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Abstract

In this paper we extend the well-known bifurcation theory for au-
tonomous logistic equations to the non-autonomous equation

ut −∆u = λu− b(t)u2 with b(t) ∈ [b0, B0],

0 < b0 < B0 < 2b0. In particular, we prove the existence of a unique uni-
formly bounded trajectory that bifurcates from zero as λ passes through
the first eigenvalue of the Laplacian, which attracts all other trajectories.
Although it is this relatively simple equation that we analyse in detail,
other more involved models can be treated using similar techniques.

Keywords: Non-autonomous differential equations; bifurcation from zero;
comparison techniques; complete trajectories
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1 Introduction

The bifurcation behaviour of positive solutions of the autonomous logistic PDE

ut −∆u = λu− b(x)u2 x ∈ Ω, with u = 0 on ∂Ω

under various conditions on the coefficient b(x) is well-known (see for example
Smoller (1983) and references therein). The simplest such result, when b(x) ≡
b > 0, guarantees that while λ < λ1 (the first eigenvalue of the Laplacian on
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Ω) all such solutions tend to zero, while for λ > λ1 there is a unique positive
solution of the equation

−∆u = λu− bu2

which attracts all solutions as t → +∞ (see also Section 2, below).
In this paper we extend this result to the non-autonomous equation





ut −∆u = λu− b(t)u2 in Ω× (s,∞),
u = 0 ∂Ω,
u(s) = u0 in Ω,

(1)

where Ω is a bounded and regular domain of IRN , λ is a real parameter, u0 ∈
C(Ω) with u0 > 0 and b ∈ C(IR) satisfies

0 < b0 ≤ b(t) ≤ B0, for all t ∈ IR,

with B0 < 2b0.
We note here that Hess (1991, Theorem 28.1) proved a similar result (without

the condition relating b0 and B0) when b(t) is a periodic function. Two previous
papers by the current authors (Langa & Suárez, 2000; Langa et al., 2003) treated
related examples in which information could only be obtained ‘in the pullback
sense’ (see Section 3); although here we still use a construction based on pullback
ideas we focus on attraction forwards in time: to our knowledge this is the
first result proving the existence of trajectories of (1) that are attracting in the
conventional sense (as t → +∞) that allows for a more general non-autonomous
term.

Whether the condition B0 < 2b0 is in fact necessary in general, or merely a
technical artefact of our proof is unclear. From one point of view this condition
is natural, in that it constrains b(t) to be ‘close to autonomous’ in that it cannot
fluctuate too wildly. On the other hand the non-autonomous logistic ODE

ẋ = λx− b(t)x2 with 0 < b0 ≤ b(t) ≤ B0

has a positive attracting trajectory when λ > 0 for any choice of b0 and B0 (see
also Section 3).

2 Notation and preliminaries

2.1 Results for autonomous equations

Before studying equation (1), we first recall various results for the autonomous
equation

ut −∆u = λu−Au2 x ∈ Ω, with u = 0 on ∂Ω. (2)

Given an initial condition u(s) = u0 this equation has a unique positive solution
uA(t, s;u0) for all t ≥ s.
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Denote by λ1 the first eigenvalue of the Laplacian on Ω with Dirichlet bound-
ary conditions. Then if λ < λ1 we have

lim
t→+∞

uA(t, s;u0) = lim
s→−∞

uA(t, s;u0) = 0,

while if λ > λ1 then

lim
t→+∞

uA(t, s;u0) = lim
s→−∞

uA(t, s;u0) = θ[λ,A],

where θ[λ,A] is the unique positive solution of
{ −∆u = λu−Au2 in Ω,

u = 0 on ∂Ω. (3)

We will need a condition to guarantee that solutions of the linear equation




wt −∆w = a(x)w in Ω× (s,∞),
w = 0 ∂Ω,
w(s) = u0 in Ω.

