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We introduce shrubs in this paper in order to present a first approach to studying the struc-
ture of the Mandelbrot set. Primary, secondary ... and N -ary shrubs are analyzed. We have
experimentally obtained formulae to calculate the periods of the hyperbolic components repre-
sentatives of the structural branches, and the preperiods and periods of both the nodes -where
structural branches emanate- and the tips -where the shrub enters in crisis. A generalization
allows us to give in each case one formula to calculate representative periods and node and
tips preperiods and periods.

1 Introduction

Nonlinear dynamical systems have been broadly studied by physicists on account of their wide range of
applications in a large number of nonlinear problems. Thus, the first physics orientated study of chaotic
dynamics was presented by Lorenz [1963], and Ruelle and Takens [1971] suggested that turbulent flow
might be an example of dynamical chaos. In following years, dynamical systems were applied to pattern
formation in natural systems [Crutchfield and Kaneco, 1987]. Nowadays, the interest in this topic continues
as we can see, for example, in Beck [1999]. Therefore, studying nonlinear dynamical systems from an
experimental point of view and using a physics based methodology and terminology should contribute to
help to experimental researchers to a better understanding of this subject.

The more representative paradigm of discrete dynamical systems is the Mandelbrot set [Mandelbrot,
1980, 1983] which is, above all, a mathematical body. As is well known, the Mandelbrot set can be defined
by

M = {c ∈ C : fk
c (0) 9 ∞ as k → ∞}, (1)

where fk
c (0) is the k -iteration of the complex polynomial function depending on the parameter c, fc(z) =

z2 + c, z and c complex, for the initial value z = 0. From the beginning, the Mandelbrot set was amply
studied by a great number of researchers. For a first approach to this topic, we could point out either
Peitgen & Richter [1986] and Branner [1989]. Likewise, we should not forget neither the work of Douady
and Hubbard [1985] nor that of Milnor [1989]. The complexity of the Mandelbrot set is so big that, even
though it has been thoroughly explored, there are always interesting zones to be known and interpreted.
Thus, for example, Stephenson [1992, 1994] studies the formulae for cycles and spirals in the Mandelbrot
set, or Keller [2000] shows us the “abstract” Mandelbrot set.

By definition, a hyperbolic component of period p in the Mandelbrot set is a connected component of
the open set consisting of all parameter values c such that fc has a (necessarily unique) attracting orbit of
period p [Milnor, 2000]. Several papers ([Gilbert & Riordan, 1961], [Metropolis et al., 1973], [May, 1976],
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[Lutzky, 1993], [Hao & Xie, 1993] and [Xie & Hao, 1994]) studied the number of hyperbolic components in
both one-dimensional quadratic maps and the Mandelbrot set, but without dealing with their ordering.

The ordering of the hyperbolic components of the Mandelbrot set began before the set was discovered
[Mandelbrot, 1980]. Indeed, the periodic orbits ordering in the real quadratic map xn+1 = x2

n + c is
the same as the hyperbolic component ordering in the Mandelbrot set antenna, and, as it is known, the
periodic orbits ordering in quadratic maps was previously studied by Myrberg [1963], Sharkovsky [1964]
(see [Sharkovsky et al., 1993]) and Metropolis et al. [1973]. More recently, other authors have studied
the partial ordering of the hyperbolic components of the Mandelbrot set by using, for example, “internal
addresses” [Lau & Schleicher, 1994], “rotation numbers” [Devaney, 1997], “R2 naming system” [Munafo,
1999] and “orbit portraits” [Milnor, 2000].

In this work we introduce the notion of “shrub” to study a partial ordering of the structure of the
Mandelbrot set. We obtain formulas to calculate the period of the hyperbolic component representative of
each branch of a shrub, and the preperiod and period of each Misiurewicz point that is a node or a tip of a
shrub. Our ordering is more physics orientated than mathematical; for example, if we choose a Mandelbrot
set filament, we would like to know the ordering, if there is an ordering, of the hyperbolic components on
such a filament and simple rules to determine their periods.

We associate each hyperbolic component with its period (and each Misiurewicz point with its preperiod
and period) in the same way as we did in a previous paper in the case of 1D quadratic maps [Pastor et
al., 1996a]. As we can see, the study of this paradigmatic case of dynamical system has been undertaken
by mathematicians for the most part. To our way of thinking, a greater contribution of the physicists is
desirable in order to have an effect on those aspects with an important value for us, as is the case of the
ordering.

The complexity of the Mandelbrot set is so extraordinary that any attempt to order its hyperbolic
components must necessarily be partial, above all when the approach is completely experimental as in our
case. We shall use only the main tool of a physicist, the measure, instead of the mathematician’s tools.
Since we have no demonstration, our statements are only valid if there are no new measure that shows the
contrary.

Misiurewicz points, [Misiurewicz & Nitecki, 1991], are omnipresent in the ordering of the hyperbolic
components in the same way as in the one-dimensional quadratic maps case [Pastor et al., 1996b, 1997,
1998, 2001], [Romera et al., 1996, 1998]. We name the Misiurewicz points as Mn∗,p∗ , where n∗ is the
preperiod and p∗ the period.

Let Mhc be the set of all the Mandelbrot set hyperbolic components. We name primary hyperbolic
components of the Mandelbrot set those directly attached to the main cardioid [Devaney, 1995]. We can
associate a rational number q

p
, the rotation number, to each primary hyperbolic component, and we can

use this rotation number to identify each primary hyperbolic component. The rotation number is related
to the angle α which varies from 0 to 2π when starting from the cusp it turns counter-clockwise to come
back to the cusp (see Fig. 1 where the Mandelbrot set is shown). Thus, if several hyperbolic components
have the same denominator (the same period), they are ordered in such a way that we find growing values
of q when α increases.

We name family of a primary hyperbolic component, F

(

q
p

)

, the set of all the hyperbolic components

that are born in such a primary hyperbolic component. The family F

(

q
p

)

has the following property: to

go from any component of the family to the main cardioid, it is necessary to cross the primary hyperbolic
component q

p
. The union of all the primary hyperbolic component families includes all the Mandelbrot set

hyperbolic components except for the main cardioid. If we represent the main cardioid by C, we could
make a first partition of the Mandelbrot set hyperbolic components as the union of the following disjoint
subsets:

Mhc = C ∪ F
(

1
2

)

∪ F
(

1
3

)

∪ F
(

2
3

)

∪ F
(

1
4

)

∪ F
(

3
4

)
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∪ F
(

1
5

)

∪ F
(

2
5

)

∪ F
(

3
5

)

∪ F
(

4
5

)

∪ · · · ,

that we represent as

Mhc= C ∪

{

F

(

q

p

)}

. (2)

Now, if we want to continue ordering the Mandelbrot set hyperbolic components, we have to order the
hyperbolic components of each one of the families. But before undertaking this ordering, we still need to
introduce new definitions that we shall see next.

As we saw before, Fig. 1 shows the Mandelbrot set. The end of the period-doubling cascade of any
hyperbolic component hc is its Myrberg-Feigenbaum point MF(hc). What emerges from MF(hc) is what
we denominate a shrub, due to its shape. If the shrub emerges from a primary hyperbolic component q

p
,

then we have a primary shrub, the shrub
(

q
p

)

. In Fig. 1 we have framed with a rectangle the primary

shrubs emerging from the primary hyperbolic components 1
3(A), 1

4(B) and 1
5(C). These shrubs are enlarged

in the left lower part of the figure, and sketches of such shrubs are depicted in the left upper part.

Figure 1: Mandelbrot set. The angle α (0 ≤ α ≤ 2π) is related to the rotation number q
p

(

0
1 ≤ q

p
≤ 1

1

)

.

Three primary shrubs, shrub
(

1
3

)

, shrub
(

1
4

)

and shrub
(

1
5

)

are marked with the rectangles A, B and C. They
correspond to the disks with rotation numbers 1

3 , 1
4 and 1

5 . Their enlargements and their sketches are
shown.

3



Now, we can follow a parallel reasoning to that of Douady [1986] when he introduces the tuning method.
Attached to each one of the primary hyperbolic components, there is an infinity of secondary hyperbolic
components. From the MF point of each one of these hyperbolic components another shrub emerges,
which we call a secondary shrub. Likewise, from the MF point of any of the infinite tertiary hyperbolic
components, which are attached to each one of the infinite secondary hyperbolic components, another
shrub emerges, a tertiary shrub, and so on.

Each family F

(

q
p

)

has two well differentiated regions: the periodic region and the chaotic region.

The periodic region is made up of the primary hyperbolic component q
p

and all the N -ary (2 ≤N≤ ∞)

hyperbolic components whose origin is q
p
. The chaotic region is made up of an infinity of hyperbolic

components mounted on an infinity of shrub branches in each one of the infinity shrubs of the family.
Since the ordering in the periodic region has no difficulty, we shall study here the ordering in the chaotic
region by using the former introduced shrubs. We shall begin with the most prominent of these shrubs,
the primary shrubs, and in the following sections we shall study the secondary, tertiary, etc. shrubs.

