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In this paper, we study the existence of heteroclinic orbits for ordinary differential equations
which arise from a one-dimensional array of Chua’s circuits. By using the upper and lower
solutions method, and a zero-order approximation we show that for a certain set of parameters
there exist traveling wave solutions for some given wave speeds.
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1. Introduction

Chua’s circuit is a simple electronic circuit exhibit-
ing a wide variety of bifurcation and chaotic phe-
nomena. Because of its universality and simplicity,
Chua’s circuit has captured much interest among
researchers in science and engineering. The circuit
equations are described by the following set of dif-
ferential equations:

C1
dVC1

dt
=

1

R
(VC2

− VC1
) − F (VC1

) ,

C2
dVC2

dt
=

1

R
(VC1

− VC2
) + iL ,

L
diL
dt

= −VC2
,

where F is nonlinear and the shape of F is shown in
Fig. 1. See, for example, [Anishchenko & Safonova,
1992; Belykh & Chua, 1992; Chua, 1992, 1998;
Kahan & Sicardi-Schifino, 1999; Kennedy & Roska,
1992; Wu & Pivka, 1993] and [Zhong & Ayrom,
1985a, 1985b] for more details.

By using a change of variables, the circuit equa-
tions can be transformed into the following form,
see [Chua, 1992; Kocarev & Roska, 1993],

u̇ = α(z − f(u)) ,

ż = u − z + w ,

ẇ = −βz ,

(1)

where α and β are positive constants, f(u) has the
shape of the function u + F (u).

In [Perez-Munuzuri et al., 1992, 1993], a fi-
nite array of Chua’s circuits was considered with
Nemunann boundary conditions. The system is as
follows:

u̇k = α(zk − f(uk)) + D(uk−1 − 2uk + uk+1) ,

żk = uk − zk + wk , k = 0, 1, 2, . . . , l ,

ẇk = −βzk ,

(2)

where u0(t) = u−1(t), ul(t) = ul+1(t) and D > 0
represents the diffusion coefficient of the variable u,
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Fig. 1. The shape of F (u).
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Fig. 2. Diagram of z = f(u) + u.

and

f(u) =











m0u , u ≤ u1 ,

−m1(u − u) , u1 < u ≤ u2 ,

m2(u − 1) , u > u2 ,

is as shown in Fig. 2. The system (2) is an ex-
ample of Cellular Neural Networks as described
in [Chua, 1992]. In [Perez-Munuzuri et al., 1992,
1993], traveling wave-like solutions were observed
numerically when the number of cells l is large. Also
the propagation failure had been detected for a cer-
tain parameter range.

In this paper we will study an idealized system
that consists of an array of infinitely many cells. To
do so, we consider the following partial differential

equations:

∂U

∂t
= α(Z − f(U)) + D

∂2U

∂x2
, D > 0 ,

∂Z

∂t
= U − Z + W ,

∂W

∂t
= −βZ .

(3)

The main purpose of this paper is to show the
existence of traveling wave solutions for (3). If such
traveling wave solutions exist, then by using the
method in [Chow et al., 1998], one could obtain
traveling wave solutions for the discrete case with
infinitely many lattice points. Thus, the numerical
results in [Perez-Munuzuri et al., 1992, 1993], are
consistent with our theoretical result.

Let c be the wave speed of the traveling wave
solution. By introducing a moving coordinate t′′ =
t′/−c = 1/−c(x − ct) and setting

U(t, x) = u

(

x

−c
+ t

)

, Z(t, x) = z

(

x

−c
+ t

)

,

W (t, x) = w

(

x

−c
+ t

)

,

we arrive at ordinary differential equations for
(u, z, w):











εü = u̇ − α(z − f(u)) ,

ż = u − z + w ,

ẇ = −βz

(4)

with the boundary conditions:

lim
t→−∞

(u, u̇, z, w) = (0, 0, 0, 0) ,

lim
t→+∞

(u, u̇, z, w) = (1, 0, 0,−1) ,
(5)

where ε = D/c2. We will use the upper and lower
solution method to show that for any ε > 0, the
system (4) with boundary condition (5) has a so-
lution for a certain set of parameter values. This
means that (4) has a heteroclinic orbit connecting
the equilibrium points (0, 0, 0, 0) and (1, 0, 0,−1).

Our approach is as follows. In Sec. 2, a Nagumo
condition for a differential equation is introduced.
For equations satisfying the Nagumo condition,
the existence of the solution of the corresponding
boundary value problem is shown by using the up-
per and lower solution method. Then in Sec. 3, a
singular perturbation type of approach is used to
obtain a zero-order approximation solution. The
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main result is in Sec. 4 where we show the existence
of heteroclinic orbit of Eq. (4). Thus one concludes
that for any small ε > 0 and given wave speed c,
(3) has a traveling wave solution.

