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Abstract The transition from periodicity to chaos in a DC-DC Buck power con-

verter is studied in this paper. The converter is controlled through a direct Pulse

Width Modulation (PWM) in order to regulate the error dynamics at zero. Results

show robustness with low output error and a fixed switching frequency. Further-

more, some rich dynamics appear as the constant associated with the first order

error dynamics decreases. Finally, a transition from periodicity to chaos is observed.

This paper describes this transition and the bifurcations in the converter. Chaos

appears in the system with a stretching and folding mechanism. It can be observed

in the one-dimensional Poincaré map of the inductor current. This Poincaré map

converges to a tent map with the variation of the system parameter ks.
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1 Introduction

Immediately following Lorenz’s chaos discovery in 1960’s, the scientific community has been interested

in describing, and classifying, all routes to chaos. These new routes appear more often in modelling

real phenomena rather than in theoretical dynamical systems. This paper describes the transition from

periodicity to chaos in a DC-DC buck power converter controlled by a new strategy. Chaos appears in the

system with a stretching and folding mechanism which can be observed in the one-dimensional Poincaré

map of the inductor current. This Poincaré map converges to a tent map with the variation of the system

parameter ks.

DC-DC buck converters decrease a source voltage E. They can be modelled as continuous linear control

systems. However, the physical system is a Variable Structure System due a discontinuous control action.

This causes abrupt topological changes in the circuit. A detailed introduction to power converters can be

found in [Severns & Bloom, 1985]. The control action, usually designed from a continuous time model,

is implemented through Pulse Width Modulation. In spite of being linear, chaos appears in DC-DC buck

power converters, even when controlled by very simple control actions, such as when a duty cycle occurs

from modulating the output voltage by a sawtooth ramp ([Deane & Hamill, 1990], [Fossas & Olivar, 1996],

[Olivar, 1997]). Nonlinear phenomena in power electronics (including bifurcations and chaos) can be found

in [Banerjee & Verghese, 2001]. Chaotic bands as a final state has been found in many DC-DC converters

under different control schemes. In [Chakrabarty et al., 1996], [Yuan et al., 1998], and [Fossas & Olivar,

1996] they are found in a PWM-controlled Buck converter with a modulating sawtooth ramp after smooth

period-doubling bifurcations and non-smooth border-collision bifurcations. In [Deane, 1992], [Chan & Tse,

1997], [Tse, 1994] and [Banerjee & Chakrabarty, 1998] chaotic bands are found in current-programmed

Boost converters, with and without discontinuous conduction mode. Also, chaotic bands are obtained

in [Tse & Chan, 1995] in a current-mode controlled Cuk converter. A boost converter with PWM and

voltage control was studied in [El Aroudi et al., 1999]. Chaotic bands were also obtained after smooth Hopf

bifurcations. The phenomena of merging bands is also present in the aforementioned studies, but period-

doubling bands were not observed. Instead, in the novel and promising ZAD strategy which presented here,

the phenomena of doubling bands is observed in a Buck converter.
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There are several possible PWM implementations, such as leading, trailing and centered pulse. The

third, in turn, can be updated once or twice. The control action considered here, Zero Average Dynamics

(ZAD) first proposed in [Fossas et al., 2001], involves a direct design of the duty cycle and is implemented

in a single, updated centered PWM. For purposes of robustness, a linear combination of the error and its

derivative is considered for the output as in [Bilalovic et al., 1983], [Venkataraman et al., 1985], and [Carpita

et al., 1988]. ZAD strategy and its application to power converters are extensively reported in [Fossas et

al., 2001], [Ramos et al., 2003], [Ramos et al, 2002(a)], and [Ramos et al, 2002(b)]. The error dynamics

time constant appears as a bifurcation parameter. As it varies, a very rich dynamics is observed in the

controlled system. It has been reported in [Angulo & Fossas, 2003] that although the system is regulating

in a wide region of the parameter space, the current waveform seems to be chaotic in a significant interval.

