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Abstract

We study several algorithms to simulate bone mass loss in 2-dimensional and 3-dimensional computed
tomography bone images. The aim is to extrapolate and predict the bone loss, to provide test objects
for newly developed structural measures, and to understand the physical mechanisms behind the bone
alteration. Our bone model approach differs from those already reported in the literature by two features.
First, we work with original bone images, obtained by computed tomography (CT); second, we use struc-
tural measures of complexity to evaluate bone resorption and to compare it with the data provided by
CT. This gives us the possibility to test algorithms of bone resorption by comparing their results with ex-
perimentally found dependencies of structural measures of complexity, as well as to show efficiency of the
complexity measures in the analysis of bone models. For 2-dimensional images we suggest two algorithms,
a threshold algorithm and a virtual slicing algorithm. The threshold algorithm simulates bone resorption
on a boundary between bone and marrow, representing an activity of osteoclasts. The virtual slicing
algorithm uses a distribution of the bone material between several virtually created slices to achieve sta-
tistically correct results, when the bone-marrow transition is not clearly defined. These algorithms have
been tested for original CT 10 mm thick vertebral slices and for simulated 10 mm thick slices constructed
from ten 1 mm thick slices. For 3-dimensional data, we suggest a variation of the threshold algorithm and
apply it to bone images. The results of modeling have been compared with CT images using structural
measures of complexity in 2- and 3-dimensions. This comparison has confirmed credibility of a virtual
slicing modeling algorithm for 2-dimensional data and a threshold algorithm for 3-dimensional data.

Keywords: Modeling bone resorption, complexity, virtual slicing algorithm.
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1 Introduction

Due to the rapid development of computer techniques, numerical modeling of pathological processes in

medicine at the cellular level will soon become an important tool in the early phases of clinical studies. This

will allow us to simulate in silico the effect of cell’s activation much faster than in laboratory tests or clinical

measurements. Simulations of the bone architecture and its evolution can be essential for the following prob-

lems: i) prediction of the bone loss due to osteoporosis or microgravity conditions for space-flying personnel;

ii) providing test objects for newly developed structural measures; iii) understanding physical mechanisms

behind the bone alteration. For an adequate mathematical description of the bone dynamics, several dif-

ferent approaches have been used so far, e.g. modeling resorption with Basic Multicellular Units (BMUs)

[Langton et al., (1998, 2000)], which represent osteoclast and osteoblast cell populations, application of

artificial structures to simulate the bone [Langton et al., (1998)], modeling by replication of voxels schemes

[Sisias et al., (2002)], modeling with idealized trabecular structure [Jensen et al., (1990)], or stochastic

simulation of bone dynamics, based on histomorphometry data [Thomsen et al., (1994)]. Several algorithms

and procedures have been reported to evaluate the influence of mechanical loading on the architecture of

trabecular bone. These works have shown that changes of a bone structure depend on the distribution of

the mechanical load [Huiskes et al., (2000); Ruimerman et al., (2003)] and have suggested methods to

evaluate and simulate the mechanical strength of the given bone architecture [Gunaratne et al., (2002)].

Finally, an attempt has been carried out to describe the formation of the bone tissue on a microscopic level

using reaction-diffusion equations [Tabor et al., (2002)]. Despite numerous studies of bone models, there is

no commonly-accepted algorithm that adequately describes bone dynamics.

We suggest a new approach and develop several algorithms to simulate bone mass loss directly from 2-

dimensional (2D) computed tomography (CT) and 3-dimensional (3D) micro-computed tomography (µCT)

bone images. Noteworthy, there are two crucial distinctions of our modeling approach from previously

reported ones. First, the modeling algorithms developed here can work with original CT bone images in 2D

or 3D, i.e. we start with the analysis of original CT or µ-CT images, model the bone resorption and produce

simulated bone images. Second, we use recently developed structural measures of complexity (SMC) [Gowin

et al., (1998)] as an evaluation tool to quantify different aspects of the bone architecture and its evolution
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along the simulation of the bone mass loss. This approach demonstrates also the efficiency of these SMC

[Saparin et al., (1998); Gowin et al., (1998, 2001); Saparin et al., (2004)] to evaluate changes in a bone

architecture.