2. An Existence Theorem and
Nagumo Condition

In this section we will use the upper and lower
solutions to give an existence theorem of a bound-
ary value problem in which the differential equa-
tion involves a functional. The functional is related
to the singular perturbation problem (4) and the
details will be presented in later sections. An ex-
istence theorem for equations involving functionals
is given. We will then define a Nagumo condition
under which our main existence theorem in Sec. 4
is proven. The approach is based on the work in
[Bernfeld & Lakshmikantham, 1974; De Coster &
Habets, 1996].

Let T : C0([a, b], R) → C2([a, b], R) be a
bounded linear operator and f : [a, b] × R × R ×
C0([a, b], R) → R be continuous.

Theorem 2.1. If f(t, y, z, [T ξ]) is bounded on

[a, b]×R×R×C1([a, b], R). Then for and A,B ∈ R,
the boundary value problem

y′′ = f(t, y, y′, [T y]) ,

y(a) = A , y(b) = B

has a solution.

Proof. Let f be bounded by M > 0 and choose
Q > 0 to be sufficiently large so that

A ≤ Q , B ≤ Q ,
|A − B|

b − a
≤ Q

and

b − a ≤

(

8Q

M

)
1

2

, b − a ≤
2Q

M
.

Consider the Banach space C0([a, b], R)
equipped with the norm ‖y‖ = maxa≤t≤b |y(t)|.
Let

C = {y ∈ C1([a, b], R) : ‖y‖ ≤ 2Q ,

‖y′‖ ≤ 2Q} ⊂ C0([a, b], R) .

Notice that C is a closed, convex and bounded
subset of C0([a, b], R). Define the mapping A : C →

C by

Ay(t) =

∫ b

a
G(t, s)f(s, y(s), y′(s), [T y](s))ds

+ w(t) ,

where

G(t, s) =



















(b − t)(s − a)

a − b
, a ≤ s ≤ t ≤ b ,

(b − s)(t − a)

a − b
, a ≤ t ≤ s ≤ b

is the usual Green’s function for the boundary value
problem: w′′(t) = 0, w(a) = 0, w(b) = 0 and w(t)
is the solution for: w′′(t) = 0, w(a) = A, w(b) = B.
It is easy to see that if A has a fixed point y(·)
in C, then y(·) is a solution of our boundary value
problem.

Observe that

∫ b

a

∣

∣

∣

∣

∣

G(t, s)

∣

∣

∣

∣

∣

=
(b − t)(t − a)

2
≤

(b − a)2

8

and

∫ b

a

∣

∣

∣

∣

∣

Gt(t, s)

∣

∣

∣

∣

∣

=
(b − t)2 + (t − a)2

2(b − a)
≤

b − a

2
.

Thus,

‖Ay(t)‖ ≤
(b − a)2

8
· M + Q ≤ 2Q

and

‖(Ay)′(t)‖ ≤
b − a

2
· M + Q ≤ 2Q .

Hence A maps C into itself. Since

‖(Ay)′′(t)‖ ≤ |f(t, y(t), y′(t), [T y](t))| ≤ M ,

A is completely continuous. By Schauder’s fixed
point theorem, A has a fixed point in C, which is
a solution of our boundary value problem. This
completes the proof. �

Now we consider the following boundary value
problem

y′′ = f(t, y, y′, [T ξ](t)) , (6)

y(a) = A , y(b) = B , (7)
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where f : [a, b]×R×R×C0([a, b], R) → R is continu-
ous, T : C0([a, b], R) → C2([a, b], R) is bounded and
linear, and ξ ∈ C0([a, b]). The definitions of the up-
per and lower solutions and the Nagumo condition
related to Eq. (6) are given below.

Definition 2.2. Let ω and ω be continuous and
piecewise C2 functions with ω(t) ≤ ω(t) on [a, b].
That is, there is a finite partition {ti}, i = 0, . . . , n,
of [a, b] with a = t0 < t1 < t2 < · · · < tn = b, such
that on each closed subinterval [ti−1, ti], ω and ω
are twice continuously differentiable. At the parti-
tion point ti, the right- and left-handed derivatives
satisfy the following:

ω′(t−i ) < ω′(t+i ) , ω′(t−i ) > ω′(t+i ) ,

i = 1, 2, . . . , n − 1 .

In addition, if on each open subinterval (ti−1, ti)
the following inequalities are satisfied for any ξ(t) ∈
C0([a, b]) satisfying ω(t) ≤ ξ(t) ≤ ω(t),

ω′′(t) ≥ f(t, ω(t), ω′(t), [T ξ](t)) ,

ω′′(t) ≤ f(t, ω(t), ω′(t), [T ξ](t))

then ω(t) and ω(t) are called the piecewise C2 lower
and upper solutions, respectively, of the differential
equation:

y′′ = f(t, y, y′, [T ξ(t)]) .

