments of some parts, they
seem identical to the former one in the sequence (Figs. 10i-j-k). It means that the basin D  can
be seen as a collection of arbitrarily small pieces, each of which is an exact scaled down version
of the entire basin.
If nl  is the size of component n  of this sequence, the scaling factor r defined as ( )1+∞→

≈ nnn
lllimr

takes the value 43.7≈r .

To calculate this scaling factor we remark that the sequence of diagonal preimages nx  (with 11 =x
and 1>nx  for all 1>n ) of the origin 0p ( 00 =x ) are located one by one in the core of each
component of the self-similar basin. For 1−=λ , this sequence { }nx  can be calculated with the
restriction of recurrence (1) on the diagonal:

1
2

1
3

1 23 +++ −−= nnnn xxxx , (7)

where 00 =x , 11 =x ,K . The accumulation point ∞x , where the sequence { }nx  converges, is
obtained as the fixed point of the former recurrence:

21.1
3

71
1 ≈+=→= ∞+ xxx nn .

Observe that ∞x  is the coordinate of the fixed point 4p  on the diagonal. That is, the sequence
{ }nx  is an heteroclinic orbit between 0p  and 4p . The difference between two consecutive
terms, 1−− nn xx , gives us, approximately, the size nl  of the n-th component of the self-similar
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basin. The scaling factor r  is obtained linearizing Eq. (7) around the fixed point ∞x . The result
is:

43.7149 2

1

1

1

≈−−=
−

−
=≈ ∞∞

+

−

∞→
+

∞→
xx

xx
xx

lim
l
l

limr
nn

nn

n
n

n

n

Observe that r  is the diagonal multiplier of the unstable fixed point  4p .

5.3.2   Sharp Fractal Boundary, 45.1545.1 −<<− λ

Two stable period 2 cycles are created for 1−=λ , as consequence of  a codimension-two
bifurcation in 0p  (see Sec. 3). These 2-cycles persist stable in the parameter range 145.1 −<<− λ .
Afterwards the system undergoes a double cascade of flip bifurcations that gives rise to a symmetric
pair of chaotic areas for 5131.1−≈λ  (see Figs. 3). Then two colours define the basin of attractors at
finite distance, 21 DDD ∪= , in the interval 1545.1 −<<− λ , being 1D  and 2D  the basin of each
attractor (Fig. 10f & following).

For 45.1−≈λ , the critical curve ( )3LC  intersects the boundary separating 1D  and 2D , creating
headlands of one basin between ( )3LC  itself and the boundary of the other basin (Fig. 11a-b).
After this contact bifurcation a cascade of islands of basin 1D  into 2D , and vice versa, is
generated. A fractal pattern is created. Observe that the fractalization is located in very
determined zones of D . Each of  these regions is limited apparently by two smooth curves
(whose equations are unknown for us) intersecting on the diagonal. The origin and its
preimages are on the frontier of these regions as accumulation points (Fig. 11a-b). Although
islands of 1D  are spread out over 2D , and vice versa,  in the fractal zones,  these are not
riddled basins in the sense defined in [Alexander et al., 1992]. We can always find on those
regions a disk, which intersects one of the basins in a set of positive measure but does not intersect
the other basin.

A similar behaviour is repeated for 485.1−≈λ  but with the basin of infinity. ( )3LC  crosses
through the boundary of this basin and a cascade of islands of ∞D  is created in the regions
where 1D  and 2D  are intermingled (Fig. 11c-d). Observe that now the origin and the sequence
of its preimages are cusp points located on the frontier of D . For λ  decreasing, many different

∞D -islands have contacts with the external boundary of D  and they open in the sea (Fig. 11e).
This arborescent sequence of roadsteads gives place to a pattern with a sharp fractal
boundary.

As in Sec. 5.2.3, for 545.1−≈λ , a contact between D∂  and the frontier of the chaotic area
destroy the attractor and a strange repulsor takes its place. The dynamics derives towards
infinity giving rise to the disappearance of the basin.