The paper is structured as follows. First, we describe 3 sets of experimental data, i.e. bone images,

used for numerical simulations of bone dynamics and for comparison with simulation results. Next, we

introduce three algorithms to model bone resorption: threshold algorithm (TA), virtual slicing algorithm

for 2D (VSA), and threshold algorithm for 3D (TA 3D). After that, we briefly review structural complexity

measures used for the quantification of the modeling results. Then we discuss the application of these

algorithms for different sets of data, compare simulations with CT acquisitions, and summarize the results.

2 Materials

For modeling bone resorption in bone images we have used the following bone images:

• Data set 1: 2D bone images of human vertebra. The central axial slices of 1 mm thickness were

acquired from non-fractured human lumbar vertebrae L3 specimens using a CT-scanner Somatom Plus

S (Siemens AG). Vertebral bodies were examined by high-resolution computed tomography (HRCT)

applying an image matrix of 512×512 pixels and an in-plane pixel resolution of 0.182×0.182 mm. For

each vertebra, 10 continuous central slices had been taken. The specimens were from females (mean

age 71 years) and from males (mean age 67 years). For every vertebra ten 1 mm thick slices had

been merged into one 10 mm thick slice, mimicking the application of clinical quantitative computed

tomography (QCT) with the same in-plane resolution. After this procedure we have the possibility

to model the bone resorption both for 10 mm slices as well as for every 1 mm slices with subsequent

averaging into a 10 mm slice (Fig. 1).

• Data set 2: 2D bone images of human vertebra. The L3 vertebrae from human specimens were scanned

on a CT scanner (Somatom Plus 4, Siemens AG). One 10 mm thick transaxial center slice of each

specimen was obtained. It had 0.192 × 0.192 mm in-plane image resolution and was represented by a

512 × 512 matrix. These 10 mm thick slices were obtained by QCT resulting in the assessment of the
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BMD. The bone mineral density (BMD) of the specimens ranged from 3.8 to 103.5 mg/cm3. Here and

for the data set 1 the original CT-image has been processed with a segmentation algorithm to segment

the surrounding soft issue from the vertebral bone (for details see [Saparin et al., (1998)]). After that,

an application of a separation algorithm has segmented the vertebral body into the cortical bone and

the trabecular bone. Only the trabecular bone has been used for modeling.

• Data Set 3: 3D bone images of human tibia biopsies. 24 biopsies were taken from the proximal tibia

specimens harvested from the same human cadavers at the medial side 17 mm distal of the tibia

plateau. This location is a surgical site for harvesting trabecular bone grafts. The biopsies were

obtained with a surgical diamond coring drill with the utmost care and the best possible precision.

Biopsies had a shape of a cylinder with a diameter of 7 mm, the length of the biopsies varied between

20 and 40 mm. The biopsies were scanned with a micro-CT scanner µCT 40 at Scanco Medical AG,

Switzerland, using a voxel size of 20 × 20 × 20 µm. The resulting gray-scale images were segmented

using a low-pass filter to remove noise, and a fixed threshold filter to extract the mineralised bone

phase.

3 Modeling Algorithms

To model bone resorption, we have developed several algorithms, based on the procedure, proposed by

Langton et al. [Langton et al., (1998)] for 2D artificial lattices of bone images. This algorithm simulates the

activity of the basic multicellular units (BMUs), which consist of a population of osteoclasts and osteoblasts.

The algorithm describes a random activation of BMU, its movement and resorption of bone material, and

termination of its activity after a random time. A BMU is activated on the surface of the trabecular

structure. Hence, to simulate its activation, one should exactly determine the border between bone material

and marrow. This is a difficult task for thick 2D CT images because computed tomography produce partial

volume effects resulting in pixel values averaged over a 3D volume determined by the slice thickness. We

suggest a solution to overcome this difficulty by means of a virtual slicing algorithm.