Thus, from a circuit design viewpoint, it is well worth determining which regions of the parameter space

should be avoided. From a mathematical viewpoint, it is interesting to note which kind of bifurcations

appear, especially if they are non-smooth and to determine the specific route to chaos.

The paper is structured as follows. Section 2 is a brief introduction to the dynamical system which

results from the modelling of the DC-DC Buck converter and its control. Section 3 is devoted to the

dynamical system behavior when key parameters are varied in a convenient range. One-dimensional and

two-dimensional bifurcation diagrams are described. Also, successive bifurcations are analyzed through to

the appearance of the chaos transition. An approximation and a Poincaré map are used in Sec. 4 to show

that a slow transition follows the map from periodicity to a chaotic tent map. Also chaotic attractors are

analyzed after their appearance in post-transition. Sec. 5 describes conclusions and future work.

2 State Space Modelling

Figure 1 shows the blocks diagram of a DC-DC power converter. The signal reference is x1ref and corre-

sponds to the required voltage in the load. If this signal is constant, the system acts as a DC-DC converter.

If the signal is sinusoidal, then the system works as a DC-AC converter. In this paper x1ref is assumed

constant. The converter is always a step down (or Buck) converter, reducing the DC source voltage to a

lower load voltage.
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The circuit can be modelled as a linear switching system, such that
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The state variables are the voltage v in the capacitor and the current i in the inductor. Variable

u ∈ {−1, 1} is discrete and controls the position of the switches 1 and 2 in Fig. 1. They effect a voltage

source of magnitude +E or −E. The parameter values are R = 20Ω, C = 40µF, L=2mH and E=40V. The

sampling period is Tc = 50µs. To obtain dimensionless variables and parameters [Fossas & Zinober, 2001]

we apply the following change of variables: x1 = v/E, x2 = 1
E

√
L
C i and t = τ/

√
LC, thus γ = 1

R

√
L
C and

the sampling period is T = Tc/
√

LC =0.1767. Note that with this change, there are an infinite number of

combinations of physical parameters which lead to the same dimensionless parameters.

Then the system equations become
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where γ=0.35. With this change, the dimensionless parameters associated to the systems are γ, ks, x1ref

and T .

This system will be controlled with PWM in order to achieve a zero-mean s(x) in every T -cycle such

that

s(x) = (x1 − x1ref ) + ks(ẋ1 − ẋ1ref ) (3)

where x1 is the variable to be controlled and x1ref is the reference signal. Here ks is the time constant

associated with the first order dynamics given by the surface and which corresponds to the desired error

dynamics. This also guarantees that the output x1 follows the reference x1ref .

When the system works implements centered PWM, the injected control signal can be defined through

Eq. (4) such that

u =





1 if kT ≤ t ≤ kT + l/2

−1 if kT + l/2 < t < kT + (T − l/2)

1 if kT + (T − l/2) ≤ t ≤ kT + T





(4)

5



where the switching time l (which can vary from cycle to cycle and is the time duration when the source

is in +E) is computed in order to maintain
∫ (k+1)T

kT

s(x(t))dt = 0 (5)

By enforcing this equality, we try to obtain zero-mean error dynamics in each sampling cycle to achieve

a fixed frequency of commutation. Computing the exact switching time l in each iteration requires solving

a transcendental equation, which is significantly burdensome. In [Biel et al., 2002] and [Angulo & Fossas,

2003], an approximation of the switching time was found to be

l =
2s(0) + T ṡ2

ṡ2 − ṡ1
(6)

where s(0) is the value of the surface at the sampling instant, and ṡ1 and ṡ2 are the derivatives in the last

and the previous linear piece, respectively. Here, ṡ2 can be computed with the same data that is used for

ṡ1 and changing the sign of excitation u.

For the sake of simplicity, we assume that the pulse sign is positive between kT and kT + l
2 the pulse

sign is positive, and that the pulse changes to -1 between kT + l
2 and (k + 1)T − l

2 . In the last part of the

cycle, the pulse returns to 1. Inverting the order in the pulses does not lead to any significant difference

[Angulo & Fossas, 2003]. We will refer to the time evaluated at t = kT as the sampling instant for any

k, and commutation instant as the time when the pulse changes from +1 to -1 (or from -1 to +1). The

commutation instants are t = kT + l/2 and t = (k + 1)T − l/2 for any k.

