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Abstract

In this paper, a nonlinear system aiming at reducing the signal transmission rate in a networked control
system is constructed by adding nonlinear constraints to a linear feedback control system. Its stability is
investigated in detail. It turns out that this nonlinear system exhibits very interesting dynamical behaviors:
in addition to local stability, its trajectories may converge to a non-origin equilibrium or be periodic or
just be oscillatory. Furthermore it exhibits sensitive dependence on initial conditions — a sign of chaos.
Complicated bifurcation phenomena are exhibited by this system. After that, control of the chaotic system
is discussed. All these are studied under scalar cases in detail. Some difficulties involved in the study of this
type of systems are analyzed. Finally an example is employed to reveal the effectiveness of the scheme in the
framework of networked control systems.
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1 Introduction

1.1 Limited information related control

In the past decade great interest has been devoted to the study of limited information related control problems.

Limited information related control is defined as follows: Given a physical plant G and a set of performance

specifications such as tracking, design a controller C based on limited information such that the resulting

closed-loop system meets the prespecified performance specifications. There are generally two sources of limited

information, one is signal quantization, and the other is signal transmission through various networks.

In designing a digital control system, signal quantization induced by signal converters such as A/D, D/A

and computer finite word-length limitation is unavoidable. To compensate this, traditional design methods

generally proceed like this: First design a controller ignoring the effect of signal quantization, then model it as

external white noise and analyze its effect on the designed system. If the performance is acceptable, it is okay;

otherwise, adjust controller parameters such as the sampling frequency, or do redesign (including the choice of

converters) until satisfactory performance is obtained. Recently the following problems have been asked:

1. How to study the effect of signal quantization more rigorously? More precisely, how will it genuinely

affect the performance of the underlying control system?

2. If there are positive answers to the above question, can one design better controllers based on this

knowledge?

To address these two problems, stability, the fundamental requirement of a control system, has been studied

recently in somewhat detail. Delchamps [1990] studied the problem of stabilizing an unstable linear time-

invariant discrete-time system via state feedback where the state is quantized by an arbitrarily given quantizer

of fixed quantization sensitivity. It turned out that there are no state feedback strategies ensuring asymptotic

stability of the closed-loop system in the sense of Lyapunov. Instead, the resulting closed-loop system behaves

chaotically. Fagnani & Zampieri [2003] continued this research in the context of a linear discrete-time scalar

system. Based on the flow information provided by the system invoked by quantization, stabilizing methods

based on the Lyapunov approach and chaotic dynamics of the system were discussed. Ishii & Francis [2003]

studied the quadratic stabilization of an unstable linear time-invariant continuous-time system by designing

a digital controller whose input was the quantized system state; an upper bound of sampling periods was

calculated geometrically using state feedback for the system G with a carefully designed quantizer of fixed

quantization sensitivity, by which the trajectories of the closed-loop system would enter and stay in a region

of attraction around the origin. Clearly in order to achieve asymptotic stability, quantizers with variable

quantization sensitivities must be adopted. In Brockett & Liberzon [2000], for the system G, by choosing

a quantizer q with time-varying sensitivities, a linear time-invariant feedback was designed to yield global

asymptotic stability. This problem was also studied in Elia & Mitter [2001] for exponential stability using
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logarithmic quantizers. In Nair & Evans [2002], exponential stabilization of the system G with a quantizer

is studied under the framework of probability theory. More interestingly, the simultaneous effect of sampling

period T and quantization sensitivity was studied in Bamieh [2003], where it is shown via simulation that

system performance would become unbounded as T → 0 if a quantizer of fixed sensitivity was inserted into a

control loop composed of a system and an unstable controller. Therefore it is fair to say that the problem—

performance of quantized systems— is quite complicated as well as challenging. Much research is still required

in this area.

Another representation of limited information is signals suffering from time-delays or even loss, which are

ubiquitous in the networked control systems (Wong & Brockett [1997], Walsh et al. [2001], and Ray [1987]).

The fast-developing secure, high speed networks (Varaiya & Walrand [1996] and Peterson & Davie [2000]) make

control over networks possible. Compared to the traditional point-to-point connection, the main advantages of

connecting various system components such as processes, controllers, sensors and actuators via communication

networks are wire reduction, low cost and easy installation and maintenance, etc. Thanks to these merits,

networked control systems have been built successfully in various fields such as automobiles (Krtolica et al.

[1994], Ozguner et al. [1992]), aircrafts (Ray [1987] and Sparks [1997]), robotic controls (Malinowshi et al.

[2001], Safaric et al. [1999]) and so on. In addition, in the field of distributed control, networks may provide

distributed subsystems with more information so that performance can be improved (Ishii & Francis [2002]).

