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SIMULTANEOUS AMPLITUDE AND

FREQUENCY NOISE ANALYSIS IN

CHUA’S CIRCUIT
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IMEC, MCP/BIO, Kapeldreef 75, 3001 Leuven, Belgium

D. GILLET and M. PLANAT
Laboratoire de Physique et Métrologie des Oscillateurs (LPMO, CNRS) 32,

avenue de l’observatoire, 25044 Besançon Cedex, France

A large number of simultaneous frequency and amplitude data from an electronic chaotic circuit
(Chua’s circuit) have been obtained. These acquisitions are validated by plotting the bifurcation
diagrams of the experimental data versus the bifurcation parameter. We introduce a topological
parallel between the Colpitts oscillator and Chua’s circuit, and look for similar behavior of the
frequency fluctuations using the Allan deviation.
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1. Introduction

Chua’s circuit is a nonlinear electronic circuit which
exhibits chaotic behavior for high enough values of
one of its parameters, the inductor’s value in our
case. We have studied the characteristics of the
frequency and amplitude fluctuations of the oscil-
lator in the periodic and chaotic regimes (while
the signal is still pseudo-periodic, i.e. before the
bifurcation towards the double-scroll regime). The
amplitude and period of successive oscillations were
measured and analyzed by plotting the return maps,
the transfer functions and the bifurcation diagrams.
The type of fluctuations were characterized using
the Allan deviation, and compared to the classi-
cal results obtained for a quartz resonator based
Colpitts oscillator.

2. Motivation of This Study

Our aim is to be able to characterize frequency in-
stabilities in oscillators [Eckert et al., 1996]. We
have thus chosen to analyze Chua’s chaotic circuit
as an example of a highly unstable oscillator. The

conclusions can be tentatively extended to more
classical oscillators such as the Colpitts oscillator
used in conjunction with a quartz resonator.

Quartz oscillators show a well-known phase
(and hence frequency) fluctuation behavior ob-
served to follow a series of power law functions.
The power spectral density of relative frequency
fluctuations is thus Sy(F ) = hαFα, where F is
the Fourier frequency, y = ∆ν/ν0 the relative fre-
quency shift with respect to the carrier of mean
frequency ν0 and the integer α varies from −2 to
+2. The power spectral density of phase fluctu-
ations is Sϕ(F ) = (ν0/F

2)Sy(F ). Hence a slope
equal to −3 in Sϕ(F ) corresponds to 1/F noise in
Sy(F ). This type of noise is still not well under-
stood. This is one reason for attempting to detect
it in a Chua’s oscillator. Instead of power spec-
tra we will use the characterization of time dy-
namics in terms of Allan variance which is defined
as σ2

y(τ) = (1/2)〈(yk+1(τ) − yk(τ))2〉, with yk(τ)
the kth average of samples y over the integration
time τ . The coefficient y is obtained by computing
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Fig. 1. Comparison of the Colpitts oscillator often used for
using a quartz crystal resonator in an oscillator configuration,
and the canonical Chua circuit.

the average yτ = 〈xn=[t;t+τ ]〉, xt being our time
series indexed by t and 〈•〉 an average over the data
sets. For a stationary fluctuation the power spec-
trum and Allan variance are related. The graph of
the variance against the sampling time also obeys
power laws σ2

τ (y) = τ−m, with m = α + 1 (if
−2 ≤ α ≤ 1) and m = 2 (if α ≥ 1). Therefore
the 1/F noise in Sy(F ) corresponds to a flicker
floor m = 0. Allan variance is often used for de-
scribing the stability of oscillators since it converges
for the kinds of noises observed experimentally, as
opposed to the classical variance which does not
always converge to a finite value [Allan et al., 1997;
Audoin et al., 2001].

