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In this paper, bifurcations of limit cycles close to certain singularities of the vector fields are
explored using an algorithm based on the harmonic balance method, the theory of nonlinear
feedback systems and the monodromy matrix. Period-doubling, pitchfork and Neimark–Sacker
bifurcations of cycles are detected close to a Gavrilov–Guckenheimer singularity in two modified
Rössler systems. This special singularity has a zero eigenvalue and a pair of pure imaginary
eigenvalues in the linearization of the flow around its equilibrium. The presented results suggest
that the proposed technique can be promising in analyzing limit cycle bifurcations arising in the
unfoldings of other complex singularities.
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1. Introduction

Bifurcations of limit cycles announce qualitative
changes in the periodic behavior of dynamical sys-
tems when varying a certain distinguished param-
eter. Sometimes, their presence predicts the birth
of chaos and thus, the sudden disappearance of
the periodic behavior. Since our main interest is in
periodic regimes, we focus the attention on study-
ing bifurcations of limit cycles. Toward this end,
the stability1 of the periodic orbit is analyzed by
computing the characteristic or Floquet multipli-
ers. In this regards, some sophisticated techniques
have been recently developed to reduce dramati-
cally the errors in the computations of the Floquet
multipliers aiming to locate more precisely the birth
of the cycle bifurcations. For example, in [Choe
& Guckenheimer, 1999] and in [Guckenheimer &
Meloon, 2000] accurate computations of periodic
orbits and their bifurcations have been performed.
In the same spirit, Lust [2001] develops efficient

numerical methods for linear stability analysis of
periodic branches for low-dimensional systems of
ordinary differential equations. On the other hand,
some methods for computing Floquet multipliers do
not have such a great performance in accuracy, but
indeed are very useful in engineering for its prac-
ticality. In this regard, we are referring to compu-
tations of limit cycle bifurcations using harmonic
balance methods with first order approximations
[Torrini et al., 1998] or with higher-order approx-
imations [Berns et al., 2001].

In this paper higher-order harmonic balance
methods and the theory of nonlinear feedback
systems are used to approximate limit cycles. The
approximated periodic solution is employed to com-
pute the monodromy matrix and the characteristic
multipliers to detect the first bifurcations of cycles
[Robbio et al., 2004]. We have computed the first
bifurcations of the cycles arising from a Hopf bifur-
cation in two simple three-dimensional dynamical

1It is worth mentioning that in some cases a limit cycle can develop a bifurcation without changing the stability.
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systems having quadratic and cubic nonlinearities.
The analysis is done in the vicinity of a Gavrilov–
Guckenheimer singularity (also known as fold-
Hopf bifurcation as noted by [Kuznetsov, 1995])
presenting one zero eigenvalue and a pair of pure
imaginary eigenvalues in the linearization matrix.
Some of the typical bifurcation curves in the un-
foldings of this singularity, such as static and Hopf
bifurcations of equilibria, and period-doubling,
pitchfork and Neimark–Sacker bifurcations of cycles
are detected.

This methodology seems to be powerful in
detecting the first bifurcation of the cycles close
to a Hopf bifurcation curve, since other singular-
ities of vector fields such as double or triple zero
eigenvalues, double Hopf bifurcation, etc. involve
the presence of the Hopf curve in a two or three
parameter space. In addition, the increased higher-
order harmonic balance expansion of the cycles
extends the local prediction of the standard second-
order approximation (and hence, of the locality of
the Hopf bifurcation) via the computation of the
Floquet multipliers.

2. Background Material

Consider the general nonlinear system

ẋ = Ax+BDy +B[g(y; µ)−Dy] ,
y = Cx ,

(1)

where x ∈ R
n, y ∈ R

m, A, B, C and D are n × n,
n× l, m×n and l×m matrices, respectively, µ ∈ R

is the bifurcation parameter, y is the output and g:
R

m × R → R
l is at least a C4-function in x and µ.

It is worth mentioning that the matrix D is arbi-
trarily added for convenience. The system can be
represented in feedback form as a linear transfer
matrix G(s; µ) in the direct path and a memoryless
nonlinear part u in the feedback path, i.e.