However, networks inevitably introduce time delays and packet dropouts due to network propagation, signal

computation and coding, congestion, etc., which lead to limited information for the system to be controlled

as well as the controller, thus complicating the design of controllers and degrading the performance of control

systems or even destabilizing them (Zhang et al. [2001]). Therefore it is very desirable to reduce time delays

and packet dropouts when implementing a networked control system. For the limitation of space, for now we

will concentrate on discussing a network protocol proposed by Walsh, Beldiman, Bushnell, and Hong, et al.

(Walsh et al. [1999, 2001, 2002a, 2002b]) since our proposed one is in the same spirit as theirs. For a more

complete review on networked control systems and more references, please refer to Zhang & Chen [2003].

1.2 Network based control

One effective way to avoid large time delays and high probability of packet dropouts is by reducing network

traffic. In a series of papers published by Walsh, Beldiman, Bushnell, and Hong, et al. (Walsh et al. [1999,

2001, 2002a, 2002b]), a network protocol called try-once-discard (TOD) is proposed. In that scheme, there is

a network along the route from a MIMO plant to its controller. At each transmission time, each sensor node

calculates the importance of its current value by comparing it with the latest one, the larger the difference is,

the more important the current value is, then the most important one gets access to the network. For this

scheme, based on the Lyapunov method and the perturbation theory, a minimal time within which there must

have at least one network transmission to guarantee stability of networked control systems is derived.
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This network protocol, TOD, essentially belongs to the category of dynamical schedulers. In comparison

with static schedulers such as token rings, it allocates network resources more effectively. However, a supervisor

computer, i.e., a central controller, is required to compare those differences and decide which node should get

access to the network at each transmission time. It is therefore complicated and possibly difficult to implement.

In this paper, we introduce another technique aiming at reducing network traffic.

1.3 A new networked control technique

Consider the feedback system in Fig. 1, where G is a discrete-time system of the form:

r
 e


 -


u
 y

G
C


Fig. 1. A standard feedback system

x(k + 1) = Ax(k) +Bu(k), (1)

y(k) = Cx(k),

with the state x ∈ Rn, the input u ∈ Rm, the output y ∈ Rp and the reference input r ∈ Rp respectively; C is

a stabilizing controller:

xd(k + 1) = Adxd(k) +Bde(k), (2)

u(k) = Cdxd(k) +Dde(k),

e (k) = r (k)− y (k) ,

with its state xd ∈ Rnc. Let ξ =

[
x
xd

]

, then the closed-loop system from r to e can be modeled by

ξ (k + 1) =

[
A−BDdC BCd

−BdC Ad

]

ξ (k) +

[
BDd

Bd

]

r(k), (3)

e(k) =
[
−C 0

]
ξ (k) + r(k).

Now we add nonlinear constraints on both u and y. Specifically, consider the system in Fig. 2. The

nonlinear constraint H1 is defined as, for a given δ1 > 0, let v(−1) = 0, and for k ≥ 0,

v(k) = H1 (uc (k) , v(k − 1)) =

{
uc(k), if ‖uc (k)− v (k − 1)‖∞ > δ1,
v(k − 1), otherwise.

(4)

Similarly H2 is defined as, for a given δ2 > 0, let z(−1) = 0, and for k ≥ 0,

z(k) = H2 (yc (k) , z(k − 1)) =

{
yc(k), if ‖yc (k)− z (k − 1)‖∞ > δ2,
z(k − 1), otherwise.

(5)
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Fig. 2. A constrained feedback system

It can be shown that ‖H1‖, the induced norm of H1, equals 2, so is ‖H2‖.
In a networked control system, there are normally computer networks along the routes from the controller

C to the system G and from G to C. These networks(usually shared by other clients) will introduce time

delays into the closed-loop system. It it quite appealing to compensate this adverse effect. If we regard H1 as

a component of C and H2 of G, G( resp. C) contains previous version of uc( resp. yc), then there will have

no signal transmission from C to G and(or) from G to C if the inequalities in Eqs. (4)-(5) are not satisfied,

suggesting that we are reducing network traffic. We expect this will benefit the overall system connected by

the common networks. One example will be given in Sec. 3 to illustrate this point.

Similar work is done in Otanez et al. [2003] where adjustable deadbands are proposed to reduce network

traffics. In that formulation, the closed-loop system with deadbands is modeled as a perturbed system, then its

exponential stability follows that of the original system [Khalil 1996]. The constraints proposed here are fixed

(δ1 and δ2), we will see the stability of the system in Fig. 2 is quite complicated (e.g., only local stability can

be obtained). However, the advantage of fixed deadbands is that it will reduce network traffic more effectively.