A parallel between the schematics of the Col-
pitts oscillator and the canonical Chua’s circuit
[Sarafian & Kaplan, 1995; Kennedy, 1995] can be
displayed and analyzed in order to justify our ex-
tension of the results to quartz oscillators (Fig. 1).
The circuit we actually studied is the usual Chua’s
circuit in which L and R2 are exchanged [Chua &
Lin, 1990] as shown in Fig. 3. The nonlinear differ-
ential equations used to predict the behavior of the
circuit lead to chaotic oscillations after a series of
bifurcations. Here we have studied simultaneously
the evolution of the instantaneous amplitude and
instantaneous frequency with the value L of the in-
ductor parameter.

3. Experimental Setup

A preliminary study shows a large variation in
the shape of the power spectra (Fig. 2) observed
on Chua’s circuit for various kinds of attractors
(from periodic to chaotic behaviors of the circuit
with varying values of the bifurcation parameter).
We will here attempt to precisely characterize the
various fluctuation regimes depending on the in-
ductor value by means of signal processing tools
including the Allan deviation and a display of
return maps.

Fig. 2. Evolution of the power spectra around the oscillation frequency of Chua’s circuit. A precise analysis is needed to
describe the slope of the spectra depending on the oscillation regime.
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Fig. 3. Schematic of Chua’s circuit we used for our data
acquisitions. The parameter is the inductor’s value L. Other
components value are C2 = 1847 nF, C1 = 20.3 nF, induc-
tor’s internal resistance 3.3 Ω. R2 is a 10 kΩ variable resistor.
The variables measured are the frequency and amplitude of
the voltage at C2.

For the realization of Chua’s circuit, we used a
simulated inductor described by Weldon [1990]: it is
less bulky and its value is defined by a variable resis-
tor and thus can be computer controlled thanks to
the availability of computer controlled variable re-
sistors. The nonlinear negative resistor is a negative
impedance converter (NIC) [Horowitz & Hill, 1989]
based on an operational-amplifier [Weldon, 1990].
The details of the electronic circuits we built are
given in Fig. 4.

An external circuit displayed in Fig. 5 is used
for detecting single periods and measuring their
duration thanks to a comparator and a frequency
counter with an internal clock at 14.31818 MHz.
The amplitude is measured simultaneously by using
a peak holder circuit and a 12 bit analog to digital
converter. The trigger signal for the frequency

measurement and the amplitude signal can be seen
on Fig. 6. All consecutive periods can be measured
for signals of frequency less than 1 kHz.

4. Statistical Analysis and

Bifurcation Diagrams

All our statistical analysis have been limited to
regions of the L parameter for which the signal is
observed to be periodic or pseudo-periodic with a
constant mean value (as opposed to smaller oscil-
lations overlapping large scale fluctuations such as
the signals observed in the double scroll oscillator).
This limitation is required by our data acquisition
electronic circuit as well as by our intuitive defini-
tion of frequency and amplitude of pseudo-periodic
signals.

We plotted the values taken by the amplitude
and frequency time series against the value of the
L parameter in Figs. 7 and 8. One can observe the
first bifurcation, followed by the chaotic behavior
[Feigenbaum, 1978, 1979].

We also display the Allan deviation σy(τ): a
−0.5 slope in the Allan deviation indicates a white
frequency noise, while a −1 slope indicates α = +1
(flicker phase fluctuations) or α = +2 (white phase
noise) frequency fluctuation spectra (Fig. 8).

We then display the evolution of various pa-
rameters which are characteristic of the dynamic
of Chua’s circuit for several chosen values of the
L parameter: the frequency return maps (Fig. 9),
the transfer functions (Fig. 10) and the amplitude
return maps (Fig. 11). The return map is defined
by displaying fn+1 versus fn when given a time se-
ries (fn,n∈[1. .N ]). The amplitude and frequency mea-
sured are similar to their usual definition when the

Fig. 4. Details of the electronic circuits used in these experiments. The nonlinear element is described in the left schematic,
the simulated inductance is depicted in the middle schematic and includes a computer controlled variable resistance, P , whose
detailed schematic is presented on the right. The DS1669 computer controlled linear potentiometers are powered between
−1.44 V and 5.28 V. The value of the simulated inductance is L = 0.1 × 10−6

× 3.3 × P H.
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Fig. 5. Experimental setup used for measuring the frequency and amplitude of successive oscillations of Chua’s circuit. A
buffer was included so as to minimize the disturbances on the chaotic circuit due to the measurement apparatus. The diode
used for the amplitude detection is a germanium diode in order to minimize the voltage drop. The frequency counter and the
analog to digital converter (12 bits) are custom built PC-104 cards: this allows fast transfer time and precise control of the
timings, allowing all successive periods to be measured during a given data acquisition time lapse.