G(s; µ) = C[sI − (A+BDC)]−1B ,

u = f(e; µ) := g(y; µ)−Dy ,
where e = −y. Notice that the equilibrium points
of Eq. (1) correspond to the solutions ê of

G(0; µ)f(e; µ) + e = 0 .

The open-loop linearization matrix associated
with the feedback realization is G(s; µ)J(µ) where
J = (∂f(e; µ)/∂e)|e=ê = Def(ê; µ), and the corre-
sponding eigenvalues are given by

h(λ, s; µ) = det[λI −GJ ]
= λp + ap−1(s; µ)λp−1 + · · ·+ a0(s; µ)

= 0 , (2)

where p = min[rank G, rank J ] and ai(·) are ratio-
nal functions of s. Assuming a single root of h(·) at
λ = −1 and replacing s = iω in Eq. (2), a necessary
condition for computing a bifurcation point (ω0, µ0)
is obtained solving

h(−1, iω; µ) = (−1)p +
p−1∑
k=0

(−1)kak(iω; µ) = 0 ,

for ω and µ. If ω0 = 0 the bifurcation condition
is called static, and it is related to the multiplic-
ity of the equilibrium solutions. On the other hand,
if ω0 �= 0, the bifurcation condition is known as
dynamic or Hopf, and provided that some additional
conditions are fulfilled, it is related to the appear-
ance of periodic solutions.

Once the birth of a limit cycle due to a Hopf
bifurcation is detected, a second-order [Mees &
Chua, 1979], fourth-order [Mees, 1981], sixth- and
eighth-order [Moiola & Chen, 1996], and, in general,
a 2q-order harmonic balance approximation (HBA)
of the periodic solution in the neighborhood of the
criticality can be obtained applying the statements
of the Hopf bifurcation theorem in the frequency
domain [Mees & Chua, 1979]. Toward this end, we
must solve the general equation

λ̂(iω̂q) = −1 +
q∑

k=1

ξk(ω̂q−1)θ̂2k
q , (3)

where λ̂ is the eigenvalue associated to GJ whose
eigenlocus crosses the real axis closest to the crit-
ical point −1 + i0, θ̂ and ω̂ are approximations of
the amplitude and frequency respectively, and ξk
are complex numbers (see the corresponding expres-
sions in [Robbio et al., 2004]). The pair (ω̂q, θ̂q) are
obtained by means of an iterative procedure start-
ing with ω̂R, the frequency at which the locus of
λ̂ crosses the real axis near to the point −1 + i0.
The procedure consisting of N iterations over the
2q-order approximation is

STEP 1 λ̂(iω̂1) = −1 + ξ1(ω̂R)θ̂21 ,

STEP 2 λ̂(iω̂2) = −1 + ξ1(ω̂1)θ̂22 + ξ2(ω̂1)θ̂42 ,

...
...

STEP q λ̂(iω̂q,0) = −1 +
q∑

k=1

ξk(ω̂q−1)θ̂2k
q,0 ,
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Table 1. Limit cycle bifurcations and critical multipliers
crossing point.

Crossing Point Cycle Bifurcation

−1 + i0 Period doubling

1 + i0 Saddle-node, transcritical or
pitchfork

α ± iβ (α2 + β2 = 1) Neimark–Sacker or torus

STEP q+1 λ̂(iω̂q,1) = −1 +
q∑

k=1

ξk(ω̂q,0)θ̂2k
q,1 ,

...
...

STEP q+N λ̂(iω̂q,N ) = −1 +
q∑

k=1

ξk(ω̂q,N−1)θ̂2k
q,N .

Finally ω̂q = ω̂q,N and θ̂q = θ̂q,N . In the following,
let us refer as Lq the approximation given by 2q-
order HBA calculated for a specific value of µ and
the corresponding value of ω̂q.

In order to study the stability of the periodic so-
lution, the 2q-order HBA approximation of the limit
cycle is used to obtain an approximate monodromy
matrix Mq. In the general case Mq has n eigenval-
ues, λ1(µ), λ2(µ), . . . , λn(µ), which are known as
characteristic (or Floquet) multipliers. One of them
is always equal to +1, say λ1(µ) and the remaining
n−1 determine the local stability of the limit cycle.
The multiplier that crosses the unit circle is known
as critical multiplier and the three distinguished
ways of crossing the unit circle determine three as-
sociated types of branching as shown in Table 1.