Furthermore, the stability region can be scaled as large as desired. This is one advantage of our proposed

scheme. Moreover, we find out that the system in Fig. 2 has rather complex dynamics — it appears chaotic.

As is known chaotic behavior will in general provide more system dynamics, i.e., more information of the

underlying system, therefor we hope we can achieve better control in the framework of Fig. 2. We will address

this problem more rigorously in Sec. 2.2.

For the “constrained” system in Fig. 2, let p denote the state of the system G, and pd denote the state of

the controller C, then

p(k + 1) = Ap(k) +Bv(k),

yc(k) = Cp(k),

and

pd(k + 1) = Adpd(k) +Bdec(k),

uc(k) = Cdpd(k) +Ddec(k),

ec(k) = r(k)− z(k).
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Let η =

[
p
pd

]

, then the closed-loop system from r to e is

η(k + 1) =

[
A 0
0 Ad

]

η(k) +

[
B 0
0 Bd

] [
v(k)
−z(k)

]

+

[
0
Bd

]

r(k), (6)

ec(k) =
[
−C 0

]
η (k) + r(k),

where v and z are given in Eqs. (4)-(5).

To test whether the scheme adopted here is useful in the framework of networked control systems, we have

to address at least the following two concerns:

• The stability of the system in Fig. 2. Since stability is fundamental to any control system, the first

question about this system is its stability. In this paper, the Lyapunov stability is studied in detail:

1. Given that both G and C are stable, The system is locally exponentially stable (Lemma 1).

2. However, the behavior of the state trajectory (p, pd), starting outside the stability region, is hard to

predict. A scalar case is studied in detail to illustrate various dynamics the system can exhibit (Sec.

2.1): Its trajectory may converge to an equilibrium which is not necessarily the origin (Proposition

1, Corollary 1), or be periodic (Theorem 3, Theorem 4), or aperiodic (Theorem 1, Theorem 2), which

can either be quasiperiodic or exhibit sensitive dependence on initial conditions — a sign of chaos,

advocating novel control method — chaotic control.

3. For higher-order cases, a positively invariant set is constructed (Theorem 5).

4. Finally it is proved that the set of all initial points η(0) whose closed-loop trajectories tend to an

equilibrium as k → ∞ has Lebesgue measure zero if either G or C is unstable (Theorem 6).

• This research is mainly devoted to the study of networked control systems (NCSs), hence it is natural

and necessary to analyze its effectiveness in the framework of networked control systems. An example is

used to illustrated the efficacy of our scheme (Sec. 3).

The outline of this paper as follows. Sec. 2 is devoted to the study of stability. An example is constructed

to show the effectiveness of our scheme in Sec. 3. Some concluding remarks are in Sec. 4.

2 Stability

In this section, we discuss the stability of the system in Eq. (6). Firstly a sufficient condition ensuring local

exponential stability is derived. Secondly concentrated mainly on scalar cases, the intriguing behavior of the

dynamics of the system is studied in detail. It appears that the system behaves chaotically. Finally it is proven

that the Lebesgue measure of the set of trajectories converging to a certain equilibrium is zero if either the

system G or the controller C is unstable.
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Letting r = 0, the system in Eq. (6) becomes

η(k + 1) =

[
A 0
0 Ad

]

η(k) +

[
B 0
0 Bd

] [
v(k)
−z(k)

]

,

[
uc(k)
yc (k)

]

=

[
0 Cd

C 0

]

η(k) +

[
0 Dd

0 0

] [
v(k)
−z(k)

]

, (7)

[
v(k)
−z(k)

]

=

[
H1 (uc (k) , v(k − 1))
−H2 (yc (k) , z(k − 1))

]

, k ≥ 0.

Then, we have the following result regarding local stability.

Lemma 1 If both the system G and the controller C are stable, then the origin is locally exponentially stable.

Proof: Define

Ã =

[
A 0
0 Ad

]

, C̃ =

[
0 Cd

C 0

]

.

Since both G and C are stable, ρ
(

Ã
)

< 1 where ρ (M) is the spectral radius of a square matrix M . Then

for any given ε > 0 satisfying ρ
(

Ã
)

+ ε < 1, there exists a matrix norm ‖·‖∗ such that
∥
∥
∥Ã

∥
∥
∥
∗
≤ ρ

(

Ã
)

+ ε

[Huang, 1984]. Furthermore, this matrix norm satisfies ‖MN‖∗ ≤ ‖M‖∗ ‖N‖∗ for any two matrices M and N

of dimension n+nc. Therefore, for a vector x of dimension n+nc, one can define a vector norm |x|∗ such that

|Mx|∗ ≤ ‖M‖∗ |x|∗. One way to define such a norm is the following: Let O denote the zero vector of dimension

n+ nc, define

|x|∗ :=

∥
∥
∥
∥
∥
∥



x,O, · · · ,O
︸ ︷︷ ︸

n+nc−1





∥
∥
∥
∥
∥
∥
∗

,

then

|Mx|∗ = ‖[Mx,O, · · · ,O]‖∗ ≤ ‖M‖∗ ‖[x,O, · · · ,O]‖∗ = ‖M‖∗ |x|∗ .