Definition 2.3. Let ω, ω ∈ C0([a, b], R) with
ω(t) ≤ ω(t) on [a, b] and h ∈ C0(R+, R

+) satisfy
∫ ∞

λ

sds

h(s)
> max

t∈[a,b]
ω(t) − min

t∈[a,b]
ω(t) ,

where

λ(b − a) = max{|ω(a) − ω(b)|, |ω(b) − ω(a)|} .

The differential equation (6) is said to satisfy a
Nagumo condition on [a, b] with respect to the pair
ω, ω if the following inequality is satisfied for any
t ∈ [a, b], ω(t) ≤ u ≤ ω(t), v ∈ R and any
ξ ∈ C0([a, b], R) with ω(t) ≤ ξ(t) ≤ ω(t),

|f(t, u, v, [T ξ](t))| ≤ h(|v|) .

The following is the main result of this section.

Theorem 2.4. Suppose that ω and ω are piece-

wise C2 lower and upper solutions of the differential

equation

y′′ = f(t, y, y′, [T ξ](t)) ,

where f : [a, b] × R × R × C0([a, b], R) is con-

tinuous and T : C0([a, b], R) → C2([a, b], R) is

a bounded linear operator. Assume that y ′′ =
f(t, y, y′, [T ξ](t)) satisfies a Nagumo condition on

[a, b] with respect to the pair ω and ω. Then for any

A, B with ω(a) ≤ A ≤ ω(a) and ω(b) ≤ B ≤ ω(b),
the following boundary value problem

y′′ = f(t, y, y′, [T y]) , (8)

y(a) = A, y(b) = B , (9)

has a solution y(t) with ω(t) ≤ y(t) ≤ ω(t) on [a, b].
Moreover, let N0 > 0 be determined by:

∫ N0

λ

sds

h(s)
= max

t∈[a,b]
ω(t) − min

t∈[a,b]
ω(t) ,

then |y′(t)| ≤ N0, for all a ≤ t ≤ b.

Proof. First of all, We will construct a modi-
fied differential equation of Eq. (6). Let N1 =
maxa≤x≤b |ω

′(x)|, N2 = maxa≤x≤b |ω
′(x)|, where at

the partition points the maximum is taken over
the right- and left-handed derivatives. Let N =
max{N0, N1, N2} + 1. Define

F (t, y, z, [T ξ]) = f(t, R1(y), R2(z), [T (R3(ξ))])

+ R4(y),

where

R1(y) =















ω(t) , y > ω(t) ,

y , ω(t) ≤ y ≤ ω(t) ,

ω(t) , y < ω(t) ,

R2(z) =















N , z > N ,

z , |z| ≤ N ,

−N , z < −N ,

and

R3(ξ)(t) =















ω(t) , ξ(t) > ω(t) ,

ξ(t) , ω(t) ≤ ξ(t) ≤ ω(t) ,

ω(t) , ξ(t) < ω(t) ,

R4(y) =































y − ω(t)

1 + |y − ω(t)|
, y > ω(t) ,

0 , ω(t) ≤ y ≤ ω(t) ,

y − ω(t)

1 + |y − ω(t)|
, y < ω(t) .
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Thus, F (t, y, z, [T ξ]) is continuous and bounded
on [a, b] × R × R × C0([a, b]. Hence, it follows from
Theorem 2.1 that there exists a solution y(t) of

y′′ = F (x, y, y′, [T y])

y(a) = A , y(b) = B .

It remains to show that this solution y(t) has
all of the properties stated in the Theorem.

First, we show that ω(t) ≤ y(t) ≤ ω(t) on [a, b].
We prove only that y(t) ≤ ω(t) on [a, b]. Assume
on the contrary that y(t) > ω(t) at some points in
[a, b]. Since ω(a) ≤ A ≤ ω(a) and ω(b) ≤ B ≤
ω(b), it must be the case that m(t) = y(t) − ω(t)
has a positive maximum at some point t ∈ (a, b).
There are two cases to be considered. For the first
case, assume t = ti for some i = 1, 2, . . . , n − 1.
Since y′(t) − ω′(t

−
) ≥ 0 ≥ y′(t) − ω′(t

+
), thus

ω′(t
+
) ≥ ω′(t

−
). This contradicts the assump-

tion that ω′(t−i ) > ω′(t+i ). For the second case,
assume t ∈ (ti−1, ti) for some fixed i. We have
y(t) > ω(t), y′(t) = ω′(t) and

m′′(t) = y′′(t) − ω′′(t)