(4)

(with a ∈ L∞(Ω)) tend to zero. To this end, given q ∈ L∞(Ω) we will denote
by λ1(q) the principal eigenvalue of the problem

{ −∆w + q(x)w = σw in Ω,
w = 0 on ∂Ω

(note that λ1 = λ1(0)). If λ1(−a) < 0 then w → ∞ as t → +∞, while if
λ1(−a) > 0 then w → 0 as t → +∞.

It is shown by López-Gómez (1996, Theorem 2.5) that if there exists a func-
tion ψ that is positive within the interior of Ω and satisfies

−∆ψ + qψ > 0 (5)

then λ1(q) > 0.

2.2 Existence, uniqueness, and regularity properties

Following arguments due to Mora (1983) it is possible to show that solutions of
(1) with continuous initial conditions exist and are unique, and enjoy parabolic
smoothing. We denote by X the space C0

0 (Ω) of all continuous functions on Ω
that are zero on ∂Ω, equipped with its natural norm ‖·‖∞.

Theorem 2.1 Given an initial condition u(s) = us ∈ X, then there exists a
unique solution u(t, s; us) of (1), which satisfies

u(t, s; us) ∈ C0([s, T ];X)

for each T > s, and depends continuously on us. Furthermore for each t > s
and k > 0 the solution operator S(t, s) is a bounded map from X into Ck(Ω).
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Note that in particular the solution operator S(t, s) defined by

S(t, s)us = u(t, s; us)

is a continuous and compact operator from X into itself.

2.3 Order-preserving properties

Many of our arguments rely on the order-preserving nature of equation (1), and
the resulting possibility of comparing solutions to those of suitable autonomous
equations.

The following comparison principle, which in particular shows that solutions
of (1) preserve the order of their initial conditions, is key to all that follows. We
say that u ≥ v if u(x) ≥ v(x) everywhere in Ω.

Lemma 2.2 Denote by u(t, s; u0) the solution of

ut −∆u = λu− b(t)u2 u(s) = u0

and by v(t, s; v0) the solution of

vt −∆v = λv − β(t)v2 v(s) = v0.

Then

u0 ≥ v0 and b(t) ≤ β(t) ⇒ u(t, s; u0) ≥ v(t, s; v0) for all t ≥ s.

In particular if u(t, s; us) denotes the solution of (1) with u(s) = us then

(i) if us ≥ 0 then u(t, s;us) ≥ 0 for all t ≥ s, and

(ii) when b0 ≤ b(t) ≤ B0 we have

uB0(t, s;u0) ≤ u(t, s; u0) ≤ ub0(t, s;u0), (6)

where uβ is the solution of the autonomous equation that has b(t) ≡ β.

We will deduce this as a corollary of a more general nonlinear comparison
principle.

Proposition 2.3 (Comparison principle) Suppose that u and v are C2 in space
and C1 in time,

(i) f(u, t) ≥ g(u, t),

(ii) f(u + s, t)− f(u, t) ≤ Ls for all 0 < s < δ for some δ > 0,

(ii) u|∂Ω ≥ v|∂Ω,
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(iii) u0 ≥ v0, and

(iv) ut −∆u− f(u, t) ≥ vt −∆v − g(v, t).

The u(x, t) ≥ v(x, t) for all t ≥ 0.

(Proposition 2.3) Following Walter (2002) we first prove Nagumo’s Lemma,
in which most of the inequalities are strict: suppose that

(i) f(u, t) ≥ g(u, t),

(ii) u|∂Ω > v|∂Ω,

(iii) u0 > v0, and

(iv) ut −∆u− f(u, t) > vt −∆v − g(v, t).

Then u(x, t) > v(x, t) for all t ≥ 0. Indeed, consider the difference w(x, t) =
u(x, t)−v(x, t). Then if the result does not hold there exists a pair (x0, t0) with
x0 ∈ intΩ such that

w(x0, t0) = 0, ∆w(x0, t0) ≥ 0, and wt(x0, t0) < 0.

