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Recently, an optimal noncoherent detection technique for chaos-shift-keying digital communica-
tion system has been proposed. It has been stated that computational intensity showed increases
that were exponential with the spreading factor. In this Letter, we show that the implementation
of the optimal detector can be made independent of the chaotic maps used, and that the com-
putational intensity will increase almost linearly with the spreading factor. In particular, we use
a tent map as an example to illustrate the decoding algorithm. The bit error performance of the
system is then evaluated by computer simulations for a range of spreading factors. Further, we
extend the optimal decoding algorithm for maps of higher dimension. The bit error performance
for the case of simple 2-D maps are compared with that obtained using the tent map. Finally,
the effect of increasing spreading factor on the bit error performance is studied for the case of
2-D maps.
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1. Introduction

Chaos-based communications has attracted a lot of
attention in the past decade and a number of chaos-
based digital communication systems have been
proposed [Dedieu et al., 1993; Hasler & Schimming,
2000; Kennedy & Kolumbán, 2000; Kolumbán
et al., 1998a, 1998b; Kolumbán & Kennedy, 2000;
Sushchik et al., 2000; Wu & Chua, 1993]. Among
the communication systems proposed, chaos-shift-
keying (CSK) and differential CSK (DCSK) are
the most widely studied. Recently, an optimal non-
coherent detector for CSK digital communications
has been proposed [Hasler & Schimming, 2000]. It
has been pointed out, however, that the optimal
detector suffers from exponentially increasing com-
putational complexity with the spreading factor.
As a consequence, the applicability of the optimal

classifier is limited to spreading factors below 20.
Also, whether the optimal classifier would also
suffer from a decrease in performance for large
spreading factors is uncertain.

In this Letter, we show that in the implementa-
tion of the optimal detector, the detecting algorithm
can be made independent of the chaotic maps being
used. We also show that the computational intensity
will only increase slowly with the spreading factor.
In particular, we use a tent map as an example
to illustrate the decoding algorithm. The bit error
performance of the system is then evaluated by com-
puter simulations for a range of spreading factors.
Further, we extend the optimal decoding algorithm
for maps of higher dimension. The bit error per-
formance of the system using simple 2-D maps are
compared with that obtained using the tent map.
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Finally, for the case of using 2-D maps, the effect of
increasing spreading factor will also be studied.

2. System Overview

We consider a discrete-time binary CSK commu-
nication system, as shown in Fig. 1. In the trans-
mitter, a pair of chaotic sequences, denoted by {x̂k}
and {x̌k}, are generated by two chaotic maps. If the
symbol “+1” is sent, {x̂k} is transmitted during a
bit period, and if “−1” is sent, {x̌k} is transmitted.
Further, we assume that “+1” and “−1” occur with
equal probabilities.

Suppose a spreading factor of N is used,
i.e. N chaotic samples are transmitted for each
binary symbol. Without loss of generality, we con-
sider the signal block transmitted during the first
symbol period and we denote it by the vector
s = (s1 s2 · · · sN ). Assuming that the chan-
nel is additive white Gaussian with power-spectral-
density N0/2 and denoting the noise vector by
n = (n1 n2 · · · nN ), the received signal block
is then given by r = (r1 r2 · · · rN ) = s + n.
Denote the transmitted symbol and decoded sym-
bol by q and q̃ ∈ {−1, +1}, respectively. Based on
the received signal block, detection techniques are
designed so as to optimize the system performance,
e.g. minimize the probability of an incorrect deci-
sion with a simple receiver structure.

3. Review of Hasler Schimming’s

Optimal Noncoherent Detector

It has been shown by Hasler and Schimming [2000]
that the optimal detector selects the symbol q such
that the a posteriori probability given r is maxi-
mized, i.e.

q̃ = arg max
q

Prob(q is sent | r) . (1)

As the a posteriori probability is not con-
venient to calculate, the Bayes’ rule is applied to
Prob (q is sent | r) to obtain

Prob(q is sent | r)

=
p(r | q is sent) × Prob(q is sent)

p(r)
, (2)

where p(.) denotes the probability density function.
Hence, (1) can be rewritten as

q̃ = arg max
q

p(r | q is sent) (3)

because Prob(“+1” is sent) = Prob(“−1” is sent) =
1/2 and p(r) is independent of q.