Threshold algorithm in 2D. One of the most straightforward algorithms that can be used for simulation

of the bone mass loss and consequent architectural changes in 2D bone images is a threshold algorithm
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(TA). We introduce TA as a sequence of the following steps. First, a threshold T is chosen experimentally

to separate a bone image, represented by the matrix A(i, j) of x-ray well defined attenuations, into bone

and marrow pixels. After this, the border between marrow and bone is well defined, and we simulate the

activation of BMUs on this border. The pixel (i, j) belongs to the border when its attenuation A(i, j) is

larger than T (a bone pixel) and one of its 4 neighbours belongs to the marrow, A(i, j) < T . One iteration

step includes the following procedures: i) For every pixel belonging to the bone-marrow border, we generate

a random number uniformly distributed in the range [0, 1]. ii) If this random number is larger than the

activation frequency of BMU Fa, then the BMU will be activated in the area, which includes this pixel and

its four neighbours. iii) During the activation the BMU resorbs some constant amount of the bone material,

called the resorption unit RU , and then its activity is terminated.

After one iteration step in the area of the BMU activity, the new attenuation of the pixel (i, j) will

be equal to A(i, j) − RU . After several iteration steps Ns the bone image is saved for visualization and

further analysis. The modeling terminates when all pixels have an attenuation smaller than T , or the

requested mean attenuation is achieved. This algorithm produces a set of bone images with decreasing

bone mineral density (BMD) and can be used for the comparison with experimentally obtained bone images

having different BMDs. The TA algorithm can be applied to both 10mm and 1mm slices. In the latter case

one can expect better results due to a more precisely defined border between bone and marrow.

Virtual slicing algorithm in 2D. The reason why sometimes TA does not model bone resorption similarly

to the observed data, is the absence of a sharp transition between bone and marrow in the 2D CT image.

This can lead to a very artificial inhomogeneous bone mass loss. To avoid this problem, we have developed a

virtual slicing algorithm (VSA), which models resorption for bone images without sharp transition between

bone and marrow.

The key idea of this algorithm is the following (see Fig. 2): To find a clear border between bone and

marrow, we reconstruct a 3D bone image by means of virtual slices. We represent the initial bone image by

N virtual slices and for every pixel of the bone image (e.g. Fig 2 left) we randomly distribute the intensity A

of this pixel in N virtual slices (e.g. Fig 2 middle). In L slices the pixel value is set to bone, in the remaining

N − L slices this pixel is set to an attenuation value representing marrow. The parameters N = 10 and
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L = 5 are fixed. Since the distribution of the material between virtual slices occurs in a random way, every

stochastic realization corresponds to a different material distribution. Three examples of this distribution

for one pixel, obtained for three different realizations, are presented in Fig 2 (right).

Now, the TA algorithm can be conveniently applied in every virtual slice due to a ten times smaller slice

thickness resulting in the clearly defined bone-marrow border. After modeling resorption in each virtual

slice, the results are again averaged over all virtual slices into an image with lower resolution. This final

image with decreased average attenuation represents the simulated bone loss provided by the VSA algorithm.

Noteworthy, due to their stochastic origin, virtual slices cannot be compared with original high resolution

CT-slices, i.e. this algorithm does not perform a real reconstruction of the 3D structure (as in [Pollefeys

et al., (1999)]) from one thick 2D slice. The distribution of the bone material between virtual slices is only

statistically correct but rules of architectural connectivity are not respected.

