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Abstract 

 

A comparison between polynomial and wavelet expansions for the identification of coupled map 

lattice (CML) models for deterministic spatio-temporal dynamical systems is presented in this 

paper. The pattern dynamics generated by smooth and non-smooth nonlinear maps in a well-known 

2-dimensional CML structure are analysed. By using an orthogonal feedforward regression 

algorithm (OFR), polynomial and wavelet models are identified for the CML�s in chaotic regimes. 

The quantitative dynamical invariants such as the largest Lyapunov exponents and correlation 

dimensions are estimated and used to evaluate the performance of the identified models. 

 

1 Introduction 

 

Complex spatio-temporal patterns have been widely observed and explored in recent years in many 

diverse fields including physical, chemical, biological, and ecological systems (Kaneko 1993, Sole, 

Valls and Bascompte 1992, Yanagita and Kaneko 1997, Tabuchi, Yakawa and Mallick et al. 2002, 

Kohler, Reinhard and Huth 2002, Bertram, Beta, Rotermund, and Ertl 2003, Goldman, et al. 2003, 

Adamatzky 2003). A large number of current studies of pattern formation phenomena involve 

observing what patterns are formed or changed under a variety of initial and boundary conditions. 

But an interesting and important question needs to be addressed: if an observed pattern formation 

follows some dynamical laws, then how can this dynamical behaviour be revealed effectively? In 

some instances, the dynamical origin of spatio-temporal pattern formation can be represented as a 

partial differential equation (PDE) or a coupled map lattices (CML). But in many other cases, such 

as for example in ecological systems, only a series of snapshots of the spatial pattern are available. 

At the same time, the study of the formation and evolution of spatio-temporal patterns normally 

requires a model with a specified accuracy. In both cases, however, obtaining or deriving such a 

dynamical model or PDE describing the pattern formation is by no means straightforward because 

either the interactions involved are too complex or there maybe no established laws on which to 

base the choice of the model. In this case, it would be advantageous if a model could be identified 

from the observed patterns. The identified model could then be used for the analysis of pattern 

formation or in control. 

 

Various methods for the identification of local CML models from spatio-temporal observations 

have already been proposed (Coca and Billings 2001, Mandelj, Grabec and Govekar 2001, Marcos-

Nikolaus, Martin-Gonzalez and Sole 2002, Grabec and Mandeji 1997, Parlitz and Merkwirth 2000, 

Billings, Wei, Mei, and Guo 2003, Billings, Guo, and Wei 2003), among which polynomial and 

wavelet methods have received more and more attention recently. In practice however, some of 

these approaches may fail to produce models that accurately describe the underlying spatio-

temporal patterns either due to an inability to adapt the model structure to that of the unknown 
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system, or because the functions used to implement the model structure are not suitable for 

modelling the underlying dynamics. This is especially critical when an equivalent description of 

real-world systems is sought. In such cases the estimated model should provide very accurate 

information regarding the dynamical properties of the observed system. To evaluate the 

performance of different identification strategies and bring out the advantages and disadvantages of 

these, a comparison between polynomial and wavelet methods is conducted in this paper.  

 

As a classical approach to the identification problem, polynomial expansions have been extensively 

studied and many good results have been obtained. Because of the arbitrary approximation 

properties to any sufficiently smooth function, polynomial methods have found wide applications 

in the field of smooth nonlinear approximation. On the other hand, recent theoretical studies have 

shown that the wavelet representation of any nonlinear function can be shown to be asymptotically 

near optimal in the sense that the convergence rates are equal to the best attainable using general 

nonlinear approximation schemes (DeVore, Jawerth, and Popov 1992). In addition wavelet 

approximations also provide similar rates of approximation for functions belonging to a wide 

variety of function spaces including functions with sparse singularities or functions that are not 

uniformly smooth or regular. All these properties suggest that wavelet multiresolution expansions 

should provide an excellent foundation for the development of identification algorithms for 

nonlinear CML models. 

 

The paper is organised as follows. In section 2 a general input-output representation of CML 

models of spatio-temporal systems using polynomials and wavelets is derived. The identification 

algorithm is presented in section 3. In section 4 numerical simulation results and a detail 

comparison between the two methods is presented. Finally conclusions are drawn in section 5. 