For a vector ω of dimension ν < n + nc, denote by O the zero vector of dimension n + nc − ν, define |ω|∗ :=
∣
∣
∣

[
ω

′

O
′
]′
∣
∣
∣
∗
, then |·|∗ is a norm on the vector space Rν×1. We treat a matrix of dimension less than n + nc

in the similar way.

Let ‖·‖1 be the induced matrix norm of the vector norm ‖·‖∞, then there exist positive constants c1 and

c2 such that c1 ‖M‖∗ ≤ ‖M‖1 ≤ c2 ‖M‖∗ for any matrix M ∈ Rn+nc. Let δ := min{δ1, δ2}, then ‖M‖1 ≤ δ if

‖M‖∗ ≤ δ/c2. Hence, in the sequel we concentrate on the matrix norm ‖·‖∗ and the upper bound δ/c2. Now

we are ready to derive the local stability of the system in Eq. (7). We claim that the stability region contains

a ball centered at the origin with radius

rd := min

{

δ1

c2
∥
∥
[
0 Cd

]∥
∥
∗

,
δ2

c2
∥
∥
[
C 0

]∥
∥
∗

}

(8)

(denoted B (0, rd)).
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Suppose |η(0)|∗ ≤ rd, by Eq. (7),

|yc(0)|∗ ≤
∥
∥
[
C 0

]∥
∥
∗
|η(0)|∗ ≤

δ2
c2
,

then

‖yc(0)‖∞ ≤ δ2,

hence

z (0) = H2 (yc (0) , z(k − 1)) = z (−1) = 0.

Therefore

|uc(0)|∗ ≤
∥
∥
[
0 Cd

]∥
∥
∗
|η(0)|∗ ≤

δ1
c2
,

which means

‖uc(0)‖∞ ≤ δ1,

and

v (0) = H1 (uc (0) , v(k − 1)) = v (−1) = 0.

Then

η(1) = Ãη(0).

Similarly,

|yc(1)|∗ ≤
∥
∥
[
C 0

]∥
∥
∗
|η(1)|∗ =

∥
∥
[
C 0

]∥
∥
∗

∥
∥
∥Ã

∥
∥
∥
∗
|η(0)|∗

≤
∥
∥
[
C 0

]∥
∥
∗

(

ρ
(

Ã
)

+ ε
)

|η(0)|∗ ≤
δ2
c2
,

‖yc(1)‖∞ ≤ δ2,

H2 (yc (1) , z(0)) = z (0) = 0.

Moreover,

|uc(1)|∗ ≤
∥
∥
[
0 Cd

]∥
∥
∗
|η(1)|∗ =

∥
∥
[
0 Cd

]∥
∥
∗

∥
∥
∥Ã

∥
∥
∥
∗
|η(0)|∗

≤
∥
∥
[
0 Cd

]∥
∥
∗

(

ρ
(

Ã
)

+ ε
)

|η(0)|∗ ≤
δ1
c2
,

which means

‖uc (1)‖∞ ≤ δ1,

and

v (1) = H1 (uc (1) , v(0)) = v (0) = 0.

Then

η(2) = Ãη(1) = Ã2η(0)

9



implying there is no updating for the inputs to G and C. Following this process, we see

η(k) = Ãkη(0)

converges to zero as k tends to ∞. �

Remark 1: Though this system is locally exponentially stable, it is hard to find the exact stability region

except for a scalar system controlled by a static feedback. However, even in this scalar case, very complex

dynamics can be exposed by the system. This is the topic of the next subsection.

2.1 Scalar case

In this part, the definitions of such concepts as (positively) invariant sets, topological transitivity, structural

stability, invariant sets and ω−limit sets, etc., are adopted from Robinson [1995] or Robinson [2004] unless

otherwise specified.