Example: Skew Tent Map

Suppose the chaotic signals are generated from the
following skew tent map

f(x) =







2x + 1 − a

1 + a
for − 1 ≤ x ≤ a

−2x + 1 + a

1 − a
for a ≤ x ≤ 1

(4)

with −1 < a < 1 and −1 < x < 1. The chaotic
signals for the symbols “+1” and “−1”, i.e. {x̂k}
and {x̌k}, are then generated by the iterations of
f and −f , respectively. It can be shown that the
natural invariant probability density of f and −f ,
denoted by ρ(·), equals 1/2 in the interval [−1, +1].
Assume that the initial value s1 of each chaotic
signal block s is chosen randomly according to the
natural invariant probability density of f and −f .
For a spreading factor of 2, i.e. N = 2, it has been
shown that the conditional probability densities are
given by

Fig. 1. Block diagram of a discrete-time binary chaos-shift-keying communication system.
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p(r|“ + 1” is sent) =
1

2πσ2

∫ +1

−1
ρ(s1) exp

(

−
(r1 − s1)

2 + (r2 − f(s1))
2

2σ2

)

ds1 (5)

=
1

4πσ2

∫ a

−1
exp







−

(r1 − x)2 +

(

r2 −
2x + 1 − a

1 + a

)2

2σ2








dx

+
1

4πσ2

∫ +1

a
exp







−

(r1 − x)2 +

(

r2 −
−2x + 1 + a

1 − a

)2

2σ2








dx (6)

p(r |“ − 1” is sent) =
1

2πσ2

∫ +1

−1
ρ(s1) exp

(

−
(r1 − s1)

2 + (r2 + f(s1))
2

2σ2

)

ds1 (7)

=
1

4πσ2

∫ a

−1
exp







−

(r1 − x)2 +

(

r2 +
2x + 1 − a

1 + a

)2

2σ2








dx

+
1

4πσ2

∫ +1

a
exp







−

(r1 − x)2 +

(

r2 +
−2x + 1 + a

1 − a

)2

2σ2








dx (8)

where σ2 denotes the variance of noise and equals
N0/2. The integrals in (6) and (8) can all be
expressed in terms of the error functions. Then,
for a given received signal vector r, (6) and (8)
are evaluated by computing the corresponding error
functions. The decoded symbol will be “+1” or
“−1” depending upon p(r|“+1” is sent) being larger
or smaller than p(r|“ − 1” is sent).

For the aforementioned example in which N =
2, two error functions need to be computed for each
of the two conditional probability density functions.
Thus, a total of 2 × 2 = 4 error functions have
to be evaluated to decode one symbol. It there-
fore appears that in general, for a spreading of N ,
each probability density function has to be split
into 2N−1 integrals, implying that a total of 2N

integrals (error functions) have to be evaluated in

order to decode one symbol. Thus, it has been
concluded [Hasler & Schimming, 2000] that “the
applicability of the optimal classifier and its possi-
ble variants that take into account all linear regions,
is limited to values of N that do not exceed, say,
15–20.”

4. Implementation of Optimal

Detector

When implementing the optimal detecting algo-
rithm, we find that it is unnecessary to split the
integrals (5) and (7) into a number of integrals if
we apply numerical integration directly (instead of
trying to represent them in terms of complementary
error functions). That means, for a spreading factor
of N , the two conditional probabilities are given by

p(r |“ + 1” is sent) =
1

(2πσ2)N/2

∫ +1

−1
ρ(s1) exp










−

N∑

i=1

(ri − f (i−1)(s1))
2

2σ2










ds1 (9)
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= lim
K→∞

1

2(2πσ2)N/2

K∑

k=1

exp










−

N∑

i=1

(ri − f (i−1)(xk))
2

2σ2










δxk (10)

p(r |“ − 1” is sent) =
1

(2πσ2)N/2

∫ +1

−1
ρ(s1) exp










−

N∑

i=1

(ri − g(i−1)(s1))
2

2σ2










ds1 (11)

= lim
K→∞

1

2(2πσ2)N/2

K∑

k=1

exp










−

N∑

i=1

(ri − g(i−1)(xk))
2

2σ2










δxk (12)

where δxk = 2/K; xk = −1 + (k − 1)δxk; f (j)(α)
denotes the iteration of the function f , j times
with the initial condition α and f (0)(α) = α.
In this particular example, g = −f . In any case,
(9) and (11) are computed directly by numerical
integration using (10) and (12). Note that the ac-
curacy of the numerical integration will depend
on the choice of the value K. Larger K implies
higher accuracy and also more resources in terms
of computational time and memory. From (10) and
(12), it can be observed that when the spread-
ing factor increases, only the number of opera-
tions (subtraction, squaring and addition) within
the exponential function will increase proportion-
ally. Other operations remain unchanged. Thus, it is
expected that the computational time will increase
almost linearly with the spreading factor. The de-
coded symbol will be “+1” or “−1” depending
upon p(r |“ + 1” is sent) being larger or smaller
than p(r |“ − 1” is sent). In general, f and g are
arbitrary maps which are used to represent the
two symbols.