 

2  Parametric input-output representation of CML�s using polynomials and wavelets 

 

As a benchmark system, consider the following two-dimensional deterministic CML with 

symmetrical nearest neighbour coupling 

 

))]1(())1(())1(())1(([
4
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where  is the state of the CML located at site (i, j) at discrete time instant t, ε 
is the coupling strength, N is the size of the lattice. The evolution of the CML on the lattice sites is 

governed by the local map f, which is generally a nonlinear function. The identification results 

using different local maps f will be generated and compared in later sections. Periodic boundary 

conditions are used throughout this study. Let y

Njitx ji L,2,1,),(, =

i,j is the observation variable of the CML at site (i, 

j). Then following the evolution of the CML (1), it is normally expected that the input-output 

behaviour of the CML (1) at the site (i, j) takes the following form 
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where yi,j-1, yi,j+1, yi-1,j, yi+1,j are the observation variables from the neighbouring sites, and n1, n2, n3, 

n4, and n5 are the time lags for each observation variable. 
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Given observations ),(),1(),(),1(),(),1( 31,1,21,1,1,, ntytyntytyntyty jijijijijiji −−−−−− ++−− LLL

)(),1(), 5,1,14 ntytyn jiji

 

(),1( ,1,1 tyty jiji −−− ++ L− −− L , the objective of CML identification is to 

approximate the input-output relationship function g from these observations. A practical solution 

is to approximate the unknown nonlinear function from the available observations using a known 

set of basis functions or regressors belonging to a given function class. Typical regressor classes 

include polynomials, spline functions, rational functions, radial basis functions, neural networks, 

and wavelets. In this paper, the algorithm and results for CML identification using polynomials and 

wavelets are presented and compared. 

 

2.1  Approximation by polynomials 

 

Let ),,( 1 nαα L=Į

x
α L1

1

 be a multi-index, that is an n-tuple of nonnegative integers αk, and denote by x
α
 

the monomial , which has degree | . Let s be a positive integer, and let Λ={α | 

|α| ≤ s} a set of multi-indices, then the set of polynomials of total order s is Σ

n

nx
α ∑

=
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k
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| αĮ
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s = span{x

α
 | |α| ≤ s }. 

Note that Σs is a L-dimensional space, where !/)1()1(!2/)1( snnsnnnn +−++++++= LL . 

For instance, there are 210 basis polynomial functions in the case that n = 6, s = 4. Approximating 

nonlinear function g in (2) using the polynomial approximation space Σs yields the following 

representation 
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where n = n1+n2+n3+n4+n5, all θ represent parameters and all x(t) represent lagged terms in yi,j, yi,j-1, 

yi,j+1, yi-1,j, yi+1,j, and e(t)  denotes the error of this approximate representation. 

 

The approximation power of the class Σs can be described with the moduli of smoothness 

(Schumaker 1981). If an any given multivariate function g ∈ Lp(Ω), Ω is a convex set of R
n
 , Λ is a 

complete set of multi-indices with boundary ∂Λ, and 1 ≤ q ≤ p ≤ ∞, it is well known that for any 0 

< ε < 1, there exists a constant C such that 
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provided p, q satisfy 
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where 
)(

inf),(
ΩΣ∈

−=Σ
q

s
Lh

qs hggd  is the distance of g to Σs,  ),,( 1 nδδ L=į with δi =sup{| yi-xi | | x, 

y ∈ Ω}, and pg );( įΛ∂ω  is the ∂Λ-modulus of smoothness in the p-norm of function g∈Lp(Ω). 

 

2.2 Wavelet approximation 

 

The wavelet decomposition of a multivariate function g defined on R
n
 can be described as follows. 

Let Φ be a bounded function defined on R
n
. For all p ∈ Z and k ∈ Z

n
, a series of functions defined 

on R
n
 can be derived in terms of the translates and dyadic dilates of Φ: Φp,k(x) = Φ(2

p
 x - k). Then 
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if these functions Φp,k, p ∈ Z and k ∈ Z
n
 form a Riesz basis, function g has a unique decomposition 

in terms of functions Φp,k 
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Such a Riesz basis in space L
2
(R

n
) can be constructed from the univariate scaling function ϕ and 

the associated wavelet function ψ in terms of the tensor product. The univariate scaling function 

considered in this paper is the m-th order cardinal B-spline function ϕ(x) = ϕm
(x) = B

m
(x) given by 

the recursive relation 
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where B
1
(x) is the indicator function 
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The wavelet function is defined as a linear combination of scaling functions 
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with the coefficients given by 
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If the nonlinear function g in eqn. (2) is in L
2
(R

n
). Then the B-spline wavelet representation of the 

input-output CML equation (2) can be described as follows 
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where all θ represent parameters and x whose components represent lagged 

terms in y

T
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l

pΨi,j, yi,j-1, yi,j+1, yi-1,j, yi+1,j as shown in (2), and  are the 2
n
-1 n-dimensional wavelet 

functions produced by the tensor product of the univariate B-spline scaling and wavelet functions 