In detail, the algorithm is applied by means of the following subsequent procedures. The attenuation of

the initial pixel A(i, j) is randomly distributed among N virtual slices. For every pixel the average over all

virtual slices is equal to the pixel value in the initial bone image, while at the same time each virtual slice

has the defined border between bone and marrow. For every pixel A(i, j) of the initial bone image, we put

the intensity of the bone material B(i, j, k) in slice k, k = 1...L, of randomly chosen from L bone-receiving

slices. Each slice from N slices has the same probability to be chosen in L bone-receiving slices. In the

remaining (N − L) slices we set the value of appropriate pixel to the intensity of the marrow threshold M .

The distribution is performed with respect to the principles of computed tomography, to fulfill the condition

A(i, j) =
1

N
(

L∑

k=1

B(i, j, k) + (N − L)M). (1)

To achieve this condition, we calculate a minimum AMIN of the pixel attenuations A(i, j) inside the

trabecular bone. If AMIN is significantly smaller as predefined marrow threshold Tg (e.g. in bones images

with fat) and the aim is strictly to avoid resorption below Tg, the parameter AMIN may be set equal to Tg. For

every pixel A(i, j) of the initial bone image in k slice of L randomly chosen bone-receiving slices we put the

value B(i, j, k) = AMIN+(A(i, j)−AMIN +ξk)N/L, where ξk are mutually uncorrelated Gaussian distributed

random numbers with variance σ2. The remaining (N −L) intensities are set the value M = AMIN. Finally,
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the small difference between NA(i, j) and (
∑L

k=1
B(i, j, k)+(N −L)AMIN) is added to the first slice B(i, j, 1)

to fulfill condition (1) for every pixel. As a result, we get virtual slices with a defined border between bone

and marrow in each slice. We model the resorption in each slice separately, applying TA with the threshold

T = AMIN to decrease the values B(i, j, k), and average slices after Ns iteration steps according to the

expression (1). The resorption in each pixel of each slice is performed until its attenuation B(i, j, k) will be

smaller as predefined given threshold Tg.

Threshold algorithm in 3D. To model osteoporotic changes in the 3D bone images in a realistic way,

we have developed a simple algorithm that describes a deterioration of the trabecular structure. For the

algorithm we have taken the idea of the algorithm proposed by Langton [Langton et al., (1998)]. To extend

this algorithm into 3D, we have used the following approach. We set a threshold T separating bone and

marrow. Then, modeling of the resorption is performed in several steps. Each step includes the following

procedures: we mark all surface voxels on the border between bone and marrow, and then remove these

surface voxels with some probability Pr, that corresponds to the random activation of BMU. By surface

voxels we understand voxels which are located on the border between bone and marrow belonging to the

bone. These voxels have the attenuation larger than T but at least one of 6 neighbouring voxels belongs to

marrow (attenuation below T ). By application of this algorithm we have avoided the necessity to model the

activity of BMUs on a 3D surface.

4 Quantification of the bone structure in 2D and 3D

We apply structural measures of complexity (SMC) to quantify the bone architecture. The development of

the complexity analysis in 2D is described in [Saparin et al., (1998); Gowin et al., (1998, 2001)] in details.

Hence, here we give only a brief review of this technique. The segmented CT-image, representing only the

trabecular bone, is transformed by means of symbolic dynamics into a symbol-encoded image. The purpose

of symbol encoding is to reduce the amount of information in the bone image, but leave important aspects

of the bone architecture intact. In 2D five symbols have been used for symbol encoding (three static L, V ,

H and two dynamical symbols I, C). Image encoding substitutes the original pixel values by one of these

five different symbols; the encoding is based on both the dynamics and the level of x-ray attenuation in the
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vicinity of an encoded pixel [Saparin et al., (1998)].

After symbol encoding, five structural measures of complexity are used to quantify different aspects

of the bone architecture [Saparin et al., (1998)]. These measures utilize probability distributions of local

quantities and entropy-based calculations from the symbol-encoded images:

1. The architectural composition is expressed in the Index of Global Ensemble (IGE), which is a ratio

between positive and negative structural elements. This measure is calculated as IGE = [p(I) +

p(C)]/[p(L) + ε], where p(I), p(C), and p(L) denote probability of the corresponding symbols, and ε

is a predefined small constant to avoid division by zero.