To compute the monodromy matrix Mq we
need to solve the variational equation

Ẏ (t) = JDq(t)Y (t) ,

Y (0) = I ,

Mq = Y
(
2π
ω̂q

)
,

where JDq is the Jacobian matrix of the system
[Eq. (1)] evaluated at the periodic solution Lq.

3. Application Examples

In order to illustrate the methodology a system with
the Rössler type structure is considered. The system
was proposed by Thomas [1999] and notwithstand-
ing its simplicity it can develop complex dynamical

behaviors. This system is

ẋ1 = −x2 − x3 ,

ẋ2 = x1 + µx2 ,

ẋ3 = ϕ(x1)− cx3 ,

(4)

where µ is the main bifurcation parameter, c is
a real constant and ϕ(x1) is a nonlinear function
that, in this paper, can be quadratic ϕ(x1) = x2

1
or cubic ϕ(x1) = x3

1. In both cases a Single-Input–
Single-Output (SISO) feedback realization can be
obtained since the nonlinearity involves only one
state variable. Therefore, the formulas for obtain-
ing the higher-order approximations of the periodic
solutions are considerably simplified.

The proposed feedback realization on Eq. (4) is

A =




0 −1 −1
1 µ 0

−1 0 −c


 , B =



0
0
1


 ,

C =
[
1 0 0

]
, D = 0 ,

g(x1) = x1 + ϕ(x1) .

The corresponding transfer function results in

G(s; µ) = −s− µ
∆(s)

,

where ∆(s) = s3 + (c− µ)s2 − µcs+ µ+ c, and the
nonlinear function in terms of the output e1 = −x1

is

f(e1) = −e1 + ϕ(e1) .
The equilibrium solutions for the output are

ê01 = 0 ,

and

ê11 = − c
µ
, when ϕ(x1) = x2

1 ,

or

ê1,2
1 = ±

√
c

µ
, when ϕ(x1) = x3

1 .

We will focus the attention on the equilibrium
point ê01 since it undergoes a Hopf bifurcation when
µ = 0 and thus a limit cycle arises near µ = 0. Then,
the eigenlocus to be considered in the frequency
domain method is

λ̂(s) = G(s)J =
s− µ
∆(s)

,

where J = −1 + (∂ϕ(e1)/∂e1)|e1=ê0
1
= −1.
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In addition to the Hopf bifurcation, the equi-
librium point ê01 develops a type of static bifurca-
tion when c = 0: a saddle-node when ϕ(x1) = x2

1

or a pitchfork when ϕ(x1) = x3
1. Moreover, when

both conditions occur simultaneously (µ = c = 0)
a Gavrilov–Guckenheimer bifurcation takes place,
i.e. the linearization matrix of Eq. (4) evaluated at
ê01 has two pure imaginary eigenvalues plus a zero
eigenvalue.

In the following, the proposed technique is ap-
plied to the system considering both nonlinearities
to obtain the first bifurcation of the cycle emerged
at the Hopf bifurcation of ê01 when µ = 0. The vari-
ational system is easily obtained from Eq. (4) as

Ẏ (t) =




0 −1 −1
1 µ 0

ϕ′(x1) 0 −c


Y (t) ,

where ϕ′(x1) = 2x1(t) for the quadratic system or
ϕ′(x1) = 3x2

1(t) for the cubic system, and x1(t)
is the periodic solution obtained using the eighth-
order HBA.

The formulas for calculating the higher order
approximations of the limit cycles are given in
[Robbio et al., 2004]. To validate the semi-analytical
results, standard packages for the continuation of
periodic solutions such as LOCBIF library [Khibnik
et al., 1993] and AUTO [Doedel et al., 1997; Ermen-
trout, 2001] are used. For the proposed procedure,
an eighth-order HBA is used, and the number of
iterations is N = 100 in all the cases.