Fig. 6. Trigger signal for the frequency measurement (left, top curve) and amplitude measurement analog signal (right, top
curve) output from the electronic circuit connected to Chua’s circuit. In both images, the bottom curve is the signal observed
at the output of Chua’s circuit (chaotic regime). The amplitude signal (right) is read by a 12 bit analog to digital converter
while a custom made frequency counter samples the pulse (left). Both values are read in less than 500 µs, half of the duration
of a period of Chua’s circuit, and allows the measurement of all successive periods.

Fig. 7. Bifurcation diagram for the amplitude data.
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Fig. 8. Slope of Allan deviation (top) and bifurcation diagram (bottom) for the frequency data.

signal is periodic, and is intuitively extended to re-
spectively the maximum of the voltage over each
period and the inverse of the duration between two
crossings of a reference level, chosen here to be 0 V
(ground level being the average value of the volt-
ages in the periodic and quasi-periodic regimes).
Figure 6 illustrates these definitions by displaying
both the signal being analyzed (bottom signal) and

the frequency (left) and amplitude (right) measure-
ments (top waveforms). We have selected values of
the parameter for which we can see a periodic sig-
nal followed by signals characteristic of each fur-
ther bifurcation, until obtaining a fully developed
(Rössler like) chaotic attractor. The chosen values
of L are the following: 13.167 mH for a periodic
signal, 13.497 mH and 13.926 mH for signals after
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Fig. 9. Evolution of the return maps (an versus fn) for the period data with the L parameter.

Fig. 10. Evolution of the transfer functions (the abscissa are not here the frequency as usually used when displaying transfer
functions, but the period, which is more relevant in this study) with the parameter L.
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Fig. 11. Evolution of the return maps for the amplitude data with the L parameter. Notice that the relation between an and
an+1 (an being the amplitude data) is no longer a function for a value large enough of L.

Fig. 12. 3D plots of the experimental amplitude return map at 1 and 2 steps in the chaotic regime of the circuit. L =
14.415 mH. These plots can be compared with Fig. 11: adding a third dimension unwraps the return map.
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the first bifurcation, 14.207 mH for a signal after
the second bifurcation, and finally 14.058 mH and
14.322 mH for fully developed chaos (Rössler-like
attractor).

Figure 10 displays the evolution of the transfer
functions with the parameter L. Absicissa are here
given in duration units, rather than in the usual
frequency units as classically used. The splitting of
the fundamental spot (top-left) is clearly identified.
A major difference between the return maps of the
frequency data (Fig. 9) and the return maps of the
amplitude data (Fig. 11) can be observed: the re-
turn maps of the frequency data are always func-
tions (fn defines one fn+1 only) while return maps
of the amplitude data are no longer functions for
large enough values of the parameter L. By adding
additional dimensions, i.e. plotting an as a func-
tion of an+1 and an+2 (an,n∈[1. .N ] being the ampli-
tude data), the relation becomes a function again
by unwrapping the return map, and the prediction
is again possible (Fig. 12).

5. Conclusion

After validating our data acquisition electronics
and software by plotting the bifurcation diagrams,
we have shown the experimental return maps and
transfer functions of Chua’s circuit. We have then
analyzed the frequency fluctuations using the Allan
deviation.

The slope of the Allan deviation was shown to
be equal to −0.5 over most of the bifurcation pa-
rameter range, meaning the frequency fluctuations

are mainly characterized by white frequency noise.
The same kind of behavior is observed in quartz
crystal based oscillators far enough from the carrier
(100 kHz to 1 MHz from the 11.0592 MHz carrier
for a Colpitts oscillator).
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