5. Application of the Optimal Detector

to Higher-Dimensional Maps

Suppose f and g are L-dimensional maps.
The corresponding chaotic sequences are gener-
ated by x̂n+1 = f(x̂n) and x̌n+1 = g(x̌n),
respectively, where x̂n = (x̂n x̂n−1 · · · x̂n−L+1)
and x̌n = (x̌n x̌n−1 · · · x̌n−L+1). Assume a
spreading factor of N ≥ L. For each transmit-
ted symbol, we first select the initial condition
xL = (xL xL−1 · · · x1) according to some pre-
specified criteria. If a “+1” is to be sent, we assign
x̂L = xL and apply f to generate the chaotic signals
that follow. The transmitted symbol “+1” is then
represented by the block s = (x̂1 x̂2 · · · x̂N ).
Likewise, when a “−1” is to be sent, we assign
x̌L = xL and g is applied. The transmitted sig-
nal block is now given by s = (x̌1 x̌2 · · · x̌N ).
Corrupted by noise, the received signal block is r =
(r1 r2 · · · rN ) = s+n. Applying the optimal de-
tecting technique, the two conditional probabilities
are given by

p(r |“ + 1” is sent) =
1

(2πσ2)N/2

∫ ∫

· · ·

∫

︸ ︷︷ ︸

L integrals

ρ(xL) exp










−

N∑

i=1

(ri − f (i−1)(xL))2

2σ2










dx1 dx2 · · · dxL (13)
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p(r |“ − 1” is sent) =
1

(2πσ2)N/2

∫ ∫

· · ·

∫

︸ ︷︷ ︸

L integrals

ρ(xL) exp










−

N∑

i=1

(ri − g(i−1)(xL))2

2σ2










dx1dx2 · · · dxL (14)

where ρ(xL) denotes the joint probability density
function of xL.

Example: Two-Dimensional Map

Suppose the following 2-D maps (i.e. L = 2) are
used to generate the chaotic sequences.

xn+1 = f(xn, xn−1) = 1 + 0.3xn − 1.37x2
n−1 (15)

xn+1 = g(xn, xn−1) = −1 + 0.3xn + 1.37x2
n−1

(16)

The corresponding attractors are shown in Fig. 2.
Further, the initial values x2 and x1 are selected
randomly and uniformly within [−1,+1]2. As a con-
sequence, ρ(xL) = 1/4. Hence, (13) and (14) can be
rewritten as

p(r |“ + 1” is sent) =
1

4(2πσ2)N/2

∫ +1

−1

∫ +1

−1
exp










−

N∑

i=1

(ri − f (i−1)(x2, x1))
2

2σ2










dx1 dx2 (17)

= lim
L→∞

lim
K→∞

1

4(2πσ2)N/2

L∑

l=1

K∑

k=1

exp










−

N∑

i=1

(ri − f (i−1)(yl, xk))
2

2σ2










δylδxk (18)

p(r |“ − 1” is sent) =
1

4(2πσ2)N/2

∫ +1

−1

∫ +1

−1
exp










−

N∑

i=1

(ri − g(i−1)(x2, x1))
2

2σ2










dx1 dx2 (19)

= lim
L→∞

lim
K→∞

1

4(2πσ2)N/2

L∑

l=1

K∑

k=1

exp










−

N∑

i=1

(ri − g(i−1)(yl, xk))
2

2σ2










δylδxk (20)

where δxk = 2/K; xk = −1+(k−1)δxk; δyl = 2/L;
yl = −1 + (l − 1)δyl. Similar to the skew tent map
case, the accuracy of the numerical integrations (18)
and (20) depends on the choice of L and K. Also,
when the spreading factor increases, only the num-
ber of processes within the exponential function

will be increased proportionally. Thus, the compu-
tational time should increase with a slower rate than
the spreading factor. For the decoded symbol, it will
be “+1” or “−1” depending upon p(r |“+1” is sent)
being larger or smaller than p(r |“ − 1” is sent).