2 Primary Shrubs

2.1 Hyperbolic components ordering

Primary shrubs are associated to a “decoration” formed by a node (see Fig. 1, where the nodes are marked
with black points in both the enlarged shrubs and their sketches) from which a number of structural
branches [Pastor et al., 1997] emanate. Since all the branches studied in this paper are structural branches,
we simply denominate them branches. As is well known, we may read off the period of the primary
hyperbolic component by counting the branches of the shrub attached to this decoration. In the left upper
part of Fig. 1, we can see that 3, 4 and 5 branches emanate from each node of, respectively, shrub

(

1
3

)

,

shrub
(

1
4

)

and shrub
(

1
5

)

. For our convenience, we divide the set of the q
p

valid values into two disjoined

subsets: 1
p

, and the rest that we represent by q 6=1
p

. Let us begin by studying the primary shrubs of the

subset 1
p
.

Figures 2(a), 2(b) and 2(c) show the shrubs of the primary hyperbolic components 1
2 , 1

3 and 1
5 (note

that Figs. 2(b) and 2(c) correspond to A and C of Fig. 1), and Figs. 3(a), 3(b) and 3(c) show the sketches
of these primary shrubs. Fig. 2(a) is on the real axis and Figs. 2(b) and 2(c) are in the upper part of the
Mandelbrot set. Note that all what we say for this upper part also holds for the lower part because the
Mandelbrot set is symmetric with regard to the real axis.

To begin with, let us see shrub
(

1
3

)

in Fig. 2(b) and its sketch in Fig. 3(b). We associate a number (the
associated number) with each branch of the shrub and its corresponding node. We name main branch the
branch that emerges from the MF point. We associate the number 0 to the main branch because, as we
shall see later, this branch does not belong to the shrub. The main branch finishes at the main node (whose
associated number is also 0) where the branches of the first level begin; and, therefore the main node is
the point where in fact the shrub begins. Since from each node emanate three branches and one is the
main branch, in the first level there are two branches. Starting from the main branch 0 we turn clockwise
around the main node, and we name the two (21) branches of the first level as 1 and 2 by following the
branches one by one. Each one of these two branches finishes at one of the two nodes of the first level (each
one of them associated to the number of its corresponding branch). Starting from any of the two branches
of the first level, and turning clockwise around any of the two nodes of this first level, we obtain two new
branches that we name as the number of the first level origin branch and by adding a 1 to the first one
and a 2 to the second one following the branches one by one; i. e., if we start from 1 we obtain 11 and 12,
and if we start from 2 we obtain 21 and 22. In such a manner, we have obtained the four branches (22)
of the second level, which finish at the four corresponding nodes of the second level, and so on, as can be
seen in Fig. 3(b). Therefore, we associate a number with m digits to each branch of the level m (and to
its corresponding node). For the shrub

(

1
3

)

case, the level m has (3 − 1)m branches of m digits that finish
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at (3 − 1)m nodes of m digits.
Let us see now shrub

(

1
5

)

in Fig. 2(c) and its sketch in Fig. 3(c). Starting from the main branch 0 we
go to the first level branches 1, 2, 3 and 4, by following the same direction and following branches one by
one as in the previous case. Therefore, the first level has now four branches (41) of 1 digits. We obtain
the branches of the second level by adding again 1, 2, 3 and 4, in the same way as before, to each one of
the branches of the previous level. Hence, the second level has sixteen branches (42) of 2 digits, and so on.
Hence, for the case of the shrub

(

1
5

)

, the level m has (5 − 1)m branches of m digits.

Figure 2: Mandelbrot set regions showing four primary shrubs. a) shrub
(

1
2

)

. b) shrub
(

1
3

)

. c) shrub
(

1
5

)

.

d) shrub
(

2
5

)

.

Therefore, we can generalise for the case of shrub
(

1
p

)

. Its main branch is the 0, which finishes in the

main node. In the first level we have the branches 1, 2, ..., (p − 1). In this level we always have one digit,
and if p ≥ 10 we have to use, for example, Greek letters or other symbols to indicate 10, 11, ... with only
one digit. In the first level, we have then (p−1)1 branches of 1 digit. In the second level we have (p − 1)2
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branches of 2 digits, and so on. Therefore, for the case of the shrub
(

1
p

)

, the level m has (p−1)m branches

of m digits.
Let us note that in Figs. 2(a) and 3(a), which represents the shrub

(

1
2

)

, we apparently have only one
branch. This is because the first level has only one branch, the same as the second level and all the others.
Indeed the main branch is the branch 0, in the first level we have again only one branch, (2 − 1)1 = 1, the
branch 1, in the second level again only one branch, (2 − 1)2 = 1, the branch 11, and so on, obtaining a
sequence of successive branches giving as a result an apparently unique branch. Let us see now the case

Figure 3: Mandelbrot set regions showing four primary shrubs. a) shrub
(

1
2

)

. b) shrub
(

1
3

)

. c) shrub
(

1
5

)

.

d) shrub
(

2
5

)

.

of a rotation number with numerator different to 1; i. e., the case q 6=1
p

. Figure 2(d) shows shrub
(

2
5

)

, and

Fig. 3(d) shows a sketch of shrub
(

2
5

)

. We name 0 the main branch. In the first level we also have four
branches, 1, 2, 3 and 4, as in the shrub

(

1
5

)

, but now they are placed in a different way. When q = 1, we
number them by turning clockwise around the main node branch by branch. Now, when q = 2, we number
the branches of the first level also by turning clockwise around the main node but now two by two, as can
be seen in Fig. 3(d). The same happens for the following levels. In general, when the numerator of the
rotation number is q 6= 1 we number the branches of the first level by turning clockwise around the main
node q by q branches. We have the same for the following levels.

In each branch of any shrub there are an infinity of hyperbolic components. We denominate hyperbolic
component representative of this branch, or simply representative, the hyperbolic component with the
smallest period in this branch (which is also that with the biggest size). We have experimentally seen that

the period of the representative pr of any level m branch of a primary shrub
(

q
p

)

, is given by

pr=p+Σ, (3)
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where Σ = d1 + · · ·+ dm is the sum of the m digits of the branch associated number d1d2 · · · dm. Thus, the
period of the representative of the branch 221 in the third level of shrub

(

1
3

)

is 8, see Fig. 3(b), the period
of the representative of the branch 33 in the second level of shrub

(

1
5

)

is 11, see Fig. 3(c), and the period of
the representative of the branch 33 in the second level of shrub

(

2
5

)

is 11, see Fig. 3(d). In last both cases
we obtain the same period value, but the corresponding representatives are located in different places.

In the case of shrub
(

1
2

)

, Figs. 2(a) and 3(a), when we start from the main branch 0 and we go to
the first, second, third, ... levels we find the branches 1, 11, 111, ... and so on until the infinity where
we reach the end, which we name tip

(

1
2

)

. This is the only tip, as opposed to all the other cases. Indeed,
in shrub

(

1
3

)

, see Fig. 3(b), starting also from the branch 0, now we have an infinity of different paths
that lead us to an infinity of different ends. Therefore, we have an infinity of tips. But among all these
possibilities we are going to point out two paths and their two ends. The first one is that which we name
first path which is given by the branches 1, 11, 111, ... and its end is what we name first tip or ftip

(

1
3

)

. The
second one is what we name last path, which is given by the branches 2, 22, 222, ..., and its end is what

we name last tip or ltip
(

1
3

)

. In all the cases ftip
(

q
p

)

is given by the branches 1, 11, 111, ..., while ltip
(

q
p

)

is given by the branches (p−1), (p−1) (p−1), (p−1) (p−1) (p−1) .... These two singular paths have been
marked with a thick line in the shrubs of Fig. 3.

In the case of the shrub
(

1
p

)

, “first path” and “last path” correspond to their geometrical mean, since

they are at the outermost ends, and all the others are in between. However, in the case of the shrub
(

q 6=1
p

)

,

the geometrical meaning is lost and they are no longer at the extremes.

2.2 Misiurewicz points ordering

Shrubs have two special types of points: nodes and tips. The first ones separate the different levels of
branches and the second ones are the ends of the branch paths. Let us point out that both, nodes and
tips, are Misiurewicz points.

As can be deduced from the experimental results shown in Fig. 3, all the nodes in a primary shrub
are characteristic Misiurewicz points because they have period one [Romera et al., 1996]. In addition, the
preperiod of a node of level m can be calculated from its associated number d1d2 . . . dm. Indeed, a node of

level m belonging to shrub
(

q
p

)

is a characteristic Misiurewicz point Mn∗,p∗ with preperiod n∗ and period

p∗ given by

n∗ = p + Σ + 1 = pr + 1, p∗ = 1, (4)

where Σ = d1 + · · ·+ dm is the sum of the m digits of the node associated number, and pr is the period of
the representative of the branch where the node is.