= F (t, y(t), y′(t), [T y](t)) − ω′′(t)

= f(t, ω(t), ω′(t), [T (R3(y))](t))

+
y(t) − ω(t)

1 + |y(t) − ω(t)|
− ω′′(t)

≥
(y(t) − ω(t))

1 + |y(t) − ω(t)|
> 0 ,

which is impossible at a maximum of m(t). Thus we
conclude that y(t) ≤ ω(t) on [a, b]. A similar argu-
ment can be applied to obtain the other inequality.
Thus we have ω(t) ≤ y(t) ≤ ω(t) on [a, b] and con-
clude that y satisfies y′′ = f(x, y,R2(y

′), [T y](t)).
Next, we shall show that |y′(x)| ≤ N for t ∈

[a, b]. Observe that ω(x) ≤ y(x) ≤ ω(x) on [a, b],
therefore by the Mean Value Theorem there exists
a t0 ∈ (a, b) such that |(y(a) − y(b))/(a − b)| =
|y′(t0)| ≤ max{(|ω(b) − ω(a)|)/b − a, (|ω(a) −
ω(b)|)/b − a} = λ < N0 < N .

If we assume that |y′(t)| > N , for some t ∈
[a, b], then there exists an interval [t1, t2] ⊂ [a, b]
such that the following cases hold:

(1) y′(t1) = λ, y′(t2) = N , and λ < y′(t) < N ,
t ∈ (t1, t2),

(2) y′(t1) = N , y′(t2) = λ, and λ < y′(t) < N ,
t ∈ (t1, t2),

(3) y′(t1) = −λ, y′(t2) = −N , and −N < y′(t) <
−λ, t ∈ (t1, t2),

(4) y′(t1) = −N , y′(t2) = −λ, and −N < y′(t) <
−λ, t ∈ (t1, t2).

Let us consider the case (1). We note that on [t1, t2],
y′′(t) = F (t, y, y′, [T y]) = f(t, y, y′, [T y]). By using
the Nagumo condition, we obtain

y′′(t)y′(t) ≤ |y′′(t)|y′(t)

= |f(t, y(t), y′(t), [T y](t))|y′(t)

≤ h(|y′(t)|)y′(t)

for some h ∈ C0(R+, R
+). Integrating the above

equation over the interval [t1, t2], one has

∫ t2

t1

y′′(s)y′(s)ds

h(|y′(s)|)
≤

∫ t2

t1

|y′′(s)|y′(s)ds

h(|y′(s)|)

≤

∫ t2

t1

y′(s)ds = y(t2) − y(t1) .

This shows that

y(t2) − y(t1) ≥

∫ N

λ

sds

h(s)

>

∫ N0

λ

sds

h(s)

= max
t∈[a,b]

ω(t) − min
t∈[a,b]

ω(t) .

which is a contradiction to that y(t) is trapped
between ω(t) and ω(t).

The other cases can be treated by using sim-
ilar arguments. Therefore, |y′(t)| ≤ N on [a, b],
and consequently from the manner in which F was
defined, y(t) is a solution of

y′′ = f(x, y, y′, [T y](t))

y(a) = A , y(b) = B .

Moreover, only a slight modification of the last
argument above will show that |y′(t)| ≤ N0 on [a, b].

�

3. Zero-Order Approximation

Observe that the differential equation (4) with the
boundary condition (5) is a singular perturbation
problem. A general method to consider this kind of
problem is to first set ε = 0 and find the two outer
layer expansions that will fit the two end bound-
ary conditions. Then a time scalaring method is
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used to find the inner layer expansions. After that
a matching of the coefficients on all functions will
be performed to obtain the final solution. However
for the system (4) this approach is not suitable be-
cause of the large number of equations involved and
insufficent number of boundary conditions. In this
paper we will present another method based on a
zero-order approximation of the solution.

Let ε = 0 in Eq. (4):











u̇ = α(z − f(u)) ,

ż = u − z + w ,

ẇ = −βz ,

(10)

which is the equation given by the traditional
Chua’s circuits. By definition of outer expansion, it
is a heteroclinic solution to Eq. (10). There are nu-
merical studies which indicate the existence of such
heteroclinic orbits (see, for example, [Wu & Pivka,
1993]). However, we are not aware of any rigorous
mathematical existence of proof. Thus, we use an
approximate solution to Eq. (10) and call this the
zero-order approximation. In order for the solution
to satisfy the following boundary condition

lim
t→−∞

(u, z, w) = (0, 0, 0) ,

lim
t→+∞

(u, z, w) = (1, 0,−1) ,
(11)

we let

u0(t) = 0 , z0(t) = 0 ,

w0(t) = 0 , for t ≤ 0,
(12)

and

u0(t) = 1 , z0(t) = 0 ,

w0(t) = −1 , for t > 0
(13)

be solutions of (10) and (11) on half lines.