June 23, 2003 9:53 00744

1592 F. C. M. Lau & C. K. Tse

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
n

x n+
1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
n

x n+
1

(b)

Fig. 2. Attractors of the sample 2-D chaotic maps. (a) 2-D map f ; (b) 2-D map g.
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6. Simulations and Discussions

We have developed computer programs to compute
(10) and (12) for the skew tent map, and (18) and
(20) for the 2-D maps (15) and (16). Spreading
factors ranging from 4 to 128 are used. In each simu-
lation, 104 symbols are transmitted and the bit error
rate (BER) is recorded for various Eb/N0 values,
where Eb denotes the average energy per bit. The
simulation time (cpu-time) spent is also noted in
each case.

In Table 1, the simulation time spent is
tabulated against the spreading factor. For the
skew tent map, K = 2000 has been used whereas
in the case of the 2-D maps, K = L = 100
are used. It can be seen that the simulation time
increases with the spreading factor. Further, the
system employing the 2-D maps requires a longer
simulation time compared with the case of the tent
map. Figure 3 plots the simulation time versus
spreading factor in logarithmic scales. The slope
of both lines is found to be approximately 0.9.
That is to say, the computing time T and the

Table 1. Simulation time spent using skew tent map and
sample 2-D maps with various spreading factors.

Simulation Time in Seconds (T )

Skew Tent Map 2-D Maps
Spreading Factor (N) (K = 2000) (K = L = 100)

4 527 2806
6 736 3697
8 992 4818

10 1254 5893
12 1553 7090
14 1868 8293
16 2206 9070
32 3796 16203
64 6954 31200

128 13201 61616

spreading factor N are related by

T = c × N0.9 (21)

where c is some constant. Therefore, using nu-
merical integration, the computing time required
increases very slowly with the spreading factor.

Fig. 3. Simulation time versus spreading factor in logarithmic scales.
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(a)

(b)

Fig. 4. BERs versus Eb/N0 for spreading factor 4 to 128 for a CSK system employing an optimal noncoherent detector.
(a) Skew tent map (K = 2000); (b) sample 2-D maps (K = L = 100).
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(a)

(b)

Fig. 5. BERs versus spreading factor (log scale) for different Eb/N0 values for a CSK system employing an optimal nonco-
herent detector. (a) Skew tent map (K = 2000); (b) sample 2-D maps (K = L = 100).
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(a)

(b)

Fig. 6. BERs versus Eb/N0 for different values of K and L for a CSK system employing an optimal noncoherent detector.
Spreading factor N = 8. (a) Skew tent map; (b) sample 2-D maps.
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Figures 4(a) and 4(b) plot the BERs versus
Eb/N0 for different spreading factors. It can be ob-
served that the performance of the optimal detector
improves as Eb/N0 increases. Comparing the two
figures, except when N = 4, the system using the
2-D maps outperforms the one using the skew tent
map in all cases. Note that when N = 4, only two
iterations have been performed by the 2-D maps,
and the iterated sequence may not have converged
to the attractors. As a consequence, the received
signal block is not so easily distinguished, giving a
higher error rate at N = 4. When N is increased
to 5, Fig. 4(b) indicates that the system using the
2-D maps has a substantial improvement in BER.
The results show that after three iterations, the
chaotic sequences generated by the 2-D maps have
converged to the attractors, making the receiving
signal block more distinguishable.

In Fig. 5, the BER is plotted against the spread-
ing factor (in log scale) for different Eb/N0 values.
In both systems, the BER reaches a minimum. For
the tent map, it can be found that like other nonco-
herent detection techniques, the BER performance
degrades as N becomes large [Sushchik et al., 2000;
Tse & Lau, 2003]. Moreover, the system using the
2-D maps degrades less substantially for large N .
Note that in Fig. 5(b), the curves with Eb/N0 values
larger than 12 dB are not plotted since the BER is
zero for some values of N .

Figures 6(a) and 6(b) plot the BERs versus
Eb/N0 for different values of K and L. Spreading
factor of 8 is used. It can be observed that the
BER improves slightly when K increases from 200
to 1000 for the skew tent map. When the value of K
increases further to 2000, little BER enhancement
is found. For the 2-D maps, improvement in BER is
observed when the values of K and L are increased
from 10 to 50. Further increases in K and L give
little improvement.

7. Conclusion

In this Letter, we apply numerical integration
directly in the optimal detection of CSK signals.
The merit of using numerical integration is that
the detecting algorithm becomes independent of the
chaotic maps being used. Also, the computational
intensity will increase almost linearly as the spread-
ing factor increases. Thus, the detection technique

can be applied even for large spreading factors,
making the detector more practical. Finally, we
extend the optimal decoding algorithm for maps
of higher dimension. From the simulation results,
it is observed that with the sample 2-D maps, a
better bit error performance is achieved compared
with that obtained from the tent map.
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