Thus, the state at t = kT (x(kT )) will be the sampling state and the state at x(kT + l/2) and

x((k + 1)T − l/2) will be the switching (or commutation) states. Figure 9 shows all of these states in the

state space. It also shows the evolution of a stable orbit. Since this is a linear time invariant system driven

by unitary pulses, the solution can be obtained through direct integration and yields

x ((k + 1) T ) = eAT x (kT ) +
(
eA(T−l/2) + I

)
A−1

(
eAl/2 − I

)
b− eAl/2A−1

(
eA(T−l) − I

)
b (7)

In all of the subsequent analysis we will assume that the feeding scheme is +1, −1, +1. The sign changes

are performed internally. In [Angulo & Fossas, 2003] the existence of a threshold value for the time constant

associated with the error dynamics was reported. Below the threshold, the system becomes unstable and a

transition to chaos is obtained. In the report, the stability limit was studied via linearization and Floquet
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and Lyapounov exponents. However, when the system makes the transition to chaos no qualitative or

quantitative analysis was performed.

The equation for the switching time, as a function of the states is given by

l =
2− 2ksγ + Tksγ

2 − γT − Tks

−2ks
x1(0) +

2ks + T − ksγT

−2ks
x2(0)− 2x1ref

−2ks
− Tks

−2ks
(8)

Limits of system behavior are given at l = 0 and l = T (saturation of the switching time) according to

the Eq. (9). These boundaries are shown in Fig. 2 will be denoted as P and Q, respectively.

0 ≤ 2− 2ksγ + Tksγ
2 − γT − Tks

−2ks
x1(0) +

2ks + T − ksγT

−2ks
x2(0)− 2x1ref

−2ks
− Tks

−2ks
≤ T (9)

Between these boundaries the system dynamics follows Eqs. (7) and (8). Outside this region the system

follows the following dynamics:

x(k + 1)T =

{
eAT x(kT ) + A−1(eAT − I)b, if l ≥ T

eAT x(kT )−A−1(eAT − I)b, if l ≤ 0
(10)

Several numerical simulations have shown that when the value of ks is below the stability threshold,

the system is still regulating. Thus, the output does not change significantly and allows for some critical

simplifications with respect to state x1.

When the switching time is between 0 and T , two switching points exist and correspond to states x(l/2)

and x(T − l/2). We have computed all possible switching points (curves X(l/2) and X(T-l/2)) in the state

space as follows: (1) We assume that the system is regulated. That is, we assume x1(0) =0.7996, which is

the stationary value for a reference signal x1ref=0.8. (2) We take any l ∈[0, T ] and we substitute it in Eq.

(8) to obtain the value of x2(0). (3) Once x2(0) has been evaluated, we have all the required information

to solve the state equations (Eq. (2) for t = l/2 and t = T − l/2) and (4) The border curves corresponding

to the switching states can be computed and plotted, as is shown in Fig. 3.

It should be noted that for l=0, the switching curve corresponding to X(l/2) collides with the upper

limit due to the initial condition x(0). Curves X(l/2) and X(T-l/2) meet at l = T . When the value of ks

decreases, the symmetry of the curves is lost.

Another critical curve is that of the image of the curve Q (obtained from Eq. (7) and taking initial

conditions on Q). This curve image will henceforth be denoted by R. Any initial condition below the curve
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Q maps below R. (see Fig. 3).

This division of the state space effects the easier analysis of the transition to chaos and will shown in

the following sections.

3 Bifurcations

For T=0.1767, γ=0.35, x1ref=0.8, and ks=4.5, simulations show that the stationary dynamics is an asymp-

totically stable T -periodic orbit. If we reduce the value of ks, and fix the remaining parameters, then a

bifurcation occurs near ks=3.25. In [Angulo & Fossas, 2003] a detailed study can be found including

analytical and numerical techniques to precisely compute this bifurcation value.