6. CONCLUSION
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Basins of a noninvertible two-dimensional mapping formed by two symmetrically coupled
logistic maps have been analysed. Two approaches have been used to study the bifurcations
leading to their fractalization. On one hand, the geometrical and coloured  representations of
basins as a phase-plane visual instrument allowing us a qualitative focus, and, by the other
hand, a more precise and analytical approach furnished by the tool of critical curves.

The map is of degree five and a region with five first rank preimages exists for every value of
the parameter λ . Also there are regions with one and three rank-1 preimages. The many
different zones  Zi  separated by branches of the critical curve LC  can be classified, according
to the nomenclature established in [Mira et al., 1996], in Z Z Z Z Z3 5 3 1 3− −f p  type for 0>λ
and, 35313 ZZZZZ −− pf  for λ < 0 . The symbols ">" and "<" indicate the existence of two
cusp points located  on the frontiers separating the 1Z  and 5Z  zones from  two of the 3Z  zones.
We point out the non-existence of a zone with zero preimages, then every point on the plane
has an infinite sequence of preimages.

Although the system has only one parameter, it gives rise to a rich basin behaviour, which
generates many different complex patterns on the plane. Considering the complexity of all this
phenomenology and being aware of the difficulty of such an attempt, we have organised every
different type of basin fractalization present in this system in the following way: fractal islands
disaggregation for 61.039.0 << λ , finite disaggregation and infinitely disconnected basin for

032.17.0 << λ , infinitely many converging sequences of lakes for 084.108.1 << λ , countable
self-similar disaggregation for 85.02.1 −<<− λ  and sharp fractal boundary for

45.1545.1 −<<− λ . Each of these fractalization types have common features with those
present in the simplest and well-studied case of 20 ZZ −  maps. We want to call the attention on
the set of patterns found in the interval 85.02.1 −<<− λ . It constitutes a new and easily
calculable example of a self-similar countable set  on the plane. It can be seen as a collection of
arbitrarily small pieces, each of which is an exact scaled down version of the entire basin. The
scaling factor has been calculated by analytical direct inspection of  recurrence equations.

Finally we remark that, in general, basin fractalization does not imply the existence of a
chaotic attractor in the system. In fact, two of the fractalization types analysed in our mapping
present a periodic underlying dynamical behaviour.
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GLOSSARY

INVARIANT: A subset of the plane is invariant under the iteration of a map if this subset is mapped
exactly onto itself.

ATTRACTING: An invariant subset of the plane is attracting if it has a neighbourhood every point of
which tends asymptotically to that subset or arrives there in a finite number of iterations.

CHAOTIC AREA: An invariant subset that exhibits chaotic dynamics. A typical trajectory fills this
area densely.

CHAOTIC ATTRACTOR: A chaotic area, which is attracting.

BASIN: The basin of attraction of an attracting set is the set of all points, which converge towards the
attracting set.

IMMEDIATE BASIN: The largest connected part of a basin containing the attracting set.

ISLAND: Non-connected region of a basin, which does not contain the attracting set.

LAKE: Hole of a multiply connected basin. Such a hole can be an island of the basin of another
attracting set.

HEADLAND: Connected component of a basin bounded by a segment of  a critical curve and a segment
of the immediate basin boundary of another attracting set, the preimages of which are islands.

BAY: Region bounded by a segment of a critical curve and a segment of the basin boundary, the
successive images of which generate holes in this basin, which becomes multiply connected.

COAST: Basin boundary.

SEA: An open domain of divergent iterated sequences.

ROADSTEAD: The coast situation obtained after a bifurcation opening a lake in a sea.

DEGREE OF A NONINVERTIBLE MAP: Maximum of rank-one preimages generated by the map.

CONTACT BIFURCATION: Bifurcation involving the contact between the boundaries of different
regions. For instance, the contact between the boundary of a chaotic attractor and the boundary
of its basin of attraction or the contact between a basin boundary and a critical curve LC.