To get a flavor of the complexity that the system in Fig. 2 may exhibit, we first study a simple one-

dimensional system:

x(k + 1) = ax(k) + bv(k), (9)

uc(k) = x(k),

with v(−1) ∈ R without loss of generality, and for k ≥ 0,

v(k) = H1 (uc (k) , v(k − 1)) =

{
uc(k), if |uc (k)− v (k − 1)| > δ1,
v(k − 1), else,

where δ1 = 0.01. The system in Eq. (9) is a static state feedback system with feedback gain equal to 1. Note

that in this example there is no constraint on the output of the system G. Now let a = 9/10 and b = −3/10. By

choosing different initial values (v(−1), x(0)), Figs. 3–4 are obtained. In these two figures, the horizontal axis

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6
x 10

−3

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5
x 10

−3

v(−1) = 0, x(0) = 1/200

v(−1) = 1/500, x(0) = 1/200

Fig. 3. Two trajectories converging to two different fixed points

stands for the iteration time k, and the vertical axis denotes the value of x. It is clear from these two figures
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0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

6

8
x 10

−3 v(−1) = 1/200, x(0) = 1/200

Fig. 4. An aperiodic trajectory

that different initial conditions give rise to significantly different types of trajectories: the first converging to the

origin and the second converging to a non-origin point and the last just oscillating. Furthermore, the system

in Eq. (9) is actually able to exhibit “chaotic” behavior, i.e., sensitive dependence on initial conditions. Fig. 5

reveals this phenomenon clearly. Is the trajectory in the lower part of Fig. 5 aperiodic? Fig. 6 is its spectrum

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8
x 10

−3

0 100 200 300 400 500 600 700 800 900 1000
−0.01

0

0.01

v(−1) = 0.0025, x(0) = (1−a)*v(−1)−1/1012

v(−1) = 0.0025+1/1012, x(0) = (1−a)*v(−1)−1/1012

Fig. 5. Sensitive dependence on initial conditions

produced using the function “pmtm” in Matlab. One can see that this trajectory contains a broad band of

frequencies.

Next let a = 1 and b = −3/10, and we get Figs. 7-8 where the horizontal axis denotes v(k − 1) and the

vertical axis stands for x(k). The first two (in Fig. 7) are eventually periodic orbits of different periods, the

third one (in Fig. 8) is aperiodic.

The complicated behavior of the system in Fig. 2 is due to its nonlinearity. To some extent, invariant sets

provide some measure of how complex the dynamics of a system is. According to the above examples, the
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−100
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Fig. 6. Spectrum of an aperiodic orbit.

the trajectory in the lower part of Fig. 5 aperiodic?
Figure 6 is its spectrum produced using the function
“pmtm” in Matlab. One can see that this trajectory
contains a broad band of frequencies.

Next let = 1 and 10, and we get
Figs. 7 and 8 where the horizontal axis denotes

1) and the vertical axis stands for ).
The first two (in Fig. 7) are eventually periodic
orbits of different periods, the third one (in Fig. 8)
is aperiodic.

The complicated behavior of the system in
Fig. 2 is due to its nonlinearity. To some extent,

v(

v(

Fig. 7. Two periodic orbits.

v(

Fig. 8. An aperiodic orbit.

invariant sets provide some measure of how com-
plex the dynamics of a system is. According to
the above examples, the invariant sets of the sys-
tem in Eq. (9) contain not only the origin, nonori-
gin fixed points (Fig. 3), but also periodic (Fig. 7)
and aperiodic orbits (Fig. 8). Furthermore, it may
contain a strange attractor if chaos is indeed
present in the system. In the rest of this subsec-
tion, we will analyze the dynamics of this sys-
tem. We always assume that 1 which
guarantees the boundedness of trajectories of the
system.

Fig. 6. Spectrum of an aperiodic orbit

invariant sets of the system in Eq. (9) contain not only the origin, non-origin fixed points (Fig. 3), but also

periodic (Fig. 7) and aperiodic orbits (Fig. 8). Furthermore, it may contain a strange attractor if chaos is

indeed present in the system. In the rest of this subsection, we will analyze the dynamics of this system. We

always assume that |a+ b| < 1 which guarantees the boundedness of trajectories of the system.

2.1.1 Case 1: |a| < 1

For convenience, define

ξ (k) :=

[
v (k − 1)
x (k)

]

,

then the system can be written as

ξ (k + 1) =

[
1 0
b a

]

ξ (k) + sk

[
−1 1
−b b

]

ξ (k)

:= (A+ skB) ξ (k) := F (ξ (k)) , ∀k ≥ 0, (10)

and

sk = 1 if |x (k)− v (k − 1)| > δ;

sk = 0 if |x (k)− v (k − 1)| ≤ δ. (11)

Based on this representation, the fixed points of the system are the line segment:

x =
b

1− a
v−, (12)

within the region:

|x− v−| ≤ δ. (13)

12
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(Note v− indicates that v is one step behind x.) For the local stability of fixed points, we have the following

result.

Proposition 1 For the system in Eq. (10) with |a| < 1, a local stability region, denoted by Rloc ⊂ R2, of its

fixed points is the region encircled by

|x− v | = δ, (14)

and

|v | = 1− |a|
1− (a+ b)

δ. (15)

Proof: Given an initial point (v (−1) , x (0)) ∈ Rloc, we have

x (1) = ax (0) + bv (−1) .