By reducing ks slightly further (of order of 0.001), the system shows 2T -periodic stable orbits with

no saturation cycles. If the value of ks is reduced even further, another class of 2T -periodic orbits with

one saturation cycle and one non-saturated cycle is obtained. And, a smooth period-doubling and a

corner collision bifurcation occurs. As the parameter is still further decreased beyond a certain value, the

4T -periodic orbits become 4-chaotic bands in another non-smooth transition. Bifurcations of stable mT -

periodic orbits (for a certain m) to m-band chaos has been observed in other systems and specifically in

other DC-DC converters ([Banerjee, 1997], [Olivar, 1997]), and are also predicted by the existing bifurcation

theory of non-smooth systems [Banerjee & Grebogi, 1999]. Further computations show that this 4-band

splits into an 8-band and the process continues at infinitum (see Fig. 21). To our knowledge, this is

the first time that a (non-smooth) period doubling band process has been observed. The details of this

phenomenon will be reported in a future paper. The width of these bands widens as the parameter ks

decreases and the phenomenon is practically unobservable in the beginning of the band-merging process.

Finally, the sequence of merging bands crises ([Ott, 1993], [Banerjee & Verghese, 2001]) ends in a chaotic

1-band attractor (see Figs. 6, 7, 8). Section 4 gives intuitive reasoning for why these bands are created.

Simulations in light of other parameters show that the value of ks in the first bifurcation lightly changes

as the parameter x1ref is varied, but the variations are not significant [Angulo & Fossas, 2003]. Similar

one-dimensional bifurcation diagrams (with ks as bifurcation parameter) are obtained for different values

of x1ref , such is the reason for not taking into account in the following analysis. We will assume x1ref=0.8.
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Another bifurcation parameter is the sampling time T . Figure 4 shows a two-dimensional bifurcation

diagram with T and ks as bifurcation parameters.

The colors corresponding to the diagram are as follows: T -periodic stable orbits are plotted with

cyan, yellow corresponds to 2T -periodic stable orbits, 3T -periodic stable orbits are plotted in green, blue

corresponds to 4-band stable chaos, red to 8-band stable chaos, black to 16-band stable chaos, and other

stable chaotic attractors are plotted in magenta. In this plot γ=0.35. Note that high values of the period

imply a higher ripple in the output voltage, causing the system to lose its regulation capacity. Thus we

will not vary T significantly.

Fig. 5 shows a two-dimensional bifurcation diagram of the system under variation of parameters ks and

γ. In it, a global picture of how the stable periodic orbits and the chaotic bands are distributed is given.

Here, ks is the parameter associated with the sliding surface and γ is the unique parameter associated to

the circuit’s physical components. It can be observed that the transition to chaos is very fast, and the

4-chaotic bands evolve in a very small range of ks. Also, as γ decreases the transition to chaos is faster.

In the following, we perform a detailed study of the successive bifurcations occurring in the system.

The analysis corresponds to T=0.1767, γ=0.35, x1ref=0.8, and with varying ks.

The first bifurcation is detailed in [Angulo & Fossas, 2003]. It is of flip type since one of the Floquet

multipliers pass through -1 [Kuznetsov, 1998]. We will study the successive bifurcations and the transition to

chaos. Figures 6 through 8 show one-dimensional bifurcation diagrams with ks as the bifurcation parameter

and with the output voltage, the inductor current and the duty cycle as bifurcation states.

Figure 6 shows that, although the system enters the chaotic zone, the circuit is still regulated (note

that the voltage scale is very tight). The corresponding voltage variable is very near to the reference signal

x1ref=0.8 and it held almost constant, which will allow some useful approximations and simplifications.

3.1 First bifurcation

A standard linear analysis allows the conclusion that the first bifurcation, as was previously stated, is of

flip type because one of the Floquet multipliers of the T -periodic orbit passes through −1. Figure 9 shows

the evolution of the T -periodic stable orbit for ks=4.5. This orbit will bifurcate into a stable 2T -periodic

orbit and an unstable T -periodic orbit for ks ≈ 3.25 (shown in Fig. 10).