Let us see now tips in Fig. 3(c). If we follow the path 1, 11, 111, ..., we reach the tip M5,1; if we follow
the path 2, 22, 222, ..., we reach the tip M4,2; if we follow the path 3, 33, 333, ..., we reach the tip M3,3; and,
finally, if we follow the path 4, 44, 444, ..., we reach the tip M2,4. We call these paths unlocked paths (u.p.)
because through these paths we can reach a tip. Let us note that in unlocked paths the associated number
of each new branch adds always a same digit d. According to these results, we can say that if we start
from any primary hyperbolic component q

p
and we follow an unlocked path, at the infinity we reach a tip

that is a Misiurewicz point Mn∗,p∗ with

n∗ = p − d + 1, p∗ = d. (5)

Indeed, in the former four examples p = 5 and d = 1, 2, 3 or 4; therefore, according to Eq. (5) the tips
are the Misiurewicz points M5,1, M4,2, M3,3 and M2,4.

We can consider two particular cases of Eq. (5). First, if we follow the first path 1, 11, 111, ..., then
d = 1, we reach the ftip and Eq. (5) becomes

ftip

(

q

p

)

= Mp,1, (6)
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and second, if we follow the last path (p−1) , (p−1) (p−1) , · · · , p − 1 then d = p− 1, we reach the ltip and
Eq. (5) becomes

ltip

(

q

p

)

= M2,p−1. (7)

The only path in shrub
(

1
2

)

, see Fig. 3(a), is at the same time the first path and the last path. Indeed,
we obtain tip

(

1
2

)

= M2,1 in both cases if we apply Eq. (6) for p = 2, which computes ftip
(

1
2

)

, or if we
apply Eq. (7) for p = 2, which computes ltip

(

1
2

)

.
Let us analyze what we did to reach a tip. Starting from the main branch 0 of a primary hyperbolic

component q
p

we have followed unlocked paths like 2, 22, · · · , 2̄ whose associated numbers are periodic digits

d̄. But we can reach a tip by mean of an unlocked path with two steps. In the first one, the preperiodic
step, we follow the path of m branches d1, d1d2, · · · , d1d2 · · · dm and we reach the representative of period
pr = p+Σ, where Σ = d1 + · · ·+dm. This first step can be non-existent as in the former cases seen. In the
second step, the periodic step, we follow the path dm+1, dm+1dm+1, · · · , dm+1 that always adds the same
digit dm+1. This second step can be thought as the true unlocked path.

In the case of an unlocked path with two steps Eq. (5) is no longer valid. In order to generalise
Eq. (5), it seems reasonable to put pr instead of p. As we have experimentally obtained, this is so
when Σ = 0 or dm > dm+1. We shall name this case as the normal case. In the normal case, if
we start from any primary hyperbolic component q

p
and we follow the path d1, d1d2, · · · , d1d2 · · · dm,

d1d2 · · · dmdm+1, · · · , d1d2 · · · dmdm+1, at the infinity we reach a tip that is a Misiurewicz point Mn∗,p∗

with

n∗ = p + Σ − dm+1 + 1, p∗ = dm+1, (8)

where Σ = d1 + · · · + dm. When Σ = 0, Eq. (8) becomes Eq. (5), which is a particular case of the normal
case. Thus, as we can see in Fig. 3(c), if we follow the path 4, 42, · · · , 42 (Σ = 4, dm = 4, dm+1 = 2)
according to Eq. (8) we reach the tip M8,2.

When we are not in the normal case we are in the especial case. We have the especial case when
Σ 6= 0 ∩ dm < dm+1. In the especial case Eq. (8) becomes

n∗ = p + Σ − dm + 1, p∗ = dm+1. (9)

Equations (8) and (9) only differ in that Σ − dm+1 changes to Σ − dm. Thus, as we can see in Fig.
3(c), if we follow the path 1, 11, 114, · · · , 114̄ (Σ = 2, dm = 1, dm+1 = 4) according to Eq. (9) we reach the
tip M7,4. In both normal and especial cases, if dm+1 = 1 the tip is a non-characteristic Misiurewicz point
[Romera et al., 1996], and if dm+1 = 1 the tip is a characteristic Misiurewicz point. In both cases the
tips are crisis points [Grebogi et al., 1982]. As we shall see later, the more important u.p. occurs when
dm+1 = 1, that we shall call a premier unlocked path (p.u.p.). A p.u.p. has also two steps, the preperiodic
one d1, d1d2, · · · , d1d2 · · · dm (can exist or not) and the periodic one dm+1, dm+1dm+1, · · · , dm+1 = 1 (always
exists). Now, either Σ = 0 or dm > 1 hence a premier unlocked path is always in the normal case and we
have to use Eq. (8) with dm+1 = 1 to calculate its tip. After the second step of a premier unlocked path
we reach a premier tip or ptip. In the next section we shall see the importance of ptips.

It is possible to have another type of u.p. as d1, d1d2, · · · , d1d2 · · · dmdm+1 · · · dm+i. In this type of paths
we reach a tip by following an u.p. whose second step is constituted by a “short cut” with the same group
of digits [Pastor et al., 2001]. However, since this does not provide any important contribution, we shall
not treat here these cases.

So far, in this section we have studied the primary shrubs, which are the shrubs of the primary hyperbolic
components q

p
. Each one of these shrubs has always the same decoration that is constituted by a node

from which p branches emanate. Next, we shall study the secondary shrubs, which are the shrubs of the
secondary hyperbolic components q1

p1
· q2

p2
. As we shall see, these shrubs are associated to two decorations,
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the first one a node from which p2 branches emanate and the second one a node from which p1 branches
emanate. That is why we divide the secondary shrubs into two subshrubs, each one of them associated to
one of these decorations. Let us see it.

3 Secondary Shrubs

We denominate secondary hyperbolic component, q1

p1
· q2

p2
, to the hyperbolic component attached to the

primary hyperbolic component q1

p1
in the relative position that q2

p2
should have with regard to the main

cardioid. From MF
(

q1

p1
· q2

p2

)

a secondary shrub emerges, shrub
(

q1

p1
· q2

p2

)

. Let us see what these shrubs look

like.
For that, let us see Fig. 4 where a secondary shrub, shrub

(

1
3 · 1

5

)

, is shown. This shrub has two

subshrubs. The first one, subshrub1

(

1
3 · 1

5

)

, which is born from MF
(

q1

p1
· q2

p2

)

, is related to the component
q2

p2
(here 1

5). The second one, subshrub2

(

1
3 · 1

5

)

, which is born from each one of the p.u.p. ends of the

first subshrub is related to the component q1

p1
(here 1

3). Since a secondary shrub is a complex structure,

let us analyse shrub
(

1
3 ·

1
5

)

very carefully by using the sketch of Fig. 5. In this figure we have separate
subshrub1

(

1
3 · 1

5

)

and subshrub2

(

1
3 · 1

5

)

. It is not easy to see the correspondence between the shrub and its
sketch (Figs. 4 and 5). Indeed, some branches of a same level larger than others in Fig. 4 but they have been
depicted as equals in Fig. 5. As we can see in the sketch of Fig. 5, we can reach a tip of the first subshrub in
a similar way as we did for primary shrubs, i.e., by following an u.p. d11, d11d12, · · · , d11d12 · · · d1m1

d1(m1+1).

Indeed, first we follow a first step d11, d11d12, · · · , d11d12 · · · d1m1
of this u.p. until a level m1 representative

pr1
. This first step can exist or not. And finally, starting from pr1

we follow the second step d1(m1+1) to
reach the tip.

Note that if we are in the first subshrub of a secondary shrub, we only can reach the second subshrub
by following a p.u.p., i.e. only if d1(m1+1) = 1. When d1(m1+1) 6= 1 we reach a tip that is a crisis point and
the second subshrub is not reached (obviously, a ptip is not a crisis point). We have an infinity of paths
to reach the second subshrub. Hence, the second subshrub has an infinity of separated portions, which are
non-connected, each one emerging from a ptip of the first subshrub. In Fig. 5 we mark with a little black
circle the ends of the p.u.p. (ptips) and with a little black square the ends of the other u.p.. From each
ptip, a portion of the second subshrub emerges. In Fig. 5 we show three of these infinite portions of the
second subshrub, those that come from the end of the p.u.p. 1, 11, · · · , 1̄ (M13,1), 3, 31, · · · , 31̄ (M22,1) and
4, 41, · · · 41̄ (M25,1).

If we are in a portion of the second subshrub, we can reach a tip by following an u.p.
d21, d21d22, · · · , d21d22 · · · d2m2

d2(m2+1) with two steps: the first step d21, d21d22, · · · , d21d22 · · · d2m2
, that

can exist or not, until a level m2 and the second step d2(m2+1) to reach the tip. Since we are in the last
subshrub, whether the u.p. is a p.u.p. or not, either ptips and tips are crisis points. Let us see both
subshrubs.

3.1 First subshrub hyperbolic components ordering

Let us consider a secondary shrub
(

q1

p1
· q2

p2

)

, as shrub
(

1
3 · 1

5

)

of Fig.5. We can see that five branches emanate

from each node of the first subshrub. We assign associated numbers to the branches of the first subshrub.
Thus, the four branches of the first level are 1, 2, 3 and 4, the sixteen branches of the second level (the
associated numbers are not shown in the figure) are 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43
and 44, and so on. We can again experimentally determine the period of every representative of a branch
d11d12 · · · d1m1

of the first subshrub that is given by

pr1
= p1(p2 + Σ1), (10)

9



Figure 4: Mandelbrot set region showing a secondary shrub, shrub
(

1
3 · 1

5

)

where Σ1 = d11 + d12 + · · · + d1m1
. Thus, the periods of the representatives of the branches 1, 21 and 42

of subshrub1

(

1
3 · 1

5

)

are 18, 24 and 33.