Equivalently, at (x0, t0) we have

u(x0, t0) = v(x0, t0), ∆u(x0, t0) ≥ ∆v(x0, t0), and ut(x0, t0) ≤ vt(x0, t0).

It follows that

[ut −∆u− f(u, t)](x0, t0)] ≤ [vt −∆v − f(v, t)](x0, t0),

contradicting (iv).
In order to prove the result as stated we now consider ũ(x, t) = u(x, t)+εeLt.

Then
ũ0 > u0 ≥ v0, ũ|∂Ω > u|∂Ω ≥ v|∂Ω,

and

ũt −∆ũ− f(ũ, t) = ut + LεeLt −∆u− f(u + εeLt, t)
> ut −∆u− f(u, t),

since f(u + εeLt, t) < f(u, t) + LεeLt. Nagumo’s lemma implies that ũ(x, t) >
v(x, t) for all t ≥ 0, and the result holds on taking the limit as ε → 0.

(Lemma 2.2). We note from the regularity results in Theorem 2.1 that u and
v satisfy the smoothness requirements for all s > t. Set f(u, t) = λu − b(t)u2

and g(u, t) = λv−β(t)v2; clearly f(u, t) ≥ g(u, t) if b(t) ≤ β(t), and for u, s ≥ 0

f(u + s, t)− f(u, t) = λs− b(t)[s2 + 2us] < λs.

Finally we introduce sub- and super- trajectories as a generalisation of sub-
and super- and equilibria in Hess (1991); see also Chueshov (2001) or Langa
and Suárez (2002).
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Definition 2.4 We call u (u) : R → X a sub-trajectory (super-trajectory) of
(1) if it satisfies

u(t, s;u(s)) ≥ u(t) for all t ≥ s (u(t, s;u(s)) ≤ u(t) for all t ≥ s).

3 An attracting trajectory bifurcating from zero

In this section we prove our main result, namely that while all solutions tend
to zero for λ < λ1, when λ > λ1 there exists a unique complete trajectory, i.e. a
u : R → X such that

u(t, s;u(s)) = u(t) for all t ≥ s,

that is bounded above and below, and that this trajectory is attracting.
Note that it is clear that when b(t) ≥ 0 and λ < λ1, the solution of (1) tends

to zero as t → +∞. We therefore concentrate on the behaviour of solutions for
λ > λ1.

First we show that there exists at least one complete trajectory that is
bounded above and below. The argument showing the uniqueness of this tra-
jectory also shows that it attracts all other trajectories as t → +∞.

It is interesting to remark that although we are seeking a trajectory that
attracts as t → +∞, the construction in fact involves the notion of ‘pullback
attraction’. This can be clearly illustrated by considering the non-autonomous
logistic ODE

ẋ = λx− b(t)x2 with λ > 0 and 0 < b0 ≤ b(t) ≤ B0. (7)

For the initial condition x(s) = xs this equation admits the explicit solution

x(t, s; xs) =
eλt

eλsx−1
s +

∫ t

s
eλrb(r) dr

.

Fixing xs and letting s → −∞ we obtain the ‘pullback limit’

x∗(t) =
eλt

∫ t

−∞ eλrb(r) dr
,

which is a complete trajectory of (7). (The lower bound on b(t) ensures that
x∗(t) is well-defined, while the upper bound ensures that it is bounded away
from zero.)

While it is clear by construction that x∗(t) is ‘pullback attracting’, i.e. that

lim
s→−∞

x(t, s;xs) = x∗(t)
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for any xs, it can also be shown by direct calculation that

|x(t, s; xs)− x∗(t)| → 0 as t → +∞
for any choice of s and xs, i.e. that x∗(t) attracts all trajectories forwards in
time.

Our proof also uses this pullback technique to find an appropriate candidate
solution that will attract forwards in time.