Let τ = t/ε, then Eq. (10) becomes











u′′ = u′ − εα(z − f(u)) ,

z′ = ε(u − z + w) ,

w′ = −εβz ,

(14)

where ′ = d/dτ . Again by letting ε = 0 in (14), we
have











u′′ = u′,

z′ = 0 ,

w′ = 0 .

(15)

The solution of (15) is given by:

ũ0(τ) = c0e
τ + c1 , w̃0(τ) = c2 ,

z̃0(τ) = c3 ,
(16)

with c0, c1, c2 and c3 as constants to be determined.
By comparing the functions in (12) and (13)

and the function defined by (16), one can see that
only u0(t) can be uniquely determined. Thus we
consider the following zero-order composite expan-
sion

u0(t) =

{

uL
0 (t) = e

t

ε , t ≤ 0 ,

uR
0 (t) = 1 , t > 0 .

And solve the following system of differential
equation

{

ż = −z + w + u0(t) ,

ẇ = −βz ,

with boundary condition

lim
t→−∞

(z, w) = (0, 0) , lim
t→+∞

(z, w) = (0,−1) ,

where u0(t) is given above. We obtain the following
solution

z0(t) =



















zL
0 (t) =

ε

1 + ε + βε2
e

t

ε , t ≤ 0 ,

zR
0 (t) =

[

ε

1 + ε + βε2
cos(βt) +

(

1

β
−

(1 + 2βε)ε

β(1 + ε + βε2)

)

sin(βt)

]

e−
1

2
t, t > 0 ,

w0(t) =























wL
0 (t) = −

βε2

1 + ε + βε2
e

t

ε , t ≤ 0 ,

wR
0 (t) =

[

1 + ε

1 + ε + βε2
cos(βt) +

1 + (1 − 2β)ε

2β(1 + ε + βε2)
sin(βt)

]

e−
1

2
t − 1 , t > 0 ,

where β =
√

β − 1/4.
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Fig. 3. The graphs of u0(t), z0(t), w0(t).

We will call (u0(t), z0(t), w0(t)) the zero-order
approximation of the solutions of (4) and (5). In
Fig. 3, we show the graphs of u0(t), z0(t), w0(t)
when ε = 0.5, β = 30.

4. Main Result

Our main result is given in Theorem 4.3 below. The
general outline of the proof of the main result is as
follows. First, we will use the zero-order approxi-
mation obtained in Sec. 3 as an approximation for
the solution. By a change of variables on the en-
tire system we obtain a system of three equations
with different boundary conditions. After a linear
subsystem is solved, a functional operator, which is
considered in Sec. 2, will be defined. Then upper
and lower solutions are determined for a second-
order ordinary differential equation that satisfies a
Nagumo condition. Finally the existence of solution
can be verified by the result in Sec. 2.

The entire process is divided into several
lemmas to avoid lengthy argument.

Let a, b, K and M be positive constants. Let

Ω = {U ∈ C0(R, R); |U(t)| ≤ Keat ,

t ≤ 0, |U(t)| ≤ Ke−bt , t > 0}

Γ = {z ∈ C0(R, R); |z(t)| ≤ Meat ,

t ≤ 0, |z(t)| ≤ Me−bt , t > 0}

be normed linear spaces equipped with usual sup

norm ‖x‖ = supt∈R
|x(t)|. Let

A =

[

−1 1

−β 0

]

.

Assume β > 1/4. Thus, there exist L > 0 and
0 < c < 1/2 such that

‖eAt‖ ≤ Le−ct, t ≥ 0

The constants above will be used in the following
lemma.

Lemma 4.1. Consider the following boundary

value problem















ż = −z + w + η

ẇ = −βz

lim
t→−∞

(z, w) = (0, 0), lim
t→∞

(z, w) = (0, 0)

(17)

where η ∈ Ω. Let T : Ω → Γ × Γ be defined by

T (η)(t) =

∫ t

−∞

eA(t−s)

(

η(s)

0

)

ds .

Then for β < 1/4, b < c and 0 < a, T (η)(t) is the

unique solution of (17) and is a compact operator

from Ω to Γ × Γ.

Proof. It follows from the variation of constant for-
mula, the solution of (17) is given by

ϕ(t) =

(

z(t)

w(t)

)

= eAt

(

z0

w0

)

+

∫ t

0
eA(t−s)

(

η(s)

0

)

ds

For any η in Ω , it is clear that limt→−∞(z(t),
w(t)) = (0, 0), if and only if

ϕ(t) =

∫ t

−∞

eA(t−s)

(

η(s)

0

)

ds .