2. The organization of the connected marrow space surrounding the trabecular network is expressed by

the size of the maximal L-block.

3. To calculate the other three measures we use a small window, which moves through the image. For

every window we calculate the probabilities of different symbols. Then the Structure Complexity Index

(SCI) measures the interregional complexity of the trabecular composition, and is calculated as the

Shannon entropy for the distribution of index of the local ensemble ILE, where

ILE =
p(I) + p(C)

p(L) + ε
,

and the result also normalized by the maximal value of Shannon entropy Smax achievable for a partition

used to construct the distribution. The higher SCI, the more nonuniform and complex is the structure.

4. The disorder of the trabecular composition is assessed by the Structure Disorder Index (SDI), which

is calculated as the Shannon entropy of the 3D distribution in the space {p(L), p(I + C), p(V + H)}.

All probabilities used here are normalized by the corresponding probability normalization condition.

The less ordered is the structure, the larger is the SDI.

5. The organization of hard elements (with higher values of attenuation or edges) within the structure,

i.e. the homogeneity of the trabecular connection, is quantified by the Trabecular Net Index (TNI).

To calculate TNI, the median Me and the Shannon entropy Sh of the distribution of local trabecular
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quantities p(V )+p(I)+p(C), calculated from every position of moving window, are determined. Then

TNI =
Me

Sh/Smax

,

where Smax is the maximal value of the entropy for a given number of distribution bins used to

construct the distribution.

In 3D another method of symbol encoding is used, because here there is a sharp transition between

bone and marrow. Following this fact, in 3D the symbol encoding is based on an alphabet of three different

symbols [Saparin et al., (2004)], which represent marrow M , bone surface (one voxel thick) S, and internal

bone I. Three measures have been applied to quantify the bone image: Structure Complexity Index (SCI

3D), and a normalized probability density of the trabecular surface P (S), and internal bone P (I) voxels

inside the bone image. SCI 3D is introduced similarly to 2D [Saparin et al., (1998)] and quantifies the

complexity of symbol compositions between different regions of the bone, whereas P (S) and P (I) define

the probabilities of the bone surface voxels and the internal bone voxels normalized by the total number of

bone voxels.

5 Modeling bone resorption in 2D

We start with the data set 1, that contains ten axial 1mm thick slices from the central part of each vertebra.

50 vertebral bones with a BMD from 21 [mg/cm3] to 122 [mg/cm3] were analyzed. Mimicking the QCT

vertebral image, we merge these slices into one 10 mm thick slice. This enables us to model bone deterioration

in two ways: i) either model resorption directly on 10 mm slice (Modeling resorption 1 in Fig. 1), or ii)

simulate loss of bone mass in each 1 mm slice, and then merge the result again into a final 10 mm slice

(Modeling resorption 2 in the Fig. 1). We start with an application of TA for 10 mm thick vertebral images

with the parameters: T = 76 HU, Fa = 0.97, RU = 1, and Ns = 1100. The parameter Ns denotes the

number of simulation steps between saved iterations. Using this algorithm, we have produced 25 bone images

with decreasing mean attenuation. Iterations 0, 5, 11, and 25 are visualized in the Fig. 3 and demonstrate

that TA produces very inhomogeneous resorption of the bone material within the trabecular structure.
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To verify and quantify the results of the resorption simulations, we have calculated structural complexity

measures for the simulated vertebral images. These dependencies versus the decreasing mean attenuation are

shown in the Fig. 4, where they are compared with osteoporotic vertebral images with corresponding mean

attenuation. This comparison shows that even such a simple algorithm is able to model nonlinear behavior of

SMC and qualitatively reproduce the results obtained from osteoporotic vertebrae. However, quantitatively

the simulation results differ from the osteoporotic dependencies, and even a variation of simulation param-

eters in a wide range cannot provide a good matching. The reason for this is the highly inhomogeneous

resorption of the trabecular bone. Setting the threshold selects some regions in the attenuation landscape,

but the resorption of the bone evolves like a propagation of a wave front, and this is unrealistic.