Theorem 3.1 Suppose that λ > λ1 and B0 < 2b0. Then there exists a unique
complete trajectory u(t) for (1) that satisfies

θ[λ,B0] ≤ u(t) ≤ θ[λ,b0] for all t ∈ R. (8)

This trajectory attracts all other positive solutions as t → +∞, i.e.

lim
t→+∞

‖u(t, s;us)− u(t)‖∞ = 0.

We note here that in fact the proof shows more, namely that the trajectory
u(t) is uniformly attracting forwards in time

lim
t→+∞

sup
s∈R

‖u(t + s, s;us)− u(t + s)‖∞ = 0.

This implies uniform ‘pullback convergence’ (cf. Cheban et al., 2002),

lim
s→+∞

sup
t∈R

‖u(t, t− s; us)− u(t)‖∞ = 0.

Observe that

u(t) := θ[λ,B0] and u(t) := θ[λ,b0],

are sub and super-trajectories of (1). Indeed, for u we have to prove that
u(t, s; u(s)) ≥ u(t), or equivalently

θ[λ,B0] ≤ u(t, s; θ[λ,B0]),

which holds since θ[λ,B0] is a sub-solution of (1) with u0 = θ[λ,B0].
We now consider the ‘pullback limit’

u(t) = lim
s→+∞

u(t, t− s; θ[λ,b0]), (9)

following the argument in Langa & Suárez (2002). To show that this limit exists,
observe that

u(t, s; θ[λ,b0]) = S(t, s)θ[λ,b0]

= S(t, s + ε)S(s + ε, s)θ[λ,b0]

≤ S(t, s + ε)θ[λ,b0],
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since θ[λ,b0] is a super-solution. It follows that u(t, t−s; θ[λ,b0]) is pointwise non-
increasing in s. Since it is bounded below by θ[λ,B0] this sequence converges
pointwise (in x) to a limit u∗(x, t). Now we also have

S(t, s)θ[λ,b0] = S(t, t− 1)[S(t− 1, s)θ[λ,b0]],

and we know that

θ[λ,B0] ≤ S(t− 1, s)θ[λ,b0] ≤ θ[λ,b0],

Therefore
S(t, s)θ[λ,b0] ∈ S(t, t− 1)I,

where I is the bounded set

{u ∈ X : θ[λ,B0] ≤ u ≤ θ[λ,b0]}.

Since S(t, t− 1) is a compact operator from X into itself (see Theorem 2.1), for
each fixed t we know that S(t, s)θ[λ,b0] lies in a compact subset of X.

It follows that S(t, s)θ[λ,b0] converges uniformly (in x) to u∗(x, t). Suppose
not; then there exists an ε > 0 and a sequence sn → −∞ such that

‖S(t, sn)θ[λ,b0] − u∗(x, t)‖∞ > ε. (10)

But by compactness of S(t, t − 1)I there must be a subsequence snj that con-
verges uniformly to some v∗(x). Since S(t, snj )θ[λ,b0] → u∗(x, t) pointwise, we
must have v∗(x) = u∗(x, t), contradicting (10).

This trajectory u(t) is a complete trajectory, since S(t, s) is continuous from
X into itself:

S(t, τ)u(τ) = S(t, τ) lim
s→−∞

S(τ, s)θ[λ,b0]

= lim
s→−∞

S(t, τ)S(τ, s)θ[λ,b0]

= lim
s→−∞

S(t, s)θ[λ,b0]

= u(t),

and it is clear that u(t) satisfies

θ[λ,B0] ≤ u(t) ≤ θ[λ,b0] for all t ∈ R.

In order to prove both the uniqueness of this bounded trajectory and its
forwards attraction property we consider two solutions of (1), u(t, s;us) and
v(t, s; vs) with us, vs ∈ V+ and us, vs 6= 0, and show that

‖u(t, s; us)− u(t, s; vs)‖∞ → 0, as t → +∞ or s → −∞. (11)
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Since (1) is order-preserving it follows that

p(t, s; ps) ≤ u(t, s;us), v(t, s; vs) ≤ q(t, s; qs),

where
ps := min{us, vs} and qs := max{us, vs}

(p(·) and q(·) are also solutions of (1)). Without loss of generality we will assume
that us > vs and hence that

w := u− v > 0 for all t ≥ s.