It remains to show that ϕ lies in Γ×Γ for some
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M > 0. First when t ≤ 0, we have

|ϕ(t)| ≤

∫ t

−∞

Le−c(t−s)Keasds ,

= KLe−ct

∫ t

−∞

es(a+c)ds ,

= KLe−ct 1

a + c
es(a+c)

∣

∣

∣

∣

∣

t

−∞

≤
KL

a + c
e−ct+at+ct ,

=
KL

a + c
eat.

On the other hand when t > 0, c > b, we have

|ϕ(t)| =

∣

∣

∣

∣

∣

∫ 0

−∞

eA(t−s)η(s)ds +

∫ t

0
eA(t−s)η(s)ds

∣

∣

∣

∣

∣

≤

∫ 0

−∞

Le−c(t−s)Keasds

+

∫ t

0
Le−c(t−s)Ke−bsds

= LKe−ct

∫ 0

−∞

es(a+c)ds + LKe−ct

∫ t

0
e(c−b)ds

= LKe−ct 1

a + c
es(a+c)

∣

∣

∣

∣

∣

0

−∞

+ LKe−ct 1

c − b
es(c−b)

∣

∣

∣

∣

∣

t

0

< LKe−ct 1

a + c
+

LK

c − b
e−bt

< LK

(

1

a + c
+

1

c − b

)

e−bt

Thus by taking M = (1/(a + c)+1/(c − b))LK and
b < c < 1/2, one can see that ϕ(t) lies in Γ×Γ and it
satisfies limt→∞(z, w) = (0, 0). It can be easily seen
that the solution of system (17) is unique, therefore
the operator T : Ω → Γ × Γ defined by

T (η)(t) =

∫ t

−∞

eA(t−s)

(

η(s)

0

)

ds

is a linear compact operator. �

Let u0(t), z0(t) be the zero-order approxima-
tion as mentioned in Sec. 3, K = 1 − u2, M be
the constant as defined in Lemma 4.1, and g(t) :
[−n, n] → R be any continuous function satisfing
|g(t)| ≤ Meat, t ≤ 0, and |g(t)| ≤ Me−bt, t ≥ 0.
Now, we shall construct upper and lower solutions.

Lemma 4.2. Consider the following differential

equation

εÿ = ẏ + αf(y + u0(t)) − αg(t) − αz0(t) . (18)

Let

ω(t) =

{

ωL(t) = Keat, t ≤ 0 ,

ωR(t) = Ke−bt, t ≥ 0 ,

ω(t) =

{

ωL(t) = −Keat, t ≤ 0 ,

ωR(t) = −Ke−bt, t ≥ 0 ,

then ω(t) and ω(t) are piecewise C2 upper and lower

solutions of the differential equation (18) on the in-

terval [−n, n].

Proof. For each n ≥ 1 and t ∈ [−n, 0], let

ωL(t) = Keat,

ωL(t) = −Keat.

Then

ωL(t) = −Ke−at ≤ 0 ≤ Ke−at

≤ ωL(t), t ∈ [−n, 0]

Since for any t ≤ 0,

e
t

ε < eat, if ε <
1

a
,

e−at ≤
K + 1

ũ
, if ũ ≤ Keat + e

t

ε ,

we have

f(ωL(t) + uL
0 (t)) = f(Keat + e

t

ε )

=















m0(Keat + e
t

ε ) ≥ m0Keat, Keat + e
t

ε ≤ u1 ,

−m1(Keat + e
t

ε − u) ≥ −m1(K + 1)eat, u1 ≤ Keat + e
t

ε ≤ u2 ,

m2(Keat + e
t

ε − 1) ≥ m2Keat − m2 ·
K+1
u2

eat, Keat + e
t

ε ≥ u2 ,
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f(ωL(t) + uL
0 (t)) = f(−Keat + e

t

ε )

=























m0(−Keat + e
t

ε ) ≤ −m0Keat + m0e
at, −Keat + e

t

ε ≤ u1 ,

−m1(−Keat + e
t

ε − u) ≤ m1Keat + m1u ·
K + 1

u1
eat, u1 ≤ −Keat + e

t

ε ≤ u2 ,

m2(−Keat + e
t

ε − 1) ≤ −m2Keat + m2e
at, −Keat + e

t

ε ≥ u2 .

Let

m = max{|m0K|, |m1(K + 1)|,

∣

∣

∣

∣

∣

m2K −
m2(K + 1)

u2

∣

∣

∣

∣

∣

, |m0(K − 1)|,

∣

∣

∣

∣

∣

m1K +
m1u(K + 1)

u1

∣

∣

∣

∣

∣

, |m2(1 − K)|} .