3.2 Second subshrub hyperbolic components ordering

We indicate that we have left the first subshrub and we have reached the main node of a portion of the
second subshrub by adding one arrow to the p.u.p. that we have followed. Thus, in Fig. 5 we have reached
three main nodes: 1̄→, 31̄→ and 41̄→ the Misiurewicz points M13,1, M22,1 and M25,1. We shall denominate
any portion with the same notation as with its main node.

All the portions of the subshrub2

(

1
3 · 1

5

)

have three branches around each node except the main one
(we have not branch 0). Again, we name each branch with its associated number. Therefore, in the first
level of any portion we have two branches (1 and 2), in the second level four branches (11, 12 and 21, 22),
and so on. But in order to distinguish the branches of a portion from the branches of another portion, we
must indicate first the portion notation. Thus, the branches emanating from the portion on the left of Fig.
5 are 1̄ → 1 and 1̄ → 2, from the portion on the centre are 31̄ → 1 and 31̄ → 2, and from the portion on
the right are 41̄ → 1 and 41̄ → 2. These are the complete associated numbers, while the previous ones were
the local associated numbers or simply associated numbers. We can experimentally determine the period

10



Figure 5: Sketch of the secondary shrub of Fig. 4, shrub
(

1
3 · 1

5

)

, and its two subshrubs. The second
subshrub has an infinity of portions, and three of them are depicted on the figure (those coming from 1̄ ,
31̄ and 41̄ ).

of the representative of the branch d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

of subshrub2

(

q1

p1
· q2

p2

)

that is

given by

pr2
= p1(p2 + Σ1 − 1) + Σ2, (11)

where Σ1 = d11 + d12 + · · · + d1m1
and Σ2 = d21 + d22 + · · · + d2m2

. Figure 5 shows three portions of
subshrub2

(

1
3 · 1

5

)

. The first one is 1̄→ with Σ1 = 0. In this portion the periods of the representatives of
the branches 1̄ → 11 and 1̄ → 21 are 14 and 15. The second one is 31̄→ with Σ1 = 3, and the periods of the
representatives of the branches 31̄ → 12 and 31̄ → 22 are 24 and 25. The third one is 41̄ → with Σ1 = 4,

and the periods of the representatives of the branches 41̄→12 and 41̄→21 are 27 and 27.
Let us study the nodes and tips of the two subshrubs of a secondary shrub. We begin with the first

subshrub.

3.3 First subshrub Misiurewicz points ordering

In accordance with our experimental data, a node d11d12 · · · d1m1
of the subshrub1

(

q1

p1
· q2

p2

)

is a non-

characteristic Misiurewicz point Mn∗,p∗ with

n∗ = p1(p2 + Σ1) + 1, p∗ = p1, (12)

where Σ1 = d11 + d12 + · · · + d1m1
. Thus, the nodes 1, 2, 3 and 4 of subshrub1

(

1
3 · 1

5

)

of Fig. 5 are the
non-characteristic Misiurewicz points M19,3, M22 3, M25,3, M28,3. If we compare Eqs. (10) and (12), we can

see that the preperiod of a level m1 node of subshrub1

(

q1

p1
· q2

p2

)

is pr1
+ 1.

Let us see now tips. To reach a tip we have to follow an u.p. d11, d11d12, · · · , d11d12 · · · d1m1
d1(m1+1).

Let Σ1 = d11 + d12 + · · · + d1m1
. As in primary shrubs, we have again a normal case and an especial case.

When Σ1 = 0 ∪ d1m1
>d1(m1+1) we are in the normal case. As can experimentally be seen, in the

normal case the tips are Misiurewicz points Mn∗,p∗ with

n∗ = p1(p2 + Σ1 − d1(m1+1)) + 1,

11



p∗ = p1d1(m1+1). (13)

Let us apply Eq. (13) for calculate tips in subshrub1

(

1
3 · 1

5

)

of Fig. 5. If we follow the paths 2, 22, · · · , 2̄
and 3, 32, · · · , 32̄ we obtain the Misiurewicz points M10,6 and M19,6.

When Σ1 6= 0 ∩ d1m1
<d1(m1+1) we are in the especial case and Eq. (13) becomes

n∗ = p1(p2 + Σ1 − d1m1
) + 1, p∗ = p1d1(m1+1). (14)

Thus, if we follow the path 1, 12, · · · , 12̄ in subshrub1

(

1
3 · 1

5

)

of Fig. 5 we reach M16,6. Note that Eqs.
(13) and (14) only differ in that Σ1 − d1(m1+1) changes to Σ1 − d1m1

.

Let us point out an apparent anomaly. As we already know, if we follow a p.u.p., d1(m1+1) = 1, we
do not reach a crisis point tip but a main node of the second subshrub. A p.u.p. is always in the normal
case, hence, we have to apply Eq. (13). However, as we can see in Fig. 5, all the main nodes in the second
subshrub (the last subshrub in a secondary shrub) are period-one Misiurewicz points. Hence, Eq. (13)
becomes

n∗ = p1(p2 + Σ1 − 1) + 1, p∗ = 1. (15)

Thus, for subshrub1

(

1
3 · 1

5

)

of Fig. 5, if we follow the path 4, 41, · · · , 41̄ we obtain the Misiurewicz point
M25,1.

3.4 Second subshrub Misiurewicz points ordering

In accordance with our experimental data, a node d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

of the

subshrub2

(

q1

p1
· q2

p2

)

is a characteristic Misiurewicz point Mn∗,p∗ with

n∗ = p1(p2 + Σ1 − 1) + Σ2 + 1, p∗ = 1. (16)

where Σ1 = d11 + d12 + · · · + d1m1
and Σ2 = d21 + d22 + · · · + d2m2

. Thus, the node 1̄ → 11 of the
subshrub2

(

1
3 · 1

5

)

, see Fig. 5, is the Misiurewicz point M15,1 . Note that the period of the representative of
branch 1̄ → 11 is 14 and, again, the preperiod of a node equals the period of the representative plus one.

A main node of the second subshrub can be calculated by Eq. (16) when Σ2 = 0. Then, Eq. (16)
becomes Eq. (15) which gives the corresponding ptip of the first subshrub. Therefore, a ptip of the first
subshrub is a main node of a portion of the second subshrub.

Let us see now the tips of the second subshrub. We begin by the normal case, when Σ2 = 0 ∪ d2m2
>

d2(m2+1). In accordance with our experimental data, a tip d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

d2(m2+1)

of the subshrub2

(

q1

p1
· q2

p2

)

is a Misiurewicz point Mn∗,p∗ with

n∗ = p1

(

p2 + Σ1 − d1(m1+1)

)

+ Σ2 − d2(m2+1) + 1,

p∗ = d2(m2+1), (17)

where Σ1 = d11 + d12 + · · · + d1m1
and Σ2 = d21 +d22 + · · · + d2m2

. The Eq. (17) is in a non simplified
form, in order to better see the final result. However, since we are in the second subshrub, we can simplify
Eq. (17) with d1(m1+1) = 1. Let us see some explanatory examples in Fig. 5. In the portion 1̄→, the
tip of the path 1, 11, · · · , 1 → 2, 21, · · · , 21̄ is the Misiurewicz point M14,1. In the portion 31̄→, the tip of
the path 3, 31, · · · , 31̄ → 1, 11, · · · , 1 is M21,1. In the portion 41̄ → , the tip of the path 4, 41, · · · , 41 →
1, 12, 121, · · · , 121̄ is M27,1.

When Σ2 6= 0 ∩ d2m2
< d2(m2+1) we are in the especial case and Eq. (17) becomes

n∗ = p1(p2 + Σ1 − d1(m1+1)) + Σ2 − d2m2
+ 1,

p∗ = d2(m2+1). (18)
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Equations (17) and (18) only differ in that Σ2 − d2(m2+1) changes to Σ2 − d2m2
. Thus, the tip of the path

1 → 12̄ in subshrub2

(

1
3 · 1

5

)

, depicted in Fig. 5, is M13,2 .

If we follow the p.u.p. 1, 11, · · · , 1̄ → 1, 11, · · · , 1̄ we reach the more prominent tip of shrub
(

q1

p1
· q2

p2

)

,

that we name ftip
(

q1

p1
· q2

p2

)

. Now Σ1 = Σ2 = 0, d2m2
= 0, d1(m1+1) = d2(m2+1) = 1, and Eq. (17) becomes

in a much more simplified one which give the ftip of a secondary hyperbolic component

ftip

(

q1

p1
·
q2

p2

)

= Mp1(p2−1) , 1. (19)

Indeed, ftip
(

1
3 · 1

5

)

= M12,1 as can be seen in Fig. 5.
In this section we have studied the secondary shrubs which are associated to two decorations. Next we

shall study the tertiary and N -ary shrubs. As we shall see next, the tertiary shrubs are associated to three
decorations, the first one a node with p3 branches, the second one a node with p2 branches and the third
one a node with p1 branches. That is why we divide the tertiary shrubs into three subshrubs, each one of
them associated to one of these decorations. Likewise, the N -ary shrubs are associated to N decorations
and we divide them into N subshrubs. Let us see them.