9



Let us consider the discrete-time Poincaré map PT corresponding to Eqs. (7), (10). A stable 2T -periodic

orbit in the continuous system corresponds to two 2-periodic points in the state space for this T -sampled

Poincaré map PT . One of the orbits is closer to the curve Q (point D in Fig. 10) and the other one (point

A in Fig. 10) is close to curve R. Also, four new switching points are generated near the two switching

points of the previous T -periodic stable orbit. One (B) is moved to the right and one (E) is to the left,

both on the curve X(l/2). The other two points are on the curve X(T-l/2). One is to the right (C) and the

other is to the left (F) of the corresponding point of the previous T -periodic stable orbit.

The fact that one switching point is on the right and the other is on the left implies a lower and a

higher value for the corresponding switching times. This is because the upper point approaches curve P

(which corresponds to l = 0) and the lower point approaches curve Q (which corresponds to l = T ). As

the parameter ks decreases, two of the points (E and F in Figs. 10 and 11) will approach the corner of the

curves X(l/2) and X(T-l/2), which is obtained for l = T .

Following this process, for ks=3.2425, the stable 2T -periodic orbit is plotted in Fig. 11.

The next bifurcation corresponds no longer to flip type but to corner collision type ([di Bernardo et al.,

2001], [Yuan et al., 1998]).

3.2 Second bifurcation

In the state space, as ks is varied, the stable 2-periodic orbit approaches the boundary Q. And, for a specified

parameter value, this discrete-time orbit collides with the boundary in a corner collision bifurcation (or

transition). In this bifurcation, the number of equilibrium points does not change but the evolution of the

orbits in the state space is different (shown in Fig. 12).

A 2-periodic orbit of the T -sampled Poincaré map PT is a 1-periodic orbit (or fixed point) of the map

P 2
T . Table 1 shows the characteristic multipliers of the fixed point of P 2

T , as ks is lightly varied near

the bifurcation value. Before the bifurcation, (ks=3.2425) we observe two non-saturated cycles. After the

transition, we have a 2-periodic orbit with one saturated cycle and one non-saturated cycle. We can observe

a discontinuity in the Jacobian at the periodic orbit, since the eigenvalues of the linearized system change

suddenly.

In the approximate range ks ∈ [2.995, 3.242], there are still 2-periodic orbits with one saturated cycle
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and one non-saturated cycle. In the phase space, PT maps one of the two points of the periodic orbit (the

one which is below the border Q) to the other point (which is near and below R), without any commutation

point in the curves X(l/2) or X(T-l/2). Then, a non-saturated cycle follows with switching time 0 < l < T ,

and the point is mapped again by PT near the border Q.

Again, with a slight variation of the bifurcation parameter, one of the eigenvalues passes through −1 in

another flip bifurcation, which occurs near approximately ks=2.998.

3.3 Third bifurcation

Effectively, the third bifurcation is of flip type. This can be confirmed by computing the eigenvalues of P 2
T

(the second iteration of PT ), at the periodic orbit. Table 2 shows these eigenvalues near the bifurcation

value. After the bifurcation, the stability of the 2-periodic orbits is changed and 4-periodic stable orbits

appear.

One of the two points (D in Fig. 12) corresponding to the former 2-periodic orbit splits into two points

(D and H in Fig. 13) but both below the border Q. Thus, they give rise to saturated cycles, and their

images by PT are situated below R. They are very close to one another, and this implies that the values

of the corresponding switching times are also very close (shown in Fig. 13). This process of approaching

points will end in a band creation process, as will be shown later (see Fig. 22).

As was previously stated in the presentation of the 2-dimensional bifurcation diagrams, 4-bands appear

in a very narrow range of the bifurcation parameter ks, and thus the 8-bands appear almost immediately.