The function w satisfies the equation




wt −∆w = λw − b(t)(u + v)w in Ω× (s,∞),
w = 0 on ∂Ω,
w(s) = us − vs > 0 in Ω.

(12)

Now note that for any ε, it follows from (6) and the forward behaviour of
the autonomous logistic equation, that there exists Tε such that for t− s ≥ Tε

we have
θ[λ,B0] − ε ≤ u(t, s; us), v(t, s; vs) ≤ θ[λ,b0] + ε, (13)

and therefore for such t and s

wt −∆w ≤ w(λ− 2b0(θ[λ,B0] − ε)).

We now show that
λ1(2b0θ[λ,B0]) > λ, (14)

for which it suffices to show that

λ1(2b0θ[λ,B0] − λ) > 0. (15)

But it is not hard to prove that θ[λ,B0] > 0 is a supersolution of

−∆u + (2b0θ[λ,B0] − λ)u = 0

as required by (5). Indeed,

−∆θ[λ,B0] + (2b0θ[λ,B0] − λ)θ[λ,B0] = (2b0 −B0)θ2
[λ,B0]

> 0

since 2b0 > B0.
Choosing ε sufficiently small that

λ1(2b0θ[λ,B0]) > λ + 2εb0 (16)

and using the corresponding value of Tε in (13), the convergence property (11)
follows.
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To show that u(t) is the unique trajectory bounded as in (8) take u, v two
trajectories verifying (8). We can assume that u(t) > v(t) for all t ∈ IR. Using
that (1) is order-preserving and (8) we get

v(t, s; θ[λ,B0]) ≤ v(t, s; v(s)) = v(t) < u(t) = u(t, s; u(s)) ≤ u(t, s; θ[λ,b0]).

Now, it suffices to fix t and let s tend to −∞.
That this trajectory attracts all other positive trajectories as t → +∞ is an

immediate consequence of (11).

4 More general models

As we mentioned above, equation (1) is a prototype to which these results can
be applied. In this section we want to mention some others examples for which
our theory works.

Firstly, the Laplacian operator can be replaced by a general second order
uniformly elliptic (not necessarily self-adjoint) operator, i.e

L(u) = −
\∑

〉,|=∞
a〉|(§)∂〉∂|u+

\∑

〉
b〉(§)∂〉u+ c(§)u,

with aij = aji and all coefficients sufficiently regular. In this case the system




ut + L(u) = λu − b(t)u∈ in Ω× (s,∞),
u = 0 on ∂Ω,
u(s) = u0 in Ω,

(17)

has, once again, a unique uniformly bounded complete trajectory which bifur-
cates from zero when λ passes the first eigenvalue associated to L.

On the other hand, our results also hold for the reaction term λu − b(t)up

with p > 1 where we must now assume that

p b0 > B0. (18)

Indeed, in this case instead of (12), we can write

wt −∆w = λw − b(t)(up − vp),

so that, by the mean value theorem, up − vp = pξp−1w, v ≤ ξ ≤ u, and then

wt −∆w ≤ (λ− pb0(θ
p−1
[λ,B0]

− ε))w,

Now, by (18), we have that λ1(pb0θ
p−1
[λ,B0]

) > λ.
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Now, assume that we have a heterogeneous environment and so the function
b depends on x and t. Specifically, b ∈ C(Ω × IR) such that there exist two
non-negative and non-trivial continuous functions a0 and A0 such that

0 ≤ a0(x) ≤ b(x, t) ≤ A0(x) for all t ∈ IR. (19)