Then

f(ωL(t) + uL
0 (t)) ≥ −meat,

f(ωL(t) + uL
0 (t)) ≤ meat.

Notice that

zL
0 (t) =

ε

1 + ε + βε2
e

t

ε ≤ εeat.

Now if one chooses a to satisfy

a >
α

K
[M + m] +

1

K
,

then for any sufficiently small ε > 0 and ε <
min{1/a, 1/α}, one has

εω̈
L
≤ ω̇

L
+ αf(ωL + uL

0 (t))

− αg(t) − αzL
0 (t) , t ≤ 0 ,

εω̈L ≥ ω̇L + αf(ω + uL
0 (t))

− αg(t) − αzL
0 (t) , t ≤ 0 . (19)

On the other hand, when 0 ≤ t ≤ n, let

ωR(t) = Ke−bt,

ωR(t) = −Ke−bt,

then

ωR(t) = −Ke−t ≤ 0 ≤ Ke−t ≤ ωR(t) ,

since

ωR(t) + uR
0 (t) = Ke−bt + 1 ≥ 1 ≥ u2 ,

ωR(t) + uR
0 (t) = −Ke−bt + 1 ≥ 1 − K = u2 ,

when t > 0, we have

f(ωR(t) + uR
0 (t)) = f(Ke−bt + 1) = m2Ke−bt,

f(ωR(t) + uR
0 (t)) = f(−Ke−bt + 1) = −m2Ke−bt.

Also from the definition of zR
0 (t), one can have the

following estimate

|zR
0 (t)| =

∣

∣

∣

∣

∣

[

ε

1 + ε + βε2
cos(βt)

+

(

1

β
−

(1 + 2βε)ε

β(1 + ε + βε2)

)

sin(βt)

]

e−
1

2
t

≤

[

ε

1 + ε + βε2

+

(

1

β
+

(1 + 2βε)ε

β(1 + ε + βε2)

)]∣

∣

∣

∣

∣

e−
1

2
t

≤

[

1

β
+

(

1 +
1

β

)

ε +
2β

β
ε2

]

e−bt.

Choose ε < 1/β, so that γ = [1/β+(1+1/β)ε+
2β/(β)ε2] is bounded. Then if

m2 >
γ

βK
+

M

K
+

b

α
,

and ε > 0 to be sufficiently small, we have

εω̈
R
≤ ω̇

R
+ αf(ωR + uR

0 (t))

− αg(t) − αzR
0 (t), t > 0 ,

εω̈R ≥ ω̇R + αf(ωR + uR
0 (t))

− αg(t) − αzR
0 (t), t > 0 . (20)

It follows from (19),(20) that ω(t) and ω(t) are
the piecewise C2 upper and lower solutions of the
differential equation (18) on the interval [−n, n]. �

Our main result is as follows.

Theorem 4.3. Consider the following differential
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equations















εü = u̇ − α(z − f(u)) ,

ż = u − z + w ,

ẇ = −βz ,

(21)

with the boundary conditions

lim
t→−∞

(u, u̇, z, w) = (0, 0, 0, 0) ,

lim
t→+∞

(u, u̇, z, w) = (1, 0, 0,−1) .
(22)

If ε > 0 is sufficiently small, β > 1/4 and a > 0
are sufficiently large, then for any 0 < b � c < 1/2
the boundary value problem (21),(22) has solution
(u, u̇, z, w).

Moreover, they satisfy the following estimates

|(u, z, w)−(uL
0 (t), zL

0 (t), wL
0 (t))| ≤ Meat, t ≤ 0,

|(u, z, w)−(uR
0 (t), zR

0 (t), wR
0 (t))| ≤ Me−bt, t > 0,

where M is the constant defined in Lemma 4.1.

Proof. Let u0(t), z0(t) and w0(t) be the zero-order
approximation as defined in Sec. 3 and u, z, w be
the solution of Eq. (21). Consider the following
change of variables

U = u − u0(t) , Z = z − z0(t) , W = w − w0(t) ,

and replace (U,Z,W ) by (u, z, w), then (u, z, w)
satisfy the following differential equations















εü = u̇ + αf(u + u0(t)) − αz − αz0(t) ,

ż = u − z + w ,

ẇ = −βz ,

(23)

with the boundary conditions

lim
t→−∞

(u, u̇, z, w) = (0, 0, 0, 0) ,

lim
t→+∞

(u, u̇, z, w) = (0, 0, 0, 0) .
(24)

For any integer n > 0, let

Ωn = Ω ∩ {u : u ∈ C0([−n, n], R), u(t) = 0,

|t| ≥ n} ;

be the Banach space equipped with the supremum
norm.