3.4 Fourth bifurcation and the beginning of chaos

For a certain bifurcation value of ks between 2.5 and 3 a small region in the border Q and its image by

PT act as accumulation regions of points, and the chaotic period 4 bands appear. This may be due to a

corner collision bifurcation of the type 2n-periodic stable orbit to chaotic 2n-band ([Banerjee, 1997],[Olivar,

1997]). As such, chaos is introduced to the system.

It should be noted that for this value of the parameter (and below), the simplification in the analysis

treating X(l/2) and X(T-l/2) as curves instead of regions leads to a loss accuracy; this simplification

is merely an approximation because the commutation points should be situated in the curves. Other
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computations (not included in this paper) show that as the parameter value is further decreased, successively

merging band crises appear, resulting in a 1-band chaos.

Also note that the smooth and nonsmooth bifurcations found in this section are not specific to the

choice of parameter values. As can be observed from the two-dimensional bifurcation diagrams (see Fig.

5), varying parameters ks or γ results in the same bifurcations, although they occur in different ranges.

4 Transition to Chaos: Another Viewpoint

In this section we will emphasize the 1-dimensional Poincaré map of the current variable x2 as the main

tool to describe the transition of periodicity to chaotic motion.

Since the system is regulated for a wide range of ks, the Poincaré map is very close to 1-dimensional

(note that the value of the voltage is almost constant). Thus we assume that x1(0) = 0.7996 ≈ x1ref , which

simplifies the solutions.

The procedure to compute the 1-dimensional Poincaré map PT is divided in two parts: one, when the

switching time is less than T (no saturation); and two, when there is a saturation cycle.

For the first part, ks is fixed and we take a value of l ∈ [0, T ]. With l ∈ [0, T ] and the state x1(0)=0.7996,

we apply Eq. (8) to compute x2(0). Using x1(0), x2(0) and t ∈ [0, T ] we apply the Poincaré map in Eq.

(7). It is observed that any point near the curve P (x2 ≈0.44) is mapped to an image far below curve

Q (x2 ≈0.13). Thus, the next cycle must be saturated, without any possibility of returning to the initial

point. That is, the system tends to remain inside the region between the border curves Q and R. Thus, we

consider initial values (x1(0), x2(0)) between curves R and Q. Hence, l ∈ [d1, T ] for a certain l1.

For the second part, we have a saturated cycle. Thus, we first generate the points x(f) which are

mapped below the curve Q (these are the points which will have a saturated cycle). We can then use Eq.

(10) to compute the image of these points.

For generating the diagram x2(k + 1) vs x2(k), we compute one iteration of the 1-dimensional Poincaré

map. Curve x(0) in Fig. 14 is mapped on curve x(f).

Analitically, the expression of the 1-dimensional Poincaré map can be obtained through Eqs. (11) and

(12).
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If 0 < l < T,

x2(k + 1) = e21(T )x1(k) + e22(T )x2(k)− e21(T ) + 2e21(T − l/2)− γe22(T ) + 2γe22(T − l/2)

−2e21(l/2)− 2γe22(l/2) + γ
(11)

l =
2− 2ksγ + Tksγ

2 − γT − Tks

−2ks
x1(k) +

2ks + T − ksγT

−2ks
x2(k)− 2x1ref

−2ks
+

T

2
(12)

where e21 and e22 correspond to the terms {2, 1} and {2, 2} of the system state transition matrix and

x1(k) = 0.7996 from the regulation assumption.

If l > T ,

x2(k + 1) = e21(T )x1(k) + e22(T )x2(k)− e21(T )− γe22(T ) + γ (13)

We will denote x(0) as the initial points and x(f) as the images. Fig. 15 shows the results for ks = 4.5.

The images lie almost on the initial points (note the tightness in the voltage scale). A point in the upper

region is mapped to the lower region and viceversa. Since the range of values of x(f) is smaller than that

of x(0) a stretching phenomena appears.

Figure 16 shows the map of x2(k + 1) vs x2(k). The map clearly shows a stable periodic point (the

modulus of the derivative is less than 1). All initial conditions converge to the equilibrium x2=0.2799 (note

that only the initial process is shown).