In general,

x (k) = akx (0) +

k−1∑

i=0

aibv (−1) , (16)

provided that

|x (k)− v (−1)| ≤ δ, ∀k > 0. (17)

Now we show that Eq. (17) indeed holds.

Since

x (k)− v (−1) = akx (0) +

k−1∑

i=0

aibv (−1)− v (−1)

= ak (x (0) − v (−1)) +
(

1− ak
) b+ a− 1

1− a
v (−1) ,

13
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one has

|x (k)− v (−1)| ≤
∣
∣
∣ak

∣
∣
∣ |x (0)− v (−1)|+

(

1− ak
) 1− (a+ b)

1− a
|v (−1)| .

If 0 ≤ a < 1, then

|x (k)− v (−1)| ≤ akδ +
(

1− ak
) 1− (a+ b)

1− a

1− a

1− (a+ b)
δ

= δ.

If −1 < a < 0 and ak > 0, then

|x (k)− v (−1)| ≤ akδ +
(

1− ak
) 1− (a+ b)

1− a

1 + a

1− (a+ b)
δ

=

(

ak +
(

1− ak
) 1 + a

1− a

)

δ

≤
(

ak +
(

1− ak
))

δ = δ.

If −1 < a < 0 and ak < 0, then

|x (k)− v (−1)| ≤ −akδ +
(

1− ak
) 1− (a+ b)

1− a

1 + a

1− (a+ b)
δ

=

(

−ak +
(

1− ak
) 1 + a

1− a

)

δ

=
1 + a− 2ak

1− a
δ.

Therefore it suffices to show that
1 + a− 2ak

1− a
≤ 1.

14



However, it is equivalent to

a ≤ ak,

which holds for −1 < a < 0 and ak < 0. By taking limit in Eq. (16) with respect to k, (v (k − 1) , x (k))

converges to a fixed point defined by Eqs. (12)-(13). The proof is completed. �

Having identified a local stability region, next we will study the following problem: Can the actual stability

region of the fixed points be larger than the region given in Proposition 1? We will see that this problem is

actually a difficult one in that it heavily depends on system parameters. Before doing so, we first concentrate

on the “one-dimensional case”, i.e., the dynamics of x, to get the globally attracting region of x of the system

in Eq. (9). We have the following result.

Proposition 2 The globally attracting region of x is given by

|x| ≤ |b|
1− |a+ b|δ. (18)

Furthermore, it is positively invariant.

Proof: According to Eq. (9),

x (1) = ax (0) + bv (0) = (a+ b) x (0) + b (v (0)− x (0)) ,

x (2) = ax (1) + bv (1) = (a+ b)2 x (0) + (a+ b) b (v (0)− x (0)) + b (v (1)− x (1)) ,

...

x (k) = (a+ b)k x (0) +
k−1∑

i=0

(a+ b)i b (v (k − 1− i)− x (k − 1− i)) ,

hence

|x (n)| ≤ |a+ b|n |x (0)|+ 1− |a+ b|n
1− |a+ b| |b| δ, ∀n ≥ 1. (19)

By taking limit on both sides, one gets Eq. (18). Moreover, if

|x (0)| ≤ |b|
1− |a+ b|δ,

then

|x (n)| ≤ |b|
1− |a+ b|δ, ∀n ≥ 1,

which means that the region given by Eq. (18) is positively invariant. �

Based on this observation, we are ready to derive a positive invariant set for the system in Eq. (10).

Theorem 1 For the system in Eq. (10), if

|b|
1− |a+ b| >

1− |a|
1− (a+ b)

,

15



then region defined by

|x| ≤ |b|
1− |a+ b|δ

and

|v−| ≤
|b|

1− |a+ b|δ

is a positively invariant set. Otherwise, the region defined by

|x| ≤ 1− |a|
1− (a+ b)

δ

and

|v−| ≤
1− |a|

1− (a+ b)
δ

is globally attracting, which indicates that the fixed points given by Eqs. (12)-(13) are the only invariant set

of the system (For convenience, we call such a system a generic system).

Proof: It readily follows from Proposition 1 and Proposition 2. �

The following result is an immediate consequence of Theorem 1.

Corollary 1 If the system in Eq. (10) satisfies either of

• a > 0 and b > 0;

• a < 0 and b < 0,

then it is a generic system.

Proof: Suppose a > 0 and b > 0. Then

|b|
1− |a+ b| =

b

1− (a+ b)
≤ 1− a

1− (a+ b)
=

1− |a|
1− (a+ b)

.