3.1. Quadratic nonlinearity

Let us consider the modified Rössler system repre-
sented by Eq. (4) with ϕ(x1) = x2

1. The performed
numerical study reveals that the limit cycle aris-
ing from the Hopf bifurcation of the origin when
µ = 0 exhibits a Neimark–Sacker bifurcation (NS
for brevity) when µ = c in the interval (0, 0.74361).
That is, a pair of complex conjugate multipliers of
the monodromy matrix cross the unit circle when
µ = c in that interval. This fact can also be deter-
mined via the Liouville formula relating the product
of the multipliers and the exponential of the integral
of the divergence of the vector field [Torrini et al.,
1998], but without defining the end point 0.74361. It
is worth mentioning that the bifurcating multipliers
sweep the unit circle starting with both multipliers
at +1 when µ = c = 0 and ending with both mul-
tipliers at −1 when µ = c = 0.74361. The locus

corresponding to the NS bifurcation in the parame-
ter plane µ− c is shown in Fig. 1. In addition to the
NS curve, a period-doubling (PD) bifurcation locus
is depicted in the same figure. At the PD curve the
stable limit cycle arising from HB (µ = 0) bifurcates
into a period-2 cycle. Notice that in Fig. 1 only the
first bifurcation curves of the limit cycle are shown.
Thus, a region of the parameter plane µ− c where
only one stable limit cycle exists is delimited by HB,
NS and PD curves (dashed region).

In order to illustrate the complex behavior
evidenced beyond the first bifurcation curves, a
continuation of the limit cycle (using AUTO pro-
gram) varying parameter µ and fixing c at c =
2 is presented in Fig. 2. The cycle ends-up in
a homoclinic loop (HOM) after developing a se-
ries of period-doubling (PD) and saddle-node (SN)
bifurcations.

The procedure based on the approximate mon-
odromy matrix is capable of detecting completely
the NS curve and the first PD points. Neverthe-
less, NS points are obtained with a certain error
due to the limit cycle approximation. A measure
of the error is given by the separation of the mul-
tiplier that must be at +1 (see [Guckenheimer &
Meloon, 2000] for more details) and in this case
is of order 1.5 × 10−2. The ending point of the
NS bifurcation curve, i.e. when it meets the PD
curve (two multipliers at −1), is µ = 0.7144355,
c = 0.717257 which differs from µ = c = 0.74361
computed with LOCBIF. The computed bifurca-
tion points are marked by asterisks in Fig. 1. The
NS curve is obtained fixing c and finding the cor-
responding value of µ. Notice that parameter c is
arbitrarily increased on steps of 0.1 until the point
where the NS curve meets the PD curve. At this
point the step is reduced in order to obtain more
accurately the resonance point (see the enlargement
in Fig. 1). A similar procedure is employed for the
PD curve. In this case the last detected point is
µ = 0.26074, c = 2.5963. Beyond this value the
method fails since not all the computed amplitude
loci

Lq = −1 +
q∑

k=1

ξk(ω̂q−1)θ̂2k
q ,

intersect the locus of λ̂(iω) for a specific value of
µ, i.e. it is not possible to solve Eq. (3). For exam-
ple, for c = 2.6182, by increasing the value of µ the
eigenvalues of the monodromy matrix are given in
Table 2.



Detection of Limit Cycle Bifurcations Using Harmonic Balance Methods 3651

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

µ

c

NS

PD

HB
0.4 0.7 1

0.45

0.65

0.85

NS

PD

Fig. 1. First limit cycle bifurcation curves for the system with a quadratic nonlinearity. The origin in the parameter space
corresponds to the condition of the Gavrilov–Guckenheimer bifurcation. The asterisks correspond to eighth-order HBA which
are contrasted to the solutions obtained with LOCBIF (solid lines).
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Fig. 2. Continuation of the limit cycle arising at the Hopf bifurcation for the system with a quadratic nonlinearity using
AUTO program with c = 2. T is the period of the oscillation. — Stable limit cycle; - - unstable limit cycle.
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Fig. 3. Characteristic gain locus λ̂ and the amplitude loci L1, . . . , L4 when there are no tranversal intersection, µ = 0.265,
c = 2.6182 for the system with a quadratic nonlinearity.

Notice that λ1 ≈ 1 and λ2 approaches −1 (PD
condition) but for µ = 0.2593, it is not possible to
solve Eq. (3) for the sixth- and eighth-order HBA
(L3 and L4, respectively) and therefore it is not
possible to compute the monodromy matrix. The
situation is worst if the value of c is increased, until
there are no intersections with any of the curves Li,
as shown in Fig. 3. This is considered as the limit
of the approximation of the method since the am-
plitude of the limit cycle is far away from criticality
and then the results are not local. Finally, it is worth
mentioning that a quite similar behavior has been
analyzed by other researchers with the connection of
degenerate Hopf and pitchfork bifurcations (a type
of Gavrilov–Guckenheimer singularity) as reported
in [Algaba et al., 1999, 2000]. In particular, in
[Algaba et al., 2000] the appearance of period-

Table 2. Eigenvalues of the mon-
odromy matrix for c = 2.6182 for the
system with a quadratic nonlinearity.