ϕ, ψ. According to the multiresolution analysis, eqn. (11) can equivalently be expressed as 
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where p0 is the starting resolution level.  
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The wavelet multiresolution approximation (12) is generally an infinite series expansion. In 

practice, however, it is not realistic to use all the terms in this infinite series expansion. Generally 

the objective of the identification algorithm is to obtain a truncated finite representation containing 

the terms up to some orders of scaling and dilation. Therefore the identified CML model will be an 

approximate representation of the underlying system, which can be equivalently described as an 

infinite wavelet series. Let s be a positive integer, the s-truncated space Σ  with a starting 

resolution p
0, ps

0 is the set of all functions 
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Note that the series in space Σ  are those up to dyadic level s, which may possibly be infinite 

because there is no limitation on the translation operation. In practice, the range of measured data is 

always finite so that there are only finite numbers of translation operations which produce non-

empty intersections within the range of the data. Therefore, the identified wavelet series are always 

finite. Furthermore, in many applications, a 3-truncated space is often enough to obtain a good 

approximation result because wavelets with higher dyadic levels are most likely to have compact 

support which contains no data points. Using the approximation space 

0, ps

0, psΣ  as a regressor class, a 

truncated approximation representation of (12) takes the form 
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where e(t) is the truncation error. 

 

Note that the Fourier transform of the univariate B-spline scaling function ϕ(x) = ϕm
(x) = B

m
(x) is 
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by the Strang-Fix condition and Poisson�s summation formula the polynomials 1, x, �, x
m-1

 are 

linear combinations of the univariate translates ϕ(x-k). It follows that the space 
0, psΣ  of 

multivariate wavelets contains the space Σmn of polynomials of total degree < mn, and this implies 

that 
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More detailed discussions about wavelets and wavelet approximation can be found in (Chui 1992, 

Sweldens and Piessens 1994, and DeVore, Jawerth, and Popov 1992). 

 

 

2.3 An alternative wavelet representation of the input-output relationship of CML�s 

 

For simplicity, let the nonlinear function to be identified be defined on the cube [0, 1]
n
, and 

consider the number of wavelet terms in the basis in the space 
0, psΣ . Let ϕ(x) and ψ(x) be the 
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univariate scaling and wavelet functions of B-spline functions of order m. Then the support of ϕ(x) 

and its dilates and translates ϕp,k(x) = 2
p/2ϕ(2

p
 x-k) are [0, m] and [2

-p
 k, 2

-p
 (m+k)], and the support 

of ψ(x) and its dilates and translates ψp,k(x) = 2
p/2ψ(2

p
 x-k) are [0, 2m-1] and [2

-p
 k, 2

-p
 (2m-1+k)]. 

Assume that the domain of nonlinear functions to be identified in one component is [0, 1] it is then 

sufficient that the translate parameter k for univariate scaling and wavelet functions falls into the 

intervals 
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It follows that the total number of terms in the basis of the space 
0, psΣ  for n-dimensional functions 

defined on the cube [0, 1]
n
 is . For instance, if n = 6, m = 4, p)1(32, 1

0

−+= +
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s
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0, j
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1 which means the dimension of the approximated function is 6 with B-spline scaling and wavelet 

functions of order 4, starting scaling level 0 and the truncation 3, then the total number of the terms 

in the basis of the space  is 6,598,370, which is clearly a time-consuming number for any 

identification algorithm. To overcome this difficulty, in this paper the identified nonlinear function 

g is first decomposed into a number of functional components as follows 

sΣ
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where f0 is a constant. A truncated representation of (18) containing the functional components up 

to tri-variate terms is often sufficient to express a nonlinear function itself. Applying the above 

wavelet decomposition to each of the functional components significantly reduces the terms using 

for identification. Assume that a multivariate function is defined on the cube [0, 1]
n
 again. Consider 

the l-variate functional components, the total number of significant terms (the intersection of its 

support and [0, 1]
n
 is non-empty) can be calculated according to the following formula 
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Now consider the same example above with maximal functional components of the tri-variate. If p0 

= 0, and s = 2, s = 1 and s = 0 for uni, bi and tri-variate components, this yields a total of 31,145 

terms and one constant term, 174 univariate terms, 4,350 bi-variate terms and 26,620 tri-varaite 

terms. This is a significant reduction compared to 6,598,370. 