4 Tertiary Shrubs

We denominate tertiary hyperbolic component q1

p1
· q2

p2
· q3

p3
the hyperbolic component attached to the

secondary hyperbolic component q1

p1
· q2

p2
, in the relative position that q3

p3
should have with regard to

the main cardioid. From its MF
(

q1

p1
· q2

p2
· q3

p3

)

point a tertiary shrub
(

q1

p1
· q2

p2
· q3

p3

)

emerges formed by

subshrub1

(

q1

p1
· q2

p2
· q3

p3

)

, subshrub2

(

q1

p1
· q2

p2
· q3

p3

)

and subshrub3

(

q1

p1
· q2

p2
· q3

p3

)

.

Figure 6 shows the tertiary shrub
(

1
3 · 1

4 · 1
5

)

, and Fig. 7 shows a sketch of this shrub. From each node of
subshrub1

(

1
3 · 1

4 · 1
5

)

, which is born from the MF
(

1
3 · 1

4 · 1
5

)

, five branches emanate; from the nodes of the
subshrub2

(

1
3 · 1

4 · 1
5

)

, which are born from the ptips of subshrub1

(

1
3 · 1

4 · 1
5

)

, four branches emanate; and
from the nodes of the subshrub3

(

1
3 · 1

4 · 1
5

)

, which are born from the ptips of subshrub2

(

1
3 · 1

4 · 1
5

)

, three
branches emanate.

A tertiary shrub is yet more complex than a secondary shrub, therefore, let us analyse it carefully by
using Fig. 7. Again, it is not easy to see the correspondence between the shrub

(

1
3 · 1

4 · 1
5

)

of Fig. 6 and its
sketch of Fig. 7. As in primary and secondary shrubs, we can reach a tip of the first subshrub by following
an u.p. d11, d11d12, · · · , d11d12 · · · d1m1

d1(m1+1) with a first step d11, d11d12, · · · , d11d12 · · · d1m1
until a level

m1 representative pr1
(that can exist or not) and a second step d1(m1+1) to reach the tip. If d1(m1+1) 6= 1

we reach a crisis point tip and the second subshrub is not reached, but if d1(m1+1) = 1 we reach a portion
of the second subshrub. There is an infinity of paths to reach the second subshrub, and therefore there is
an infinity of non-connected separated portions, each one emerging from a ptip of the first subshrub. We
have marked with a little black circle the ends of the p.u.p. and with a little black square the ends of the
other u.p. in Fig. 7, where we show

four portions of the second subshrub, 1̄ → , 21̄ → , 31̄→ and 41̄ → , that are born in the main nodes
M49,3 , M73,3 , M85,3 and M97,3. Likewise, starting from a ptip of the first subshrub we can reach a tip of
the second subshrub by following an u.p. d21, d21d22, · · · , d21d22 · · · d2m2

d2(m2+1) in each one of the infinite

portions of the second subshrub. The u.p. has two steps, d21, d21d22, · · · , d21d22 · · · d2m2
and d2(m2+1). If

d2(m2+1) 6= 1 we reach a crisis point tip, but if d2(m2+1) = 1 we reach a ptip point and a portion of the
third subshrub is reached. The third subshrub has an infinity of non-connected portions, each one emerging
from a ptip of any of the infinite portions of the second subshrub. Figure 7 shows two portions of the third
subshrub starting from any of the four portions of the second subshrub (eight portions in total). These
portions are 1̄→ 1̄→ (born in M46,1), 1 → 21̄→ (born in M52,1), 21̄→ 1̄→ (born in M70,1), 21̄→ 21̄→ (born
in M76,1), 31̄ → 1̄→ (born in M82,1), 31̄ → 31̄→ (born in M91,1), 41̄ → 1̄→ (born in M94,1) and 41̄ → 31̄→
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Figure 6: Mandelbrot set region showing a tertiary shrub, shrub
(

1
3 · 1

4 · 1
5

)

.

(born in M103,1). All these Misiurewicz points are ptips of the second subshrub and therefore main nodes
of the third subshrub.

Likewise, starting from a ptip of the second subshrub we can reach a tip of the third subshrub by
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Figure 7: Sketch of the tertiary shrub of Fig. 6, shrub
(

1
3 · 1

4 · 1
5

)

, and its three subshrubs. The second
and third subshrubs have an infinity of portions. Four of these portions of the second subshrub are shown
(those coming from 1̄, 21̄, 31̄ and 41̄ of the first subshrub). Two portions starting from each one of the
four portions of the second subshrub (eight portions in total) are shown in the third subshrub.

following an u.p. d31, d31d32, · · · , d31d32 · · · d3m3
d3(m3+1) in each one of the infinite portions of the third

subshrub. Now, since we are in the last subshrub, either d3(m3+1) 6= 1 or d3(m3+1) = 1 we reach a tip which
always is a crisis point.

4.1 First subshrub hyperbolic components ordering

In accordance with the experimental data, the period of the representative of the branch d11d12 . . . d1m1
of

the subshrub1

(

q1

p1
· q2

p2
· q3

p3

)

is

pr1
= p1p2(p3 + Σ1), (20)

where Σ1 = d11 +d12 + · · ·+d1m1
. Thus, the representative of branch 21 of subshrub1

(

1
3 · 1

4 · 1
5

)

has period
96, and the representative of branch 41 has period 120 (Fig. 7).

4.2 Second subshrub hyperbolic components ordering

To calculate the period of any level m2 branch representative of a subshrub2

(

q1

p1
· q2

p2
· q3

p3

)

portion, we

have to know the complete associated number of the branch d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

, with

15



d1(m1+1) = 1. The period is

pr2
= p1[p2(p3 + Σ1 − 1) + Σ2], (21)

where Σ1 = d11 + d12 + · · · + d1m1
(characteristic of the portion where the branch is) and Σ2 = d21 +

d22 + · · ·+d2m2
(characteristic of the branch). Thus, the periods of representatives of branches 1̄ → 21 and

41̄ → 11 of subshrub2

(

1
3 · 1

4 · 1
5

)

are 57 and 102 (Fig. 7).

4.3 Third subshrub hyperbolic component ordering

If we know the complete associated number of the branch, d11d12 · · · d1m1
d1(m1+1) →

d21d22 · · · d2m2
d2(m2+1) → d31d32 · · · d3m3

, where d1(m1+1) = d2(m2+1) = 1, the period of any level

m3 branch representative of a subshrub3

(

q1

p1
· q2

p2
· q3

p3

)

portion is

pr3
= p1 [p2(p3 + Σ1 − 1) + Σ2 − 1] + Σ3, (22)

where Σ1 = d11 +d12 + · · ·+d1m1
and Σ2 = d21 +d22 + · · ·+d2m2

are characteristic of the portion where the
branch is, and Σ3 = d31+d32+···+d3m3

is characteristic of the branch. Thus, the periods of representatives
of branches 1̄ → 21 → 12 and 41̄ → 31̄ → 2 of subshrub3

(

1
3 · 1

4 · 1
5

)

are 54 and 104 (Fig. 7).
Let us study the Misiurewicz points of the nodes and tips of the three subshrubs of the tertiary

shrub
(

1
3 · 1

4 · 1
5

)

(see Fig. 7). We begin with the first subshrub.

4.4 First subshrub Misiurewicz points ordering

A level m1 node d11d12 · · · d1m1
of the subshrub1

(

q1

p1
· q2

p2
· q3

p3

)

is a non-characteristic Misiurewicz point

Mn∗,p∗ with

n∗ = p1p2 (p3 + Σ1) + 1, p∗ = p1p2, (23)

where Σ1 = d11 + d12 + · · ·+ d1m1
. Thus, the nodes 1, 2, 3 and 4 of subshrub1

(

1
3 · 1

4 · 1
5

)

in Fig. 7 are the
Misiurewicz points M73,12 , M85,12 , M97,12 and M109,12.

Let us see now tips. To reach a tip we have to follow an u.p. d11, d11d12, · · · , d11d12 · · · d1m1
d1(m1+1)

with two steps. We have again a normal case and an especial case. As can experimentally be seen, in the
normal case, Σ1 = 0 ∪ d1m1

> d1(m1+1), the tip is the Misiurewicz point Mn∗,p∗ with

n∗ = p1p2

(

p3 + Σ1 − d1(m1+1)

)

+ 1,

p∗ = p1p2d1(m1+1), (24)

where Σ1 = d11 + d12 + · · · + d1m1
. For example, if we follow the paths 2, 22, · · · , 2̄; 3, 33, · · · , 3̄ and

4, 44, · · · , 4̄ of subshrub1

(

1
3 · 1

4 · 1
5

)

in Fig. 7 we obtain M37,24, M25,36 and M13,48.