Further decreasing ks below 3.24 results in a different behavior. In the image of x(0), a small segment

below Q starts to grow. As parameter ks is varied further, the segment that grows below Q in the state

space gets bigger and bigger, and a map very close to a tent map is obtained. This is why the map evolves

from periodicity to chaotic motion, as it was previously stated. Figures 17 and 18 show the behavior of the

system.

Figure 19 shows the Poincaré map for ks=0.5 and Fig. 20 shows the behavior of x2(k + 1) vs x2(k) for

the same value of parameter. It can be clearly seen in this figure the effect of decreasing the parameter

associated to the sliding surface.

If we expand Eq. (11) in Taylor series and taking into account that Eq. (13) is linear, we obtain, for

the aforementioned values, the approximated linear map

x2(k + 1) =

{
0.0388 + 0.9869x2(k) if x2(k) ≤ 0.264

0.6416− 1.2871x2(k) if x2(k) ≥ 0.264
(14)
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As it can be observed, this corresponds to a tent map. Now we compare the original nonlinear map

(11) with the approximated linear map (14). Namely, the Taylor theorem allows to fit the error. For any

smooth and finite map f(x) defined on the interval (a, b) there exists c ∈ [a,b] such that for all h ∈ (a, b)

f (h) = f (c) +
f ′ (c)

1!
(h− c) + · · · f

n−1 (c)
(n− 1)!

(h− c)n−1 + εf

for |εf | ≤
∣∣∣∣f (n)(h1)

(h− c)n

n!

∣∣∣∣ and h1 ∈ (a, b).

In our case, c = 0.264 and |h − c| ≤ 0.036, and thus, the error in the approximated tent map is

everywhere less than 0.44e− 6.

Thus, the original nonlinear map is very well approximated by the tent map, yielding a well-known

route to chaos (see [Nusse & Yorke, 1997]), which is closely related to the obtained route to chaos in the

ZAD buck converter.

4.1 Chaotic attractors

For values of ks approximately lower than 2.5 chaos is detected in the system. This occurs after the 2n-

periodic stable orbit bifurcates into a chaotic 2n-band in a non-smooth bifurcation (for n = 2). In this

subsection we show numerically the evolution of the chaotic attractor as the bifurcation parameter ks is

decreased.

After the period-doubling band process, a band merging sequence follows. Figures 21 - 22 show the

merging bands as ks decreases from 2.5 to 1.

In the merging bands process, the bands join two by two until a one-band chaotic attractor is obtained.

Figures 21 - 23 show the evolution of the attractor as ks is further decreased. Other computations not

included in this paper have shown that the number of fingers in the attractor (see Fig. 23) is closely related

to the frequency of saturated cycles in the orbits.

As ks is still further decreased, the chaotic attractor collapses and the system behavior is again periodic.

That occurs since the trajectories tend to an equilibrium point in the state space. This is shown in the

2-dimensional bifurcation diagram in Fig. 5.

The equilibrium point corresponds to x1 = −1, characterized by a saturated cycle. The value of the

source is always −1 and the capacitor is loaded with this value. Regulation is also lost. A so low value of

14



ks makes that the sliding surface cannot reach its desired objective.

5 Conclusions and Further Research

Several smooth and non-smooth bifurcations have been studied with detail in a PWM-controlled buck

converter with ZAD strategy. A simplification due to the regulation characteristic of the converter allows

some analytical work. Also numerical computations can be made faster.

Flip bifurcations and corner collision bifurcations have been clearly detected. For a specific n, the 2n-

periodic stable orbit bifurcates to a chaotic 2n-band, and a period-doubling band sequence begins. They

finally lead to a one-band chaotic attractor after a merging band crises process.

Using the simplification due to the regulation assumption, we have shown that the one-dimensional map

corresponding to the current variable tends to a tent-like map. Thus, with this specific control strategy in

the buck converter, we have shown that chaos is clearly present.

The evolution of the chaotic attractor for ks ∈ [0.165, 1] and the analysis of period doubling band

process will be analyzed in a future paper.
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Table 1: Characteristic multipliers of P 2
T at the periodic orbit.

ks 2-periodic: non sat. - non

sat.