 

3  The parameter estimation algorithm 

 

Given a set (candidate terms) of basis functions from a regressor class, either polynomials or 

wavelets, the objective of an identification algorithm is to select the significant terms from this set 

while estimating the corresponding parameters. In this paper, an Orthogonal Forward Regression 

algorithm (OFR) (Chen, Billings, and Luo 1989) is applied to a set of either polynomial or wavelet 

basis functions. The OFR algorithm involves a stepwise orthogonalisation of the regressors and a 

forward selection of the relevant terms based on the Error Reduction Ratio criterion (Billings, 

Chen, and Kronenberg 1988). The algorithm provides the optimal least-squares estimate of the 

parameters θ. 
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For a given candidate regressor set , the OFR algorithm can be outlined as follows M
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• Step j, j > 1 
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The procedure is terminated at the Ms step when the termination criterion 
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 is met, where ρ is a designated error tolerance, or when a given number of terms in the finial 

model is reached. 

 

The estimated parameters are calculated from the following equation 

 







































=



















 −

0

0

2

0

1

1

,2

,12,1

1000

10

1

2

1

s

s

s

sM M

M

M

l

l

l

c

c

c

MMOLM

M

L

M

α
αα

θ

θ
θ

                                          (30) 

 

and the selected terms are 
sMlll φφφ ,,,

21
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4  Numerical results 

 

4.1 Case 1: f is a smooth nonlinear map 

 

First, consider the two-dimensional CML defined by (1) with the nonlinear function f chosen to be 

the logistic map 

 
21)( axxf −=                                                                    (31) 

 

This model has been extensively studied. It has been observed that for small ε (< 0.3) the system 

evolves from a frozen random state to pattern selection and to fully developed spatio-temporal 

chaos via spatio-temporal intermittency. For stronger coupling ε > 0.3 neither a frozen random 

pattern nor a pattern selection regime is formed which implies there are no pattern changes in this 

case (Kaneko 1989). 

 

In order to analyse and compare the capabilities of identification methods using polynomials and 

wavelets, the model (1) with (31) was simulated for a lattice of the size 50×50 with random initial 

conditions, periodic boundary conditions, and parameters ε = 0.4, a = 1.55. The observation 

variable was set to be . All data were normalised to the interval [0, 1]. Some 

snapshot patterns are shown in Fig. 1. With these parameters, the system is actually in a chaotic 

regime with Lyapunov exponents λ

)()( ,, txty jiji =

1 = 0.0648, λ2 = 0.0622, λ3 = 0.0158, λ4 = -0.0014, λ5 = -

0.0106, λ6 = -0.0275, λ7 = -0.0478, λ8 = -0.0811, λ9 = -0.1360. The Lyapunov exponents were 

calculated through the product of Jacobians of time steps 1 to 100 for a sub-lattice of the size 3×3 

(the site (25, 25) as the centre point), where the boundary effect is neglected. It follows that the KS 

entropy is 0.1428, which is just the sum of all positive Lyapunov exponents. In order to be able to 

calculate the largest positive Lyapunov exponent from the data, a numerical algorithm proposed by 

Rosenstein, Collins, and De Luca (1993) was employed. For the data from site (25, 25), the slope of 

the curve obtained by the algorithm was found to converge towards a common value for the choice 

of embedding dimensions m and provided a value of λ1 ≅ 0.0644 for the largest Lyapunov exponent 

which is very close to the value of 0.0648 obtained by the product of Jacobians. The correlation 

dimension was also estimated by Rosenstein�s method to be around 0.495. These results are 

illustrated in Fig. 5. 