µ λ1 λ2

0.259 1.0004 −0.979
0.2592 1.0004 −0.980257
0.2593 — —

doubling and torus bifurcations of the cycles takes
place near the singularity too.

3.2. Cubic nonlinearity

Let us now consider the modified Rössler system
with a cubic nonlinearity, i.e. ϕ(x1) = x3

1. The
numerical analysis performed with AUTO exhibits
that the limit cycle emerging at the Hopf bifurca-
tion at the origin undergoes a pitchfork bifurcation
(PB). This curve is depicted in Fig. 4 as a solid line.

The proposed technique detects the PB from
the origin until c = 1.9065 with µ = 0.7665. Beyond
this point, this technique fails but in a different way
compared to the failure of the first example. Here,
all the Li are obtained but the critical multiplier,
computed with the semi-analytical technique, does
not cross the unit circle at +1 as is required for the
PB bifurcation. In addition, the method is not ca-
pable of detecting other secondary bifurcations of
the cycle. However, we do not emphasize this fact
since the purpose of the paper is to describe the first
bifurcation of the cycles close to the singularity. As
in the first example, we fix a value of c and look for
a value of µ in order to detect the PB condition by
using HBA (points marked by asterisks in Fig. 4).
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Fig. 4. First limit cycle bifurcation curves for the system with a cubic nonlinearity. The origin in the parameter space
corresponds to the condition of the Gavrilov–Guckenheimer bifurcation. The asterisks correspond to eighth-order HBA which
are contrasted to the solutions obtained with AUTO (solid line).
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Fig. 5. Continuation of the limit cycle arising in the Hopf bifurcation at the origin for the system with a cubic nonlinearity
using AUTO program with parameter c = 1.4. T is the period of the oscillation. — Stable limit cycle; - - unstable limit cycle.
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Notice that in this example between the Hopf
and the PB bifurcation curves there is one stable
limit cycle encircling the origin whose amplitude
increases as parameter µ moves from Hopf to PB.
Two stable limit cycles emerge to the right of PB
and the existing one changes its stability. The cur-
rent approach detects the stability change of the
main cycle but the stability of the bifurcated cy-
cles (or, equivalently, the direction of the pitchfork
bifurcation) can be determined via other techniques
such as the Poincaré map, numerical simulation or
continuation of the periodic branches via specific
software like AUTO, LOCBIF, etc.

Finally, Fig. 5 shows the dynamical scenario ob-
tained with AUTO by varying µ with a fixed value
of c = 1.4. The cycle exhibits other secondary bifur-
cations in addition to PB, like period doubling (PD)
or saddle-node (SN) bifurcations. As we have dis-
cussed before, these bifurcations are far away from
the original Hopf bifurcation as well as from the
equilibrium point, and they are impossible to detect
with the proposed method due to the large errors in
the calculation of the multipliers. This observation
is useful to determine the limit of the HBA. Never-
theless, the method contributes to extend the local
results of the classical Hopf bifurcation approach.

4. Conclusions

In this paper, the potentiality of a semi-analytical
method for detecting the first bifurcation of limit
cycles is illustrated with two examples. The pro-
posed method detects Neimark–Saker, period dou-
bling and pitchfork bifurcations of cycles accurately
even when the cycle is not so close to the Hopf
bifurcation point. This technique seems to be very
powerful in analyzing the unfoldings of certain sin-
gularities involving limit cycle bifurcations, such
as Gavrilov–Guckenheimer bifurcation, a triple-zero
bifurcation, double Hopf bifurcation and so on.

Acknowledgments

The authors acknowledge the support of the
CONICET, the Universidad Nacional del Sur and
ANPCyT through grant PICT-2002-11-12524.

References

Algaba, A., Freire, E., Gamero, E. & Rodŕıguez-Luis, A.
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