Let T be the operator defined in Lemma 4.1 and
T be the first component of T . Since the first com-
ponent of T satisfies a system of linear equations,

thus we have T : C0([−n, n], R) → C2([−n, n], R)
is a bounded linear operator. When K = 1 − u2

and the domain is being restricted to Ωn, the cor-
responding operators are denoted by Tn and Tn.
Then for any u ∈ Ωn, we have Tnu = (z(u),
w(u)) = (z, w) and satisfies the following differen-
tial equations and inequalities

{

ż = −z + w + u

ẇ = −βz
(25)

|z(u)(t)| ≤ Meat, t ≤ 0 ,

|z(u)(t)| ≤ Me−bt, t ≥ 0 .
(26)

Now, replace the z in Eq. (23) by z(u) = T (u)
and consider the following boundary value problem

εü = u̇ + αf(u + u0(t))

− αT (u)(t) − αz0(t) , (27)

u(−n) = 0, u(n) = 0 (28)

Let ω(t) and ω(t) be the functions defined in
Lemma 4.2, then for any u ∈ Ωn, we have ω(t) ≤
u(t) ≤ ω(t) for any t ∈ [−n, n]. Also it follows from
inequality (26) that |T (u)(t)| < M for all t. Hence
if we let

g(t, u, u̇, T (u)) = u̇ + αf(u + u0(t))

− αT (u)(t) − αz0(t) ,

then g becomes continuous and satisfies

|g(t, u, u̇, T (u))| ≤ |u̇| + C1 ,

where C1 can be chosen independent of n. This
is due to the fact that T (u)(t) = z(u)(t) is uni-
formly bounded. Hence the differential equation
(27) satisfies a Nagumo condition with respect to
the pair of functions ω(t), ω(t) and the function
h(s) = (s + C1)/ε.

Observe that ω(−n) < 0 < ω(−n) and ω(n) <
0 < ω(n). Therefore for any u(t) which lies be-
tween ω(t) and ω(t), it follows from Theorem 2.4
that the boundary value problem (27),(28) has a so-
lution un(t). We note that un(t) lies between ω(t)
and ω(t) and satisfies

|u̇n(t)| ≤ Nn , −n ≤ t ≤ n ,



Heteroclinic Orbits Arising from Coupled Chua’s Circuits 581

where
∫ Nn

λn

sds

h(s)
= max

[−n,n]
ω(t) − min

[−n,n]
ω(t) = 2K .

And

λn =
1

2n
max(|ω(−n) − ω(n)|, |ω(n) − ω(−n)|)

=
K

2n
(e−an + e−bn) .

Now, since limn→−∞ λn = 0 and the right-hand
side of the previous equation does not depend on n,
thus one can show that Nn has a finite upper bound
N . Therefore, we have the following estimates

|un(t)| ≤ Keat , −n ≤ t ≤ 0

|un(t)| ≤ Ke−bt, 0 ≤ t ≤ n

|u̇n(t)| ≤ N −n ≤ t ≤ n .

From a simple computation, one obtains

|ün(t)| ≤
|u̇n(t)| + C1

ε
≤

N + C1

ε
,

−n ≤ t ≤ n ,

where C1 is the constant. It follows from the argu-
ment above that {un}, {u̇n} and {ün} are uniformly
bounded sequence and one concludes that {un} and
{u̇n} are also equicontinuous. Therefore an applica-
tion of the Arzela–Ascoli theorem shows that {un}
and {u̇n} have a convergent subsequence, let them
be denoted by {un} and {u̇n} again.

From the compactness of the operator Tn, we
have {z(un)} and {w(un)} are uniformly bounded.
Since for each n > 0, z(un) and w(un) are the solu-
tions of the system (25), we have ż(un) and ẇ(un)
are uniformly bounded. Hence we can conclude
that both {z(un)} and {w(un)} are equicontinuous.
Again by using the Arsela–Ascoli theorem, we have
{(un(t)), u̇n(t), z(un)(t), w(un)(t))} that admits a
uniformly convergent subsequence. Let them be de-
noted by un, u̇n, z(un) and w(un) again, then we
obtain the following

lim
n→+∞

(un(t), u̇n(t), z(un)(t), w(un)(t))

= (u(t), u̇(t), z(u)(t), w(z)(t)) .

It can be easily seen that this limit function (u(t),
u̇(t), z(u)(t), w(u)(t)) is a solution of Eq. (23) with
the boundary condition (24). Now replace u by
u + u0, z(u) by z + z0 and w(u) by w + w0, then

(u, z, w) is a solution of the boundary value prob-
lem (21),(22). This completes the proof of our main
result. �
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