 

In the identification, the same set of 100 observation pairs randomly selected among the data set 

were used for both the polynomial and wavelet methods. The neighbourhood was set to be the 

nearest four sites, that is, (i, j-1), (i, j+1), (i-1, j), and (i+1, j) and the time lag was set to be 1. For 

the polynomial identification, the maximal order of polynomial terms was set to be 3. This implies 

that for the polynomial identification, the set of the candidate regressors is Σ3 = span{x
α
 | |α| ≤ 3 } 

and the total number of candidate terms is 56. For the wavelet method, the time lag was set to be 1 

and the initial wavelet model structure was chosen as 
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where  represent y51 ,, xx L i,j(t-1), yi,j-1(t-1), yi,j+1(t-1), yi-1,j(t-1), yi+1,j(t-1) and f0 is a constant term. 

The starting resolution scale was set to be 0 for all three submodels and the maximal scales were set 

to be 2, 1, and 0 for uni, bi, and tri-variates, respectively. The univariate B-spline function of order 
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3 was used to generate all the higher-dimensional terms by tensor products. It follows that the total 

number of terms in the set of candidate model terms is 6871. For both methods, the maximal 

number of selected terms in the OFR selection algorithm was set to be 10 and the tolerance ρ was 

chosen as 10
-3

 that means if 1 , the algorithm will terminate. 3

1
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After applying the OFR algorithm, a 7-term polynomial model and a 10-term wavelet model were 

identified. These are listed in Tables 1 and 2, respectively, where ERR denotes the Error Reduction 

Ratio and STD denotes the standard deviations. The model predictive outputs from the two 

identified models are shown in Fig. 2 and Fig. 3. The model predictive errors at time instant 100 for 

the two models are shown in Fig. 4. By using Rosenstein�s method to the data from site (25, 25), a 

positve value of λ1 = 0.0635 and an estimated correlation dimension 0.494 for the polynomial 

model were found while λ1 = 0.0599 and Cm(r) = 0.465 for the wavelet model. These quantities are 

listed in Table 3. To test the compression abilities of the two methods, the terms in the final 

models, whose coefficients (absolute values) are less than 0.01, were removed from the final 

models. The resulting largest Lyapunov exponents and correlation dimensions for the reduced 

models are also included in Table 3. 

 

The identification results clearly show that both methods can provide satisfactory prediction 

performance for this specific smooth nonlinear CML. Both estimated largest Lyapunov exponents 

and correlation dimensions are quite close to the values calculated using the correct model. In this 

example, the polynomial model is slightly better than the wavelet model. Moreover, the absolute 

errors which are shown in Fig. 4 indicate that the polynomial model is more accurate than the 

wavelet model. However for the reduced models, these invariant quantities indicate the wavelet 

model is more robust than the polynomial model.  

 

4.2 Case 2: f is a nonsmooth map 

 

Now, consider the two-dimensional CML defined by (1) with the nonlinear function f chosen to be 

the following piecewise linear map (Miller and Huse 1993) 

 

≤≤+
≤≤−
−≤≤−−

13/1,2

3/13/1

3/11

,

,2

x

x

x

x                                              (33) 

 

According to Miller and Huse (1993), the CML dynamics are chaotic and ergodic for ε = 0. Miller 

and Huse found that the CML has a ferromagnetically ordered steady state for 96.08216.0 ≤≤ ε . 

Moreover, this CML is chaotic for couplings in both the paramagnetic and ferromagnetic regimes. 

For the purpose of identification, the model (1) with (33) was simulated for a lattice of the size 

32×32 with random initial conditions within [-1 1], periodic boundary conditions, and parameters ε 
= 0.8920. The observation variable was set to be )()( ,, txty jiji = . All data were normalised to the 

interval [0, 1]. Some snapshot patterns are shown in Fig. 6. The largest Lyapunov exponent λ1 = 

0.0819 and an estimated correlation dimension 1.0 were obtained by using Rosenstein�s method to 

the data from site (15, 15). Fig. 10 shows the estimated largest Lyapunov exponents and correlation 

dimensions with embedding dimensions 1 to 9. 

 

Given the same settings as in case 1, after applying the OFR algorithm, a 10-term polynomial 

model and 10-term wavelet model were identified. These are listed in Tables 4 and 5, respectively. 
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The model predictive outputs from the two identified models are shown in Fig. 7 and Fig. 8. The 

model predictive errors at time instant 100 for the two models are shown in Fig. 9. By using 

Rosenstein�s method to the data from site (15, 15), a positive value of λ1 = 0.0901 and Cm(r) = 1.0 

for the wavelet model were obtained. These quantities are listed in Table 6. Note that the final 

polynomial model cannot provide a prediction correctly so these two quantities cannot be 

calculated properly. In Fig. 7, the dark area indicates where no finite values can be calculated. The 

identification results show that in this example the polynomial method cannot provide a reasonable 

model for this non-smooth nonlinear CML while wavelet method does provide a satisfactory 

prediction performance. Note that both estimated largest Lyapunov exponents and correlation 

dimensions for this final wavelet model are quite close to that calculated by using the simulated 

data. This indicates that the wavelet method is more applicable than the polynomial method in this 

case. 