When Σ1 6= 0 ∩ d1m1
< d1(m1+1)we are in the especial case and Eq. (24) becomes

n∗ = p1p2 (p3 + Σ1 − d1m1
) + 1,

p∗ = p1p2d1(m1+1). (25)

Equations (24) and (25) only differ in that Σ1 −d1(m1+1) changes to Σ1 −d1m1
. Thus, if we follow the path

1, 12, · · · , 12̄ of subshrub1(
1
3 · 1

4 · 1
5) in Fig. 7 we obtain M61,24.

Again, if we follow a p.u.p., d1(m1+1) = 1, we reach a main node of the second subshrub. We are in the
normal case, and therefore it seems we should apply Eq. (24). However, in this case, since we are not in
the first subshrub but in the second one, the period of the Misiurewicz point is p1 as we shall see in the
next section. Hence, Eq. (24) becomes

n∗ = p1p2(p3 + Σ1 − 1) + 1, p∗ = p1. (26)

Thus, if we follow the p.u.p. 1, 11, · · · , 1̄ and 4, 41, · · · , 41̄ of subshrub1

(

1
3 · 1

4 · 1
5

)

in Fig. 7, we reach the
ptips M49,3 and M97,3.
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4.5 Second subshrub Misiurewicz points ordering

A portion of the subshrub2

(

1
3 · 1

4 · 1
5

)

emanates from any ptip of the first subshrub. We can see exper-

imentally that a level m2 node d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

of the subshrub2

(

q1

p1
· q2

p2
· q3

p3

)

is a

non-characteristic Misiurewicz point Mn∗,p∗ with

n∗ = p1 [p2 (p3 + Σ1 − 1) + Σ2] + 1, p∗ = p1, (27)

where Σ1 = d11 + d12 + · · · + d1m1
and Σ2 = d21 + d22 + · · · + d2m2

. Let us note that a ptip of the first
subshrub, Eq. (26), is a main node of the second subshrub, Eq. (27), when Σ2 = 0.

Let us see now tips. As we can see in Fig. 7, in the normal case Σ2 = 0 ∪ d2m2
> d2(m2+1) the tip is

the Misiurewicz point Mn∗,p∗ with

n∗ =p1

[

p2(p3+Σ1 − d1(m1+1))+Σ2 − d2(m2+1)

]

+ 1,

p∗ = p1 d2(m2+1) (28)

(we prefer to give the non-simplified form of Eq. (28) even though we know that d1(m1+1) = 1 if we are
in the second subshrub). For example, if we follow the complete paths 1, 11, · · · , 1̄ → 2, 22, · · · , 2 and
2, 21, · · · , 21̄ → 2, 22, · · · , 2 of subshrub1

(

1
3 · 1

4 · 1
5

)

in Fig. 7 we obtain the crisis points M43,6 and M67,6.
When Σ2 6= 0 ∩ d2m2

< d2(m+1)we are in the especial case and Eq. (28) becomes

n∗ = p1

[

p2

(

p3 + Σ1 − d1(m1+1)

)

+ Σ2 − d2m2

]

+ 1,

p∗ = p1 d2(m2+1). (29)

Equations (28) and (29) only differ in that Σ2 − d2(m2+1) changes to Σ2 − d2m2
. For example, if we follow

the complete path 1, 11, · · · , 1̄ →1, 12, · · · , 12 of subshrub1

(

1
3 · 1

4 · 1
5

)

in Fig. 7 we obtain the crisis point
M49,6 .

If we follow a p.u.p., d2(m2+1) = 1, we reach a main node of the third subshrub. We are in the normal
case, and therefore it seems we should apply Eq. (28). However, in this case, since we are not in the second
subshrub but in the third one, the last one, the period of the Misiurewicz point must be one. Hence, Eq.
(28) becomes

n∗ = p1

[

p2

(

p3 + Σ1 − d1(m1+1)

)

+ Σ2 − 1
]

+ 1,

p∗ = 1. (30)

Thus, if we follow the path 1, 11, · · · , 1̄→ 2, 21, · · · , 21̄ of subshrub1

(

1
3 · 1

4 · 1
5

)

in Fig. 7 we reach the
ptip M52,1.

4.6 Third subshrub Misiurewicz points ordering

A portion of subshrub3

(

q1

p1
· q2

p2
· q3

p3

)

emanates from any ptip of any second subshrub portion. A level

m3 node d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

d2(m2+1) → d31d32 · · · d3m3
of subshrub3

(

q1

p1
· q2

p2
· q3

p3

)

is

a characteristic Misiurewicz point Mn∗,p∗ with

n∗ = p1 [p2 (p3 + Σ1 − 1) + Σ2 − 1] + Σ3 + 1,

p∗ = 1. (31)

Let us note again that a ptip of the second subshrub, Eq. (30), is a main node of the third subshrub, Eq.
(31), when Σ3 = 0.
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Let us see now tips. If we are in the normal case, Σ3 = 0 ∪ d3m3
> d3(m3+1), the tip is the Misiurewicz

point Mn∗,p∗ with

n∗ = p1

[

p2

(

p3 + Σ1 − d1(m1+1)

)

+ Σ2 − d2(m2+1)

]

+Σ3 − d3(m3+1) + 1, p∗ = d3(m3+1). (32)

Note that we give Eq. (32) in a non-simplified form. Thus, if we follow the complete path 2, 21, · · · , 21̄ →
1, 11, · · · , 1̄ → 2, 22, · · · , 2̄ of shrub

(

1
3 · 1

4 · 1
5

)

in Fig. 7 we obtain M68,2.
When Σ3 6= 0 ∩ d3m < d3(m+1) we are in the especial case and Eq. (32) becomes

n∗ = p1

[

p2

(

p3 + Σ1 − d1(m1+1)

)

+ Σ2 − d2(m2+1)

]

+Σ3 − d3m3
+ 1, p∗ = d3(m3+1). (33)

Equations (32) and (33) only differ in that Σ3 − d3(m3+1) changes to Σ3−d3m3
. For example, see Fig. 7,

if we follow the complete path 1, 11, · · · , 1̄ → 1, 11, · · · , 1̄ → 1, 12, · · · , 12̄ we obtain M46,2.
Since the third subshrub is the last one, its tips are always crisis points. If we follow the p.u.p.

1, 11, · · · , 1̄ in the first, second and third subshrubs of the shrub
(

q1

p1
· q2

p2
· q3

p3

)

we reach the more prominent

tip, that we shall call ftip
(

q1

p1
· q2

p2
· q3

p3

)

. Now Σ1 = Σ2 = Σ3 = 0, and d1(m1+1) = d2(m2+1) = d3(m3+1) =

1. Hence, Eq. (32) becomes in a much more simplified one which give the ftip of a tertiary hyperbolic
component:

ftip

(

q1

p1
·
q2

p2
·
q3

p3

)

= Mp1[p2(p3−1)−1],1. (34)

Thus, as we can see in Figs. 6 and 7,

ftip

(

1

3
·
1

4
·
1

5

)

= M45,1.

5 Quinary Shrubs

Next, let us see the case of a quinary shrub, the shrub
(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

shown in Fig. 8(a). Two enlargements
of this figure are shown in Fig. 8(b) and 8(c). Obviously, a quinary shrub is yet much more complex than a
tertiary one and, therefore, let us analyze it carefully by using Fig. 9 where a sketch of shrub

(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

is depicted with its five subshrubs clearly separated. From each node of the subshrub1

(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

three
branches emanate, from the nodes of the second, third and fourth subshrubs two branches emanate, and
from the nodes of the fifth subshrub three branches emanate. Since from the second, third and fourth
subshrubs two branches emanate from each node, these three subshrubs look like a single continuous
branch. By following any u.p. of the first subshrub, d11, d11d12, · · · , d11d12, · · · , d1m1

d1(m1+1), we can
reach a tip, but we only reach the second subshrub if we follow a p.u.p., i.e. if d1(m1+1) =1. This second
subshrub has an infinity of non-connected portions, each one emerging from a ptip of the first subshrub.
We show three portions of the second subshrub 1̄ → , 121̄→ and 21̄ → , born in M49,12, M121,12 and M97,12.

The second, third and fourth subshrubs have one only path 1, 11, · · · , 1̄ and therefore from the end of any
portion only a new portion can emerge. The three portions of the third subshrub are 1̄ → 1̄ → , 121̄ → 1̄ and
21̄ → 1̄ → , born in M37,6, M109,6 and M85,6. The three portions of the fourth subshrub are 1̄ → 1̄ → 1̄ → ,

121̄ → 1̄ → 1̄→ and 21̄ → 1̄ → 1̄→, born in M31,3 , M103,3 and M79,3. Finally, the three portions of the
fifth subshrub are 1̄ → 1̄ → 1̄ → 1̄ → , 121̄ → 1̄ → 1̄ → 1̄→ and 21̄ → 1̄ → 1̄ → 1̄→ , born in M28,1, M100,1

and M76,1 . Likewise, starting from a main node of the fifth subshrub we can reach a tip by following
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Figure 8: a) Mandelbrot set region showing a quinary shrub, shrub
(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

. b) and c) Enlargements
of the subregions shown in a).
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Figure 9: Sketch of the quinary shrub of Fig. 8 (a), shrub
(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

and its five subshrubs. The
second subshrub has an infinity of portions and three of them are depicted on the figure (those coming
from 1̄, 121̄ and 21̄ ). The second, third and forth subshrubs are linear, and only a portion come from each
portion.

an u.p. d51d52 · · · d5m5
d5(m5+1). Since the fifth subshrub is the last one, both ptips d5(m5+1) = 1 and tips

d5(m5+1) 6= 1 are always crisis points.
In accordance with the experimental data, the period of the representative of the branch d11d12 · · ·

d1m1
of the subshrub1

(

q1

p1
· q2

p2
· q3

p3
· q4

p4
· q5

p5

)

is

pr1
= p1p2p3p4(p5 + Σ1), (35)

where Σ1 = d11 + d12 + · · · + d1m1
. Thus, the period of the representative of the branch 12 of

subshrub1

(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

is 144, the same of the representative of the branch 21 of the same subshrub
(see Fig. 9).