AGGREGATION: The situation obtained after that two or more disconnected components of a basin
form a single connected component.

EXTERNAL BOUNDARY: Boundary of the immediate basin (and other basin components if they
exist) obtained by taking out the lakes.

CUSP POINT: (1) Point on the critical curve LC where three first rank preimages coincide. (2)
Repelling node belonging to the external basin boundary, the eigenvalues, 21 ,ηη , of which satisfy

11 >η , 12 −<η  and  12 ηη > .

SHARP FRACTAL BOUNDARY: Basin boundary, the external boundary of which is made up of arcs
having a fractal structure containing an arborescent sequence of preimages of a cusp point. Thus
infinitely many cusp points belong to the boundary.
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Figure Captions

Fig. 1: (a) Attractive closed invariant curves for 03.1=λ , and (b) Enlargment of (a), (c) Weakly
chaotic rings limited by segments of critical curves nLC .

Fig. 2: (a) Symmetric chaotic attractor for  083.1=λ . (b) Complex folding process around 4p  for
08.1=λ .

Fig. 3: (a) Pair of chaotic areas for 52.1−=λ  as a result of two period doubling cascades. (b)
Enlargment of a chaotic area.

Fig. 4: (a) Critical curves ( )iLC 1− , 4,3,2,1=i . (b)-(c) Critical curves ( )iLC , 4,3,2,1=i , for 3.0=λ
and for 3.0−=λ , respectively. Observe the different jZ -zones, 5,3,1=j .

Fig. 5: (a) Basin D  for 3.0=λ . Observe the "tongues" having as asymptotes the lines: 31−=x ,
31−=y , 0=x  and 0=y . (b) Detail of the fractal structure of the tongues.

Fig. 6: (a) Collective islands disaggregation of basin D  for 396.0=λ . (b) Observe the fractal
pattern of islands to both sides of the three like-axes of symmetry: ( )1

1−LC , ( )2
1−LC  and ( )3

1−LC
for 45.0=λ . (c)-(d)-(e)-(f)  First rank islands generated from the intersection of ( )1LC  with
basin "tongues", for 6.0=λ , (g)-(h) 7.0=λ

Fig. 7: (a) Basin D  formed by the square [ ] [ ]1,00,10 ×≡D , which contains the attractors, and four
small like-triangle regions linked to the square by four narrow arms for 9.0=λ . (b) D  has five
disconnected components for 1=λ . (c) Enlargment of (b), (d) Observe the two semicircular
shaped regions of ∞D , 1

1
−S  and 1

2
−S , intersecting 0D  for 03.1=λ .

Fig. 8: 0D  for 1=λ . The two colours correspond to the non-connected basins of two attractive
closed invariant curves.

Fig. 9: (a) 0D  for 0803.1=λ : first rank holes ( )1
01H  and ( )1

02H  (and higher rank preimages holes)

of the bays 01H  and 02H , respectively. (b)-(c) New arborescent sequence of holes created

from the crossing of ( )21
01H  and ( )21

02H  with ( )2LC , (d) Chaotic attractor and its basin (e)
Strange repulsor for 084.1=λ .

Fig. 10: Countable self-similar disaggregation of basin D  (explanation in the text): (a) 85.0−=λ ,
(a) 85.0−=λ  (enlargement), (c) 93.0−=λ , (d) 97.0−=λ , (e) 97.0−=λ  (enlargement), (f)

01.1−=λ , and, (g)-(h) 01.1−=λ  (enlargement), (i) 4.1−=λ , (j)-(k) 4.1−=λ  (enlargement).

Fig. 11: Sharp boundary fractal of basin D  (explanation in the text): (a) 46.1−=λ , (b) 46.1−=λ
(enlargement), (c) 5.1−=λ , (d) 5.1−=λ  (enlargement), and, (e) 54.1−=λ , (f) 54.1−=λ
(enlargement).