 

5  Conclusions 

 

A comparison between polynomial and wavelet identification methods for chaotic CML�s has been 

conducted. The largest Lyapunov exponents and correlation dimensions have been estimated to 

validate the obtained models. The results show that for CML�s with a smooth nonlinear map, both 

methods can provide satisfactory performance but the polynomial method is preferred because of 

the smaller number of candidate terms (56 v.s 6981 in the wavelet method using our settings) and 

good predictive ability. However, for CML�s with a non-smooth nonlinear map, the wavelet 

method can still provide a good predictive performance but the polynomial method does not. This 

advantage of the wavelet method means that this approach is much more applicable in the case 

where the underlying dynamics are totally unknown. 
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Terms Estimates ERR STD 

constant 7.4046e-01 8.1197e-01 2.9845e-01 
3

, )1( −ty ji  5.0098e-01 1.8189e-01 5.3908e-02 

)1(, −ty ji  1.4612e+00 2.3249e-03 4.2481e-02 

)1()1()1( ,11,1, −−− −+− tytyty jijiji  -2.1694e-01 1.3244e-03 3.4310e-02 

2

, )1( −ty ji  -2.3338e+00 7.6475e-04 2.8547e-02 

3

,1 )1( −+ ty ji  -9.8188e-02 7.0280e-04 2.1954e-02 

3

1, )1( −+ ty ji  -3.1194e-02 9.9214e-05 2.0856e-02 

 

Table 1 Case1: The terms and parameters for the estimated polynomial model 

 

Terms Estimates ERR STD 

constant 9.5801e-01 8.1197e-01 2.9845e-01 

))1(( ,0,0 −ty jiϕ  -7.9769e-01 1.7574e-01 7.6291e-02 

))1(( ,0,0 −ty jiψ  1.3328e+00 6.7804e-03 5.1070e-02 

))1(( ,1,1 −ty jiϕ  1.0371e-01 1.7499e-03 4.2180e-02 

))1(())1(())1(( ,10,01,0,01,0,0 −−− −+− tytyty jijiji ϕϕϕ -3.0985e-02 1.1610e-03 3.5059e-02 

))1(( ,10,1 −+ ty jiϕ  -1.8126e-01 6.0660e-04 3.0688e-02 

))1(( ,3,2 −ty jiψ  -2.5606e+00 5.8245e-04 2.5804e-02 

))1(())1(( ,11,11,0,1 −− −+ tyty jiji ψψ  -8.6797e-02 1.7778e-04 2.4117e-02 

))1(( 1,0,0 −− ty jiϕ  -1.8009e-01 1.4308e-04 2.2668e-02 

))1(())1(( ,10,01,0,0 −− −+ tyty jiji ϕϕ  -5.6931e-01 5.0346e-04 1.6593e-02 

 

Table 2 Case1: The terms and parameters for the estimated wavelet model 

 

Model Total number 

of initial terms 

Number of 

selected terms 

Lyapunove Exponent 

   Jacobian Rosenstein 

Correlation 

Dimension 

CML model (1) × × 0.0648 0.0644 0.495 

Polynomials  56 7 × 0.0635 0.494 

Wavelets 6871 10 × 0.0599 0.465 

Reduced 

polynomials 
× 5 × 0.0143 0.495 

Reduced 

wavelets 
× 8 × 0.0329 0.495 

 

Table 3 Case1: A quantitative comparison of the polynomial and wavelet models 
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Terms Estimates ERR STD 