The period of the representative of the branch d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

of a

subshrub2

(

q1

p1
· q2

p2
· q3

p3
· q4

p4
· q5

p5

)

portion is

pr2
= p1p2p3[p4(p5 + Σ1 − 1) + Σ2], (36)

where Σ2 = d21 + d22 + · · · + d2m2
. Thus, the period of the representative of the branch 1̄ → 11 of

subshrub2

(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

is 72, and the period of the representative of the branch 121̄ → 1 of the same
subshrub is 132 (see Fig. 9).
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The period of the representative of the branch d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

d2(m2+1) →

d31d32 · · · d3m3
of a subshrub3

(

q1

p1
· q2

p2
· q3

p3
· q4

p4
· q5

p5

)

portion is

pr3
= p1p2[p3[p4(p5 + Σ1 − 1) + Σ2 − 1)] + Σ3], (37)

where Σ3 = d31 + d32 + · · · + d3m3
. Thus, the periods of representatives of branches 1̄ → 1̄ → 11 and

121̄ → 1̄ → 11 of subshrub3

(

1
3 · 1

2 · 1
2 · 1

2 · 1
3

)

are 48 and 120 (see Fig. 9).

The period of the representative of the branch d11d12 · · · d1m1
d1(m1+1) → · · · → d41d42 · · · d4m4

of a

subshrub4

(

q1

p1
· q2

p2
· q3

p3
· q4

p4
· q5

p5

)

portion is

pr4
= p1[p2[p3[p4(p5 + Σ1 − 1) + Σ2 − 1] + Σ3 − 1] + Σ4], (38)

where Σ4 = d41 +d42 + · · ·+d4m4
. For instance, the periods of representatives of branches 1̄ → 1̄ → 1̄ → 11

and 121̄ → 1̄ → 1̄ → 11 of subshrub4

(

q1

p1
· q2

p2
· q3

p3
· q4

p4
· q5

p5

)

are 36 and 108 (see Fig. 9).

The period of the representative of the branch d11d12 · · · d1m1
d1(m1+1) → · · · → d51d52 · · · d5m5

of a

subshrub5

(

q1

p1
· q2

p2
· q3

p3
· q4

p4
· q5

p5

)

portion is

pr5
= p1[p2[p3[p4[p5 + Σ1 − 1) + Σ2 − 1] + Σ3 − 1]

+Σ4 − 1] + Σ5, (39)

where Σ5 = d51 + d52 + · · · + d5m5
. For instance, the periods of representatives of branches 1̄ → 1̄ → 1̄ →

1̄ → 12, 121̄ → 1̄ → 1̄ → 1̄ → 22 and 21̄ → 1̄ → 1̄ → 1̄ → 21 are 30, 103 and 78.
Let us simplify Eqs. (35)-(39). In order to do so, we can name

p′1 = p1(p
′
2 − 1) + Σ5,

p′2 = p2(p
′
3 − 1) + Σ4,

p′3 = p3(p
′
4 − 1) + Σ3,

p′4 = p4(p
′
5 − 1) + Σ2,

p′5 = p5 + Σ1, (40)

where Σ1 = d11 + d12 + · · · + d1m1
, ... and Σ5 = d51 + d52 + · · · + d5m5

. By taking into account these
expressions, Eqs. (35) - (39) can be rewritten in the following simplified form:

pr1
= p1p2p3p4p

′
5, (41)

pr2
= p1p2p3p

′
4, (42)

pr3
= p1p2p

′
3, (43)

pr4
= p1p

′
2, (44)

pr5
= p′1. (45)

If we introduce now the index i that is equal to 1, 2, ..., 5 for the first, second, ..., fifth subshrub, we
can bring these five formulae in only one:

pri
= p1 · · · p5−ip

′
5+1−i, (46)

where p1 · · · p5−i becomes 1 when i = 5.
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6 Generalization for N-ary Shrubs

By generalising, we denominate N -ary hyperbolic component q1

p1
· q2

p2
· · · qN

pN
the hyperbolic component

attached to the (N−1)-ary hyperbolic component q1

p1
· q2

p2
· · ·

qN−1

pN−1
, in the relative position that qN

pN

should have with regard to the main cardioid. From its Myrberg-Feigenbaum point MF
(

q1

p1
· q2

p2
· · · qN

pN

)

,

a N -ary shrub
(

q1

p1
· q2

p2
· · · qN

pN

)

emerges that it is formed by N subshrubs, subshrub1

(

q1

p1
· q2

p2
· · · qN

pN

)

,

subshrub2

(

q1

p1
· q2

p2
· · · qN

pN

)

, · · · , subshrubN

(

q1

p1
· q2

p2
· · · qN

pN

)

, related to the components qN

pN
,

qN−1

pN−1
· · · q1

p1
.

From any ptip of the first, second · · · (N−1)th subshrub, a second, third ... N th subshrub portion emerges.
Likewise, from each node of the first, second ... N th subshrub pN , pN−1 · · · p1 branches emanate.

6.1 Generalization for representatives

We shall generalize Eqs. (35) to (39) for shrub
(

q1

p1
· q2

p2
· · · qN

pN

)

. The period of the representative of the first

subshrub level m1 branch d11d12 · · · d1m1
is

pr1
= p1p2 · · · pN−1(pN + Σ1), (47)

where Σ1 = d11 + d12 + · · · + d1m1
. The period of the representative of the second subshrub level m2

branch d11d12 · · · d1m1
d1(m1+1) → d21d22 · · · d2m2

is

pr2
= p1p2 · · · pN−2[pN−1(pN + Σ1 − 1) + Σ2], (48)

where Σ1 = d11 + d12 + · · · + d1m1
and Σ2 = d21 + d22 + · · · + d2m2

. And so on. The period of the
representative of the N th subshrub level mN branch d11d12 · · · d1m1

d1(m1+1)→ d21d22 · · · d2m2
d2(m2+1)→

· · · → dN1dN2 · · · dNmN
is

pr5
= p1[p2 · · · [pN−1(pN + Σ1 − 1) + Σ2 − 1] · · · + ΣN−1

−1] + ΣN , (49)

where Σ1 = d11 + d12 + · · · + d1m1
, Σ2 = d21 + d22 + · · · + d2m2

,..., and ΣN = dN1 + dN2 + · · · + dNmN
.

To simplify these equations we extend the expressions of Eq. (40)

p′1 = p1(p
′
2 − 1) + ΣN ,

p′2 = p2(p
′
3 − 1) + ΣN−1,

...

p′N = pN + Σ1 (50)

and the Eqs. (47)-(49) can be simplified to

pr1
= p1p2 · · · pN−1p

′
N , (51)

pr2
= p1p2 · · · pN−2p

′
N−1, (52)

...

prN
= p′1. (53)

If we introduce the index i that is equal to 1, 2 · · ·N for the first, second ... N th subshrub, we can bring
the Eqs. (51) - (53) in only one

pri
= p1 · · · pN−ip

′
N+1−i, (54)

where p′N−i+1 can be computed from Eq. (50) and p1 · · · pN−i becomes 1 when i = N . Equation (54)
calculates the period of any branch representative of any subshrub i of any N -ary shrub of the Mandelbrot
set.
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6.2 Generalization for nodes

As we saw in section 3.3, the preperiod n∗ of a node is related to the period pri
of the branch representative

(when the associated number of both node and branch are the same) by n∗ = pri
+ 1 . Furthermore, it is

easy to generalize Eqs. (23), (27) and (31), that we saw for a tertiary component, to obtaining the period

p∗ of a node. Therefore, a node of the subshrubi

(

q1

p1
· q2

p2
· · · qN

pN

)

, 1≤ i ≤ N , is the Misiurewicz point Mn∗,p∗

with

n∗ = p1 · · · pN−ip
′
N−i+1 + 1, p∗ = p1 · · · pN−i, (55)

where p′N−i+1 can be computed from Eq. (50) and p1 · · · pN−i becomes 1 when i = N . Equation (55)
calculates the preperiod and the period of any node of any subshrub i of any N -ary shrub of the Mandelbrot
set.