Hence the system is generic. On the other hand, given a < 0 and b < 0,

|b|
1− |a+ b| =

−b

1 + (a+ b)
,

1− |a|
1− (a+ b)

=
1 + a

1− (a+ b)
.

Since
−b

1 + (a+ b)
≤ 1 + a

1− (a+ b)

is equivalent to

a2 ≤ 1 + b2,

which says
|b|

1− |a+ b| ≤
1− |a|

1− (a+ b)
,

16



i.e., the system is generic. �

Theorem 1 tells us that, in order to have complex dynamics,

|b|
1− |a+ b| >

1− |a|
1− (a+ b)

(20)

must be satisfied. However, this is not a sufficient condition. For the case when

a = 9/10, b = −3/10,

(which satisfies Eq. (20)), we have already known that the system exhibits complicated dynamics (see Figs.

3-6). However, for the case when

a = 3/10, b = −9/10,

which also satisfies Eq. (20), there is no complex dynamic behavior, i.e., the system is generic. The following

argument provides a sufficient proof for this specific system.

Given (v (−1) , x (0)) satisfying

|x (0)− v (−1)| > δ,

one has

x (1) = (a+ b)x (0) ,

v (0) = x (0) .

Suppose

|x (1)− v (0)| > δ,

then

|x (0)| > δ

1− (a+ b)
, (21)

and

x (2) = (a+ b)x (1) = (a+ b)2 x (0) ,

v (1) = x (1) = (a+ b) x (0) .

If

|x (2)− v (1)| ≤ δ, (22)

and

|v (1)| ≤ 1− |a|
1− (a+ b)

δ,

then the trajectory will converge to some fixed point. Meanwhile,

|x (0)| ≤ 1− |a|
1− (a+ b)

1

|a+ b|δ. (23)

17



Note that Eq. (22) holds given Eq. (21). Therefore, only

δ

1− (a+ b)
≤ 1− |a|

1− (a+ b)

1

|a+ b|δ (24)

is required. Moreover, Eq. (24) is equivalent to

− b ≤ 1. (25)

Systems with

a = 3/10, b = −9/10, (26)

and

a = 8/10, b = −9/10, (27)

both satisfy Eq. (25). However, for a sufficiently large time k, any trajectory (v (k − 1) , x (k)) governed by Eq.

(26) will satisfy

|x (k)− v (k − 1)| > δ,

and

|x (k)| > δ

1− (a+ b)
.

consequently, it will converge to a fixed point. However, any trajectory (v (k − 1) , x (k)) governed by Eq. (27)

violates these two conditions, predicting complex dynamics, see Fig. 11 below.

We have already analyzed three cases:

• a > 0 and b > 0;

• a < 0 and b < 0;

• a > 0 and b < 0.

What about the case when a < 0 and b > 0? Next we will prove that such a system is generic. It is easy to

see that the transition matrix of the system in Eq. (9) is some combination of (a+ b)k and
(

am +
∑m−1

i=0 aib
)

with scalar multiplication as the involved operation, where k ≥ 0 and m > 1, since |a+ b| < 1, if

∣
∣
∣
∣
∣
am +

m−1∑

i=0

aib

∣
∣
∣
∣
∣
< 1 (28)

for all m > 1, the state x will tend to the origin unless it reaches a fixed point. In this case, the system is

generic. Via simple manipulation, Eq. (28) is equivalent to

0 ≤ (1− am)
1− (a+ b)

1− a
≤ 2. (29)

Given a < 0 and b > 0, define

f (m) := (1− am)
1− (a+ b)

1− a
, ∀m > 1,

18



then

f (m) ≥ 0, ∀m > 1,

and

f (3) = max
m>1

f (m) .

However,

f (3)− 2 =
(
1− a3

) 1− (a+ b)

1− a
− 2

=
(
1 + a+ a2

)
(1− (a+ b))− 2

≤ 0.

hence, Eq. (29) (then Eq. (28)) holds for all m > 1, which means the system is generic.

In the rest of this part, we will concentrate on a specific system and study its complexity. Consider the

system in Fig. 2, where
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if 1) 01

1) otherwise.

We make the following definitions (Fig. 9):

Hb :=

{(

− |

| ≤
− |

Hb :=

{(

− |
| ≤

− |

V b :=

{(

− |
δ, x | ≤

− |

V b :=

{(

− |
δ, x | ≤

− |

L
Hb+

L
Vb+

L
Hb-

L
Vb-

L
Va-

L
Va+

L
o

L

L
1

L

1
L

Fig. 9. Diagram for the case of = 0 9 and 3.