)1(,1 −− ty ji  4.1211e-01 9.8575e-01 5.6166e-02 

)1(1, −+ ty ji  -8.6125e-02 5.5832e-03 4.3913e-02 

constant 4.6978e-01 1.0987e-03 4.1075e-02 

)1()1( ,1

2

1, −− ++ tyty jiji  1.6728e+00 7.4366e-04 3.9006e-02 

)1()1( ,1

2

, −− − tyty jiji  2.3264e+00 2.1194e-04 3.8396e-02 

)1()1( ,1

2

,1 −− +− tyty jiji  -3.1008e-01 8.5450e-05 3.8147e-02 

2

,11, )1()1( −− +− tyty jiji  2.2322e+00 1.2704e-04 3.7774e-02 

)1()1()1( ,11,, −−− +− tytyty jijiji  -1.5469e+00 2.1955e-04 3.7121e-02 

)1(,1 −+ ty ji  -7.5232e-01 7.7395e-05 3.6888e-02 

)1()1()1( 1,1,, −−− +− tytyty jijiji  -2.6006e+00 1.8818e-04 3.6315e-02 

 

Table 4 Case2: The terms and parameters for the estimated polynomial model 

 

Terms Estimates ERR STD 

constant 5.4427e-01 9.8461e-01 5.8550e-02 

))1(( ,11,2 −−− ty jiψ  -1.2475e-01 8.5885e-03 3.8915e-02 

))1(( ,11,2 −+− ty jiψ  -9.9230e-02 3.0578e-03 2.8863e-02 

))1(( 1,0,2 −+ ty jiψ  -4.3860e-02 9.5855e-04 2.4890e-02 

)))1(( 1,0,2 −− ty jiψ  -3.5910e-02 5.6903e-04 2.2197e-02 

))1(())1(())1(( ,10,0,10,01,0,0 −−− +−+ tytyty jijiji ϕϕϕ -1.6474e+01 7.5748e-04 1.7998e-02 

))1(( ,10,0 −− ty jiψ  -9.7201e-01 2.1340e-04 1.6624e-02 

))1(( ,0,2 −ty jiψ  -1.7811e-02 1.4834e-04 1.5599e-02 

))1(())1(( 1,1,1,1,1 −− −−− tyty jiji ψψ  -3.8368e+02 1.6433e-04 1.4377e-02 

 

Table 5 Case2: The terms and parameters for the estimated wavelet model 

 

Model Total number 

of initial terms 

Number of 

selected terms 

Lyapunove Exponent 

   Jacobian Rosenstein 

Correlation 

Dimension 

CML model (1) × × × 0.0819 1.0 

Polynomials  56 10 × × × 

Wavelets 6871 10 × 0.0907 1.0 

 

Table 6 Case2: A quantitative comparison of the polynomial and wavelet models 
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Figure 1 Case 1: Some snapshots (at t = 1, 10, 50, and 100) from simulated data 

 

 

0.4

0.5

0.6

0.7

0.8

0.9

i

j

y
i ,j

(1)

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

i

j

y
i ,j

(10)

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

i

j

y
i ,j

(50)

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

i

j

y
i ,j

(100)

10 20 30 40 50

10

20

30

40

50

 
Figure 2 Case 1: Snapshots (at t = 1, 10, 50, and 100) from the estimated polynomial model 

predictive output 
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Figure 3 Case 1: Snapshots (at t = 1, 10, 50, and 100) from the estimated wavelet model predictive 

output 
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Figure 4 Case 1: Model predictive errors (at t = 100) for (a) polynomial and (b) wavelet models 
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Figure 5 Case1: Lyapunov exponents and correlation dimensions (a-b) CML model, (c-d) 

polynomial and (e-f) wavelet models for embedding dimensions 1 to 9 
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Figure 6 Case 2: Some snapshots (at t = 1, 10, 50, and 100) from simulated data 
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Figure 7 Case 2: Snapshots (at t = 1, 10, 50, and 100) from the estimated polynomial model 

predictive output 
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Figure 8 Case 2: Snapshots (at t = 1, 10, 50, and 100) from the estimated wavelet model predictive 

output 
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Figure 9 Case 2: Model predictive errors for (a) polynomial and (b) wavelets 

 

 19



0 10 20 30 40
-5

-4

-3

-2

-1

t

<
ln

(d
iv

e
rg

e
n

c
e

)>

(a)

-6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

ln(r)

C
m

(r
)

(b)

0 10 20 30 40
-5

-4

-3

-2

-1

t

<
ln

(d
iv

e
rg

e
n

c
e

)>

(c )

-6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

ln(r)

C
m

(r
)

(d)

 
Figure 10 Case 2: Lyapunov exponents and correlation dimensions (a-b) CML model, and (c-d) 

wavelets for embedding dimensions 1 to 9 
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