6.3 Generalization for tips

We begin by the normal case for the ith shrub, when Σ1 = 0 ∪ dimi
> di(mi+1). If we generalize for the

case of a N -ary hyperbolic component of the form q1

p1
· q2

p2
· · · qN

pN
and if we take into account the expressions

(21), (24) and (27) that we saw for the normal case of a tertiary hyperbolic component, then the tips

of subshrub1

(

q1

p1
· q2

p2
· · · qN

pN

)

, subshrub2

(

q1

p1
· q2

p2
· · · qN

pN

)

, · · · , subshrubN

(

q1

p1
· q2

p2
· · · qN

pN

)

are Misiurewicz

points Mn∗,p∗ with

n∗ = p1 · · · pN−1

(

pN + Σ1 − d1(m1+1)

)

+ 1, (56)

p∗ = p1 · · · pN−1d1(m1+1),

n∗ = p1 · · · pN−2

[

pN−1

(

pN+Σ1−d1(m1+1)

)

(57)

+Σ2 − d2(m2+1)

]

+ 1, p∗ = p1 · · · pN−2d2(m2+1),

...

n∗ = p1

[

· · ·
[

pN−2

[

pN−1(pN + Σ1 − d1(m1+1

)

+Σ2 − d2(m2+1)

]

+ Σ3 − d3(m3+1)

]

+ · · ·
]

+ΣN − dN(mN+1) + 1, p∗ = dN(mN+1), (58)

respectively. We have given again the non-simplified form of Eqs. (56) - (58) even though we know that
d1(m1+1) = d2(m2+1) = · · · = d(i−1)(mi−1+1) = 1 for tipi. In order to simplify these expressions, we can
define

p′′1 = p1p
′′
2 + ΣN − dN(mN+1),

p′′2 = p2p
′′
3 + ΣN−1 − d(N−1)(mN−1+1),

...

p′′N = pN + Σ1 − d1(m1+1). (59)

By taking into account these expressions, Eqs. (56) - (58) can be simplified as

n∗ = p1 · · · pN−1p
′′
N + 1,

p∗ = p1 · · ·N−1 d1(m1+1), (60)

n∗ = p1 · · · pN−2p
′′
N−1 + 1,
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p∗ = p1 · · · pN−2d2(m2+1), (61)

...

n∗ = p′′1 + 1, p∗ = dN(mN+1). (62)

If we introduce the index i that is equal to 1, 2 ... N for the first, second ... N th subshrub, we can
bring the Eqs. (60)-(62) in only one

n∗ = p1p2 · · · pN−ip
′′
N−i+1 + 1,

p∗ = p1p2 · · · pN−idi(mi+1), (63)

where p′′N−i+1 can be computed from Eq. (59), d1(m1+1) = · · · = d(i−1)(mi−1+1) = 1 and p1 · · · pN−i becomes
1 when i = N . Equation (64) calculates the preperiod and the period of any tip of any subshrub i of any
N -ary shrub of the Mandelbrot set.

Let us consider now the especial case. If we are in the especial case (Σi 6= 0 ∩ dim < di(m+1)), to

calculate a tip of the subshrubi

(

q1

p1
· q2

p2
· · · qN

pN

)

we can use the Eq. (63) but now we have to put Σi − dimi

instead of Σi − di(mi+1).

6.4 Generalization for ftips

If we follow the p.u.p. 1, 11, · · · , 1̄ in the first, second ... and N th subshrub of the shrub
(

q1

p1
· q2

p2
· · · qN

pN

)

we reach the more prominent tip, that we shall call it the ftip of the shrub as we saw in former cases. Now
Σ1 = Σ2 = · · · = ΣN = 0 and d1(m1+1) = d2(m2+1) = · · · = dN(mN+1) = 1. Therefore, Eq. (63) becomes a

much more simplified one, and the ftip
(

q1

p1
· q2

p2
· · · qN

pN

)

of a N -ary hyperbolic component is a Misiurewicz

point Mn∗p∗ with

n∗ = p′′1 + 1, p∗ = 1, (64)

where p′′1 can be computed from Eq. (59).

7 Epilogue

We have fulfilled our goal of ordering of the most important hyperbolic components (structural ones) and
Misiurewicz points of the Mandelbrot set, and we can calculate the period of the former ones and the
preperiod and period of the later ones. We have only tackled one hyperbolic component per structural
branch, and in fact there is an infinity of them. However, this is a necessary first step in the ordering of
the Mandelbrot set hyperbolic components.
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References

Beck, C. [1999] “Physical meaning for Mandelbrot and Julia sets,” Physica D 125, 171-182.
Branner, B. [1989] “The Mandelbrot set,” in Chaos and Fractals: the mathematics behind the computer

graphics, eds.
Devaney, R. L. & Keen L. (AMS, Providence) pp. 75-105.
Crutchfield, J.P. & Kaneco, K. [1987] “Phenomenology of spatio-temporal chaos,” in Directions in chaos

Vol. I, ed. Hao, B. L. (World Scientific, Singapore) pp. 272-353.

24



Devaney, R.L. [1995] “The fractal geometry of the Mandelbrot set. How to count and how to add,”
Fractals 3(4), 629-640.

Devaney, R.L. “The Mandelbrot set and the Farey tree,” available from http://math.bu.edu /peo-
ple/bob/papers.html.

Douady, A. & Hubbard, J. H. [1985] “Etude dynamique des polynômes complexes,” Publ. Math.
d’Orsay, 85-04. pp. 56-60.

Douady, A. [1986] “Algorithms for computing angles in the Mandelbrot set,” in Chaotic Dynamics and
Fractals, eds. Barnsley, M. & Demko, S.G. (Academic Press, New York) pp. 155-168.

Gilbert, E.N. & Riordan, J. [1961] “Symmetry types of periodic sequences,” Illinois J. Math. 5, 657-665.
Grebogi, C., Ott, E. & Yorke, J. A. [1982] “Chaotic attractors in crisis,” Phys. Rev. Lett. 48, 1507-1510.
Hao, B.-L. & Xie, F.-G. [1993] “Chaotic systems: counting the number of periods,” Physica A 194,

77-85.
Keller, K. [2000] Invariant factors, Julia equivalencies, and the (abstract) Mandelbrot set (Lecture Notes

in Mathematics 1732, Springer, Berlin).
Lau, E. & Schleicher, D. [1994] “Internal addresses in the Mandelbrot set and irreducibility of polyno-

mials,” IMS Preprint 94-19 available from http://www.%20math.sunysb.edu/cgi-bin/preprint.pl?ims94-19.
Lorenz, E. N. [1963] “Deterministic nonperiodic flow,” J. Atmos. Sci. 20(2), 130-141.
Lutzky, M. [1993] “Counting hyperbolic components of the Mandelbrot set,” Phys. Lett. A 177,

338-340.
Mandelbrot, B.B. [1980] “Fractal aspects of the iteration of z → λz (1 − z) for complex λ and z,” in

Nonlinear Dynamics, ed. Helleman, R.H.G. (Annals of the New York Academy of Sciences, New York) pp.
249-259.

Mandelbrot, B.B. [1983] “On the quadratic mapping z → z2 − µ for complex µ and z: the fractal
structure of its M set, and scaling,” Physica D 7, 224-239.

May, R. [1976] “Simple mathematical models with very complicated dynamics,” Nature 261, 459-467.
Metropolis, N., Stein, M. L. & Stein P. R. [1973] “On finite limit sets for transformations on the unit

interval,” J. Comb. Theory 15(1), 25-44.
Milnor, J. [1989] “Self-similarity and hairiness in the Mandelbrot set,” in Computers in Geometry and

Topology, ed. Tangora (Lecture Notes in Pure and Applied Mathematics 114, Dekker) pp. 211-257.
Milnor, J. [2000] “Periodic orbits, external rays and the Mandelbrot set: an expository account,”

Asterisque 261, 277-333. Available from http://www.%20math.sunysb.edu/cgi-bin/preprint.pl?ims 99-3.
Misiurewicz, M. & Nitecki Z. [1991] “Combinatorial patterns for maps of the interval,” Mem. Am.

Math. Soc. 94(456), 1-110.
Myrberg, P.J. [1963] “Iteration der reellen polynome zweiten grades III,” Ann. Acad. Sci. Fenn.-M.

336 (3), 1-18.
Munafo, R. [1999] “R2 naming system” available from http://www.geocities.com/gigi avatar27

/pub/muency/r2namingsystem.html.
Pastor, G., Romera, M. & Montoya, F. [1996a] “An approach to the ordering of one-dimensional

quadratic maps,” Chaos, Solitons and Fractals 7(4), 565-584.
Pastor, G., Romera, M. & Montoya, F. [1996b] “On the calculation of Misiurewicz patterns in one-

dimensional quadratic maps,” Physica A 232, 536-553.
Pastor, G., Romera, M. & Montoya, F. [1997] “Harmonic structure of one-dimensional quadratic maps,”

Physical Review E 56(2), 1476-1483.
Pastor, G., Romera, M., Sanz-Mart́ın, J. C. & Montoya, F. [1998] “Symbolic sequences of one-

dimensional quadratic map points,” Physica A 256, 369-382.
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