The main reason why TA does not work adequately, is the difficulty to determine the exact border

between bone and marrow in 10 mm 2D CT bone images. In 1mm thick slices this border is a priori

better defined due to smaller partial volume effects for thin slices. Hence, we have checked modeling of the

resorption in each 1 mm thick slice with consequent merging of the results into 10 mm thick slices. Note

that the vertebral image, used as a starting point for modeling, differs from the corresponding 10 mm thick

slice (compare iteration 0 in Fig. 3 and Fig. 5). This fact results from the segmentation procedure applied

to each 1 mm thick slice. If we separate a trabecular structure in each of the 1 mm thick slices, and then

merge the results into a 10 mm thick slice, the result will differ from the results of first merging all slices of

1 mm thickness and then segmenting the trabecular bone from the cortical shell. The reason is the slightly

different location of the cortical shell in each slice due to concave spatial shape of a vertebra. Applying TA

in each of the 1 mm thick slices and merging the results, we get 25 simulated bone images with decreasing

mean attenuation. The parameters of TA applied to each slice were T = 76 HU, Fa = 0.97, RU = 10, and

Ns = 110. The iterations 0,5, 11, and 25 are presented in the Fig. 5. In this case resorption occurs not

so abruptly but nevertheless very inhomogeneously. The comparison between the structure of original CT

osteoporotic amd simulated vertebral slices is given in Fig. 6 and demonstrates better agreement between

simulated and CT images. A disagreement occurs because this resorption simulation leads to the appearance

of a large area with small attenuation, due to the application of the TA algorithm in each slice.

Modeling bone resorption in each of the 1 mm thick slices is not always possible in practice, because
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usually clinical measurements are performed with larger slice thickness. Therefore, we have developed the

virtual slicing algorithm (VSA), which construct virtual slices. We apply this algorithm to the same bone

as above with parameters Tg = −24 HU, σ2 = 10, L = 5, N = 10, Fa = 0.97, RU = 1, and Ns = 75.

The vertebral structures simulated with VSA (iterations 0,5,11 and 25) are presented in Fig. 7 and show

that the bone resorption occurs visually in a much more realistic way. For VSA simulated changes in bone

structure all simulated SMC dependencies match also very well the dependencies for CT images (Fig. 8). To

confirm this we have displayed also the results for another vertebra used as initial point for our simulations,

achieving good correspondence between osteoporotic and modeled alternations of trabecular bone.

To confirm results obtained with data set 1, we have applied TA and VSA to data set 2. This data

set is represented only by 10 mm thick slices, which is closer to routine clinical bone examination. The

experimentally measured dependencies of SMC qualitatively differ from dependencies of data set 1 and,

hence, a verification of the algorithm has been especially interesting to check whether these algorithms are

able to reproduce different experimentally observed dependencies.

We have taken a bone image with a high attenuation and applied TA with parameters T = 66 HU,

Fa = 0.97, RU = 25, and Ns = 5. Simulated bone images with mean attenuation values 158, 124.7, and

93.6 HU are shown in Fig. 9. The image (Fig. 9 (a)) illustrates the application of a threshold (attenuation

larger than a threshold is encoded in black). As above, we have used a trabecular region of the human

vertebra, segmented from the vertebral image by the preprocessing algorithm described in [Saparin et al.,

(1998)]. It can be seen that bone deterioration occurs here very nonuniformly mainly towards the centre

of the image. This is not very realistic (Fig. 9). We have analyzed the comparison of the corresponding

structure dependencies and found that simulations and assessment of CT images for vertebrae with different

BMD do not match (Fig. 10).