2-periodic: sat. - non sat.

3.2425 0.8974131, 0.9999910

3.242 0.89815254, -0.99129

Table 2: Characteristic multipliers of the second iteration of the Poincaré map, P 2
T .

ks λ1 λ2

3.0 0.89043 -0.999907

2.998 0.890369 -0.99985

2.997 0.890335 -1.0000237
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Figure 1: Scheme of a PWM-controlled power converter.

Figure 2: Region in the state space (shadowed region) where there is not a saturation in the duty cycle.

Figure 3: Different regions in the state space. The region between curves R and Q gives non-saturated

cycles. Curve Q maps on R after one (saturated) cycle. The curves X(l/2) and X(T-l/2) are the commu-

tation curves, where the topology changes. They meet at a non-differentiable point for l = T .

Figure 4: Two-dimensional bifurcation diagram. ks and T are the bifurcation parameters. See text for

the color codes.

Figure 5: Two-dimensional bifurcation diagram. Bifurcation parameters are ks and γ. The color codes

are the same like in the previous two-dimensional bifurcation diagram.

Figure 6: One-dimensional bifurcation diagram. Voltage vs ks.

Figure 7: One-dimensional bifurcation diagram. Inductor current vs ks.

Figure 8: One-dimensional bifurcation diagram. Duty cycle vs ks.

Figure 9: Evolution of the T -periodic orbit in the state space, ks=4.5.

Figure 10: Evolution of the stable 2T -periodic orbit in the state space, ks=3.2443.

Figure 11: Evolution of the stable 2T -periodic orbit in the state space, ks=3.2425.

Figure 12: Evolution of the 2T -periodic orbit in the phase space, ks=3.242.

Figure 13: Evolution of the 4T -periodic orbit in the state space, ks = 2.998.

Figure 14: Global view of the Poincaré map in the 2-dimensional state space. Note the voltage scale in

the diagram implying that the map is almost 1-dimensional.

Figure 15: Behavior of the states through the map PT . ks=4.5. x(0) is mapped to x(f). All the images

are in the region between the curves R and Q, and thus there are no saturated cycles. Consequently, the

1-dimensional Poincaré map is linear (see Fig. 16).

Figure 16: 1-dimensional Poincaré map for the evolution of the current. ks=4.5. The modulus of the

derivative of the fix point is less than 1. Thus it is asymptotically stable.

Figure 17: Behavior of the states in the Poincaré map. ks=2.8. x(0) is mapped to x(f). There are some

images below curve Q and thus some cycles are saturated. Then, the Poincaré map is piecewise-linear (see

Fig. 18).
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Figure 18: 1-dimensional Poincaré map for the evolution of the current. ks=2.8. The map is piecewise-

linear. The modulus of the derivative of the fix point is larger than 1. Thus it is unstable.

Figure 19: Behavior of the states in the Poincaré map. ks=0.5. x(0) is mapped to x(f). A large part of

the images is below curve Q, which means saturation. The corresponding Poincaré map is piecewise-linear,

similar to a chaotic tent-map (see Fig. 20).

Figure 20: 1-dimensional Poincaré map for the evolution of the current, showing tent-map chaotic

characteristics. ks=0.5.

Figure 21: Evolution of the attractor in the period-doubling band process. ks=2.5.

Figure 22: Evolution of the chaotic attractor, with 4 bands. ks=1.0.

Figure 23: Evolution of the attractor. ks=0.165. The observed fingers of the attractor are related to

the frequency of saturated cycles.
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Figure 1: Figure’s author: Fabiola Angulo.
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(a) ks=4.5

(b) ks=3.24

Figure 2: Figure’s author: Fabiola Angulo.
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Figure 3: Figure’s author: Fabiola Angulo.

24



Figure 4: Figure’s author: Fabiola Angulo.
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Figure 5: Figure’s author: Fabiola Angulo.
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Figure 21: Figure’s author: Fabiola Angulo.
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