In this case, when λ < λ1 we can prove the existence of a unique positive solution
ub(t, s; u0) which goes to zero as t → +∞. Moreover, if

min
x∈Ω

{a0(x)} := a0 > 0

then we obtain the same type of attracting bifurcating trajectory under the
condition

2a0 > A0,

where A0 := max
x∈Ω

{A0(x)}; or under the local condition

2a0(x) > A0(x) for all x ∈ Ω. (20)

Now, assume that the set

Ω0 := int{x ∈ Ω : a0(x) = 0},
is non-empty and regular, and Ω0 ⊂ Ω0 ⊂ Ω. It is well-known (see Du &
Huang (1999), Fraile et al. (1996), López-Gómez (2000) and references therein)
that in the autonomous case, i.e., b(x, t) = a0(x) there exists a unique positive
solution U(t, s; u0) of (17) for all λ ∈ IR. Moreover, there exists a value of λ0

(the principal eigenvalue of the Laplacian in Ω0 with homogeneous Dirichlet
boundary conditions) such that:

i) If λ < λ1 then ‖U(t, s; u0)‖∞ → 0 as t → +∞.

ii) If λ ∈ (λ1, λ0) then ‖U(t, s;u0)‖∞ → ω[λ,a0] as t → +∞, where ω[λ,a0] is
the unique positive solution of (3) with A replaced by a0(x).

iii) If λ > λ0 then ‖U(t, s; u0)‖∞ →∞ as t → +∞.

When b satisfies (19) and a0 vanishes in Ω0, we obtain the existence of a unique
bounded trajectory for λ ∈ (λ1, λ0) under condition (20), which implies evi-
dently that A0 also vanishes in Ω0.

In all the above inhomogeneous cases, we can obtain a local bifurcation result
under a more natural condition.

Theorem 4.1 Assume that b satisfies (19) and

2
∫

Ω

a0(x)ϕ3
1(x) dx >

∫

Ω

A0(x)ϕ3
1(x) dx, (21)

where ϕ1 is the positive eigenfunction associated to λ1 normalised such that
‖ϕ1‖2 = 1. Then, there exists δ > 0 such that for λ ∈ (λ1, λ1 + δ) there exists
a unique trajectory as Theorem 3.1.
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Observe that we can follow the proof of Theorem 3.1 provided that

λ1(2a0(x)ω[λ,A0]) > λ. (22)

Now, by Lemma 4.3 in Delgado et al. (2000) we have that

λ1(2a0(x)ω[λ,A0]) = λ1 + 2

∫

Ω

a0(x)ϕ3
1(x) dx

∫

Ω

A0(x)ϕ3
1(x) dx

(λ− λ1) + o(λ− λ1)2, λ ≈ λ1.

It is clear that (22) holds for λ ∈ (λ1, λ1 + δ) and some δ > 0 provided that (21)
is satisfied. The proof is complete.

5 Conclusions

We have extended the bifurcation theory for certain model logistic PDEs to
treat some non-autonomous examples. It is at first sight surprising that the
key to obtaining a trajectory which attracts all others as t → +∞ (‘forwards in
time’) is the pullback construction.

However, pullback attraction is fundamental in the theory of attractors for
non-autonomous equations (Cheban et al., 2002; Chepyzhov & Vishik, 2002)
and for random dynamical systems (e.g. Crauel et al., 1997). It also plays a
major rôle in the general bifurcation theory for non-autonomous scalar ODEs
developed in Langa et al. (2002). As such it should be less surprising that it
is a useful tool even when attention is finally restricted to notions of ‘forwards
attraction’.

For the particular model treated here, there remains the question of whether
the condition that 2b0 > B0 is required in general, or if it is simply a technical
requirement of our method of proof. We hope to see this resolved in the future.
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J.A. Langa, J.C. Robinson, A. Suárez. Stability, instability, and bifurca-
tion phenomena in non-autonomous differential equations. Nonlinearity 15
(2002) 887–903.
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