The application of VSA works better and produces vertebral images with structural complexity values

similar to the original CT data. The results of the simulations are visualized in Fig. 11 for mean attenuation

values 158, 126.8, 83.9, and 15.2 HU. The application of this algorithm with parameters Tg = 96 in CT

numbers, σ2 = 10, L = 5, N = 10, Fa = 0.97, RU = 25, and Ns = 5 enables us to model the resorption in a

more uniform way. The conclusion that this resorption algorithm corresponds better to the reality can be
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also confirmed by a comparison of structural complexity of simulated vertebrae with the original vertebral

CT slices of the same mean attenuation. This comparison is presented in Fig. 12. A good matching between

CT images and simulation is achieved for all five SMC. For all presented results we have tried several

stochastic realizations and obtained practically identical dependencies.

6 Modeling bone resorption in 3D

To model changes in the trabecular bone structure in a realistic way in 3D, we have used TA 3D with the

parameter Pr = 0.001. A visualization of the deterioration of spatial bone structure modeled with this

algorithm is shown in Fig. 13(a) with a resolution of 20 × 20 × 20 µm. The data were visualized using the

advanced 3D visualization system Amira, developed by ZIB [Zuse Institute Berlin].

Fig. 13(b) shows simulated and original dependencies of SMC versus Bone-Volume-to-Total-Volume ratio

(BV/TV), which is a 3D analogue of the 2D mean attenuation resulting from the analysis of biopsies. The

decrease of BV/TV reflects the loss of the bone mass due to a osteoporotic deterioration of the trabecular

structure. A rather good correspondence was found between simulated and µCT data structures for SCI3D.

With respect to the behavior of normalized probabilities P (I) and P (S), the model is unable to capture

the fluctuations presented in the experimental dependencies. However, it can predict the point where these

dependencies cross each other. This point may be responsible for the critical BV/TV value of irreversible

changes, the point of no return for the bone tissue to regain structural competence. The model predicts

linear dependence for these probabilities.

7 Summary

We have suggested and applied several algorithms to model loss of bone mass in 2D and 3D. For 2D

vertebral CT images the best results have been obtained by the virtual slicing algorithm. This algorithm

can be applied directly to bone CT-images, and it works also when there is no sharp bone-marrow transition.

For 3D bone biopsy data, the threshold algorithm provides an adequate simulation of the bone resorption.

The comparison with original CT- and micro-CT- data in 2D and 3D performed in terms of SMC has

shown a good correspondence between simulated and osteoporotic changes in bone structure and proved
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the credibility of the resorption algorithms for the prediction of bone loss due to osteoporosis or under the

conditions of microgravity. The application of the algorithm enables us to extrapolate the dependencies of

SMC to low values of BMD where experimental results might not be available. The proposed bone modeling

can contribute to the development of diagnostic measures for the quantification of structural loss and, in the

future, to the prediction of compositional changes of the bone tissue. We expect the simulation algorithms

and comparison with acquired CT images, suggested in this paper, will be used for further investigations,

including modeling a reverse process of bone formation. This approach, hence, will help to understand

physical mechanisms behind the bone structural changes.
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Figure 1: Different opportunities to model bone resorption in 2D. If the initial image (left) is represented
by a set of high resolution 1 mm thick slices, we can merge them and average to obtain a low resolution 10
mm thick slice (left up). After that, we can model resorption both in this low resolution 10 mm thick slice
or in each of the high resolution 1 mm thick slices, then merge 1 mm thick slices and compare the results.
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Figure 2: The virtual slicing algorithm to model bone mass loss with dynamic stochastic simulation. Left:
a starting point is the bone image without sharp transition between bone and marrow. Middle: the bone
material is distributed over several virtual slices. Right: three examples of the random bone material
distribution for one pixel, resulting from three different stochastic realizations.
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(a) (b) (c) (d)

Figure 3: Application of the threshold algorithm to simulate bone resorption in 2D for the merged 10mm
thick vertebral slices from data set 1: iteration steps 0, 5, 11 and 25 (a-d). Images are coded with a color
scale ( -24, 376) HU. This algorithm produces very inhomogeneous resorption of the bone material.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

40 60 80 100 120 140 160 180 200 220

S
C

I

Mean [HU]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

40 60 80 100 120 140 160 180 200 220

S
D

I

Mean [HU]

0

1

2

3

4

5

6

7

40 60 80 100 120 140 160 180 200 220

IG
E

Mean [HU]

0

20

40

60

80

100

120

40 60 80 100 120 140 160 180 200 220

TN
I

Mean [HU]

0

10

20

30

40

50

60

70

80

90

40 60 80 100 120 140 160 180 200 220

m
ax

 L
-b

lo
ck

Mean [HU]

Figure 4: Comparison between simulated bone loss in 10 mm thick merged slices (circles), made with TA,
and osteoporotic changes in vertebrae assessed from original 10 mm thick CT-images (squares). Different
measures of complexity, plotted against the mean attenuation (HU), quantify distinct aspects of bone ar-
chitecture: structural complexity index (SCI), structural disordering index (SDI), index of global ensemble
(IGE), trabecular net index (TNI), and maximal L block (max L-block).
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(a) (b) (c) (d)

Figure 5: Modeling of bone resorption, applying TA algorithm in each original CT 1 mm thick slice with
consequent merging of these slices into a 10 mm thick slice. The resulting 10 mm thick slices are shown
from left to right for iteration steps 0, 5,11 and 25 (a-d). Images are coded as in Fig. 3.
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Figure 6: Application of SMC for a comparison between original CT images of vertebrae with different
variations of osteoporosis (squares) and images averaged over ten 1 mm thick slices, simulated with TA
(circles).
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(a) (b) (c) (d)

Figure 7: Modeling of bone deterioration with the virtual slicing algorithm in merged 10mm thick slices.
Original (a) and simulated (b-d) bone images of one vertebra are shown from left to right for iteration steps
0, 5,11 and 25. Images are coded as in Fig 3.
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Figure 8: The relation between the mean attenuation (HU) and the complexity measures during the loss
of bone mass in osteoporotic vertebra (original CT images, squares) and in the images simulating bone
resorption using VSA (circles, magenta and blue colors represent two different initial vertebral images).
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(a) (b) (c) (d)

Figure 9: Artificial deterioration of a human vertebra from data set 2 with threshold algorithm. (a) Ap-
plication of the threshold 66 HU determines a boundary between bone (black) and marrow (white). (b-d)
Simulated bone images with mean attenuation values 158, 124.7, and 93.6 HU are shown. Images are coded
with a “temperature” color scale from the minimum intensity -224 HU (blue) to the maximum intensity 776
HU (brown).
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Figure 10: SMC, assessing different aspects of the bone architecture do not demonstrate agreement between
simulation using TA (circles) and original CT data (squares) results. The dependencies of SMC are plotted
against the mean attenuation (HU) of the vertebrae.
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(a) (b) (c) (d)

Figure 11: Artificial deterioration of a human vertebra (data set 2) by a virtual slicing algorithm. (a-d)
Simulation of the bone mass loss with mean attenuation values 158, 126.8, 83.9, and 15.2 HU. Images are
encoded as in Fig. 9.
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Figure 12: SMC, evaluating different aspects of the bone architecture using VSA show good matching
between simulated images(circles) and original CT images of data set 2 (squares). The dependencies of
SMC are plotted versus the mean attenuation [HU] of the trabecular bone linearly related to the BMD.
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Figure 13: a) Artificial deterioration of a human tibia bone biopsy from data set 3 with dynamic stochastic
simulation. Visualization is performed using the Amira program. The attenuation is color encoded from
black (soft tissue) to white (bone). The cortical bone is on the top of image. From right to left: simulation
of the bone mass loss is shown for iterations 0, 87, and 237. b) corresponding dependencies of SMC on
BV/TV for simulation (squares) and µCT images (circles and triangles).
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