:= , x) : | ≤
− |

δ,

| ≤
− |

V a :=
− |

δ, x | ≤

V a :=
− |

δ, x | ≤

:= , x | ≤
− |

δ,

| ≤
− |

:= , x

:= , x

:= , x

:= , x = (

− |

:= , x = (

− |

Clearly, is the set of equilibria, is a local
stability region of , and is a globally attracting

Fig. 9. Diagram for the case of a = 0.9 and b = −0.3

x(k + 1) = ax(k) + bv(k),

uc(k) = x(k), (30)

with a = 0.9, b = −0.3, v(−1) ∈ R, and for k ≥ 0,

v(k) = H1 (uc (k) , v(k − 1)) =

{
uc(k), if |uc (k)− v (k − 1)| > 0.01,
v(k − 1), else.
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We make the following definitions (Fig. 9):

LHb+ :=

{(

v−,
−b

1− |a+ b|δ
)

: |v−| ≤
−b

1− |a+ b|δ
}

,

LHb− :=

{(

v−,
b

1− |a+ b|δ
)

: |v−| ≤
−b

1− |a+ b|δ
}

,

LV b+ :=

{( −b

1− |a+ b|δ, x
)

: |x| ≤ −b

1− |a+ b|δ
}

,

LV b− :=

{(
b

1− |a+ b|δ, x
)

: |x| ≤ −b

1− |a+ b|δ
}

,

Ib :=

{

(v−, x) : |v−| ≤
−b

1− |a+ b|δ, |x| ≤
−b

1− |a+ b|δ
}

.

LV a+ :=

{(
1− |a|

1− (a+ b)
δ, x

)

, : |x| ≤ −b

1− (a+ b)
δ

}

,

LV a− :=

{(

− 1− |a|
1− (a+ b)

δ, x

)

, : |x| ≤ −b

1− (a+ b)
δ

}

,

Ia :=

{

(v−, x) ∈ Ib : |v−| ≤
1− |a|

1− (a+ b)
δ, |x| ≤ −b

1− |a+ b|δ
}

.

Lo :=

{

(v−, x) ∈ Ia : x =
b

1− a
v−

}

,

Lδ+ := {(v−, x) ∈ Ib : x− v− = δ} ,

Lδ− := {(v−, x) ∈ Ib : x− v− = −δ} ,

L1δ+ :=

{

(v−, x) ∈ Ib : x = (a+ b) v−, v− >
1− |a|

1− (a+ b)
δ

}

,

L1δ− :=

{

(v−, x) ∈ Ib : x = (a+ b) v−, v− < − 1− |a|
1− (a+ b)

δ

}

.

Clearly, Lo is the set of equilibria, Ia is a local stability region of Lo, and Ib is a globally attract-

ing region and is also positively invariant. Denote the two endpoints of Lo by E+ and E−, i.e., E+ =
(

− 1−|a|
1−(a+b)δ,−

1−|a|
1−(a+b)δ + δ

)

and E− =
(

1−|a|
1−(a+b)δ,

1−|a|
1−(a+b)δ − δ

)

. Define

Es := Lo\
{
E+, E−

}
:=

{
(v−, x) ∈ Lo : (v−, x) /∈

{
E+, E−

}}
.

Then each point in Es is stable in the sense of Lyapunov, however it is not asymptotically. As for the stability

of E+ (resp. E−), each trajectory starting from a point in Ib on v− = 1−|a|
1−(a+b)δ (resp. v− = − 1−|a|

1−(a+b)δ) will

converge to E+ (resp. E−). How about trajectories starting from points in Ib\Ia sufficiently close to E+ (resp.

E−)? It turns out that they never converge to E+ (or E−); therefore the two equilibria E+ (resp. E−) are not

stable. To wit, we need more preparations.

For convenience, we regard the system in Eq. (30) as a map, i.e., adopt the notation defined in Eq. (10):

ξ (k + 1) = F (ξ (k)) .
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Given a set Ω ⊂ Ib, define

pren (Ω) := {(v−, x) ∈ Ib : F
n ((v−, x)) ⊂ Ib} , ∀n ≥ 0, (31)

where F 0 ((v−, x)) = (v−, x), iteratively Fn ((v−, x)) = Fn−1 ((v−, x)) for n ≥ 1.

Then

Lδ−\
{(

1− |a|
1− (a+ b)

δ,
1− |a|

1− (a+ b)
δ − δ

)}

⊂ pre2 (L1δ−) ,

Lδ−\
{(

− 1− |a|
1− (a+ b)

δ,− 1− |a|
1 − (a+ b)

δ + δ

)}

⊂ pre2 (L1δ−) .

Based on this observation, we have

F (Ib\ {LV a− ∪ LV a+}) ⊂ Ib\ {LV a− ∪ LV a+} ,

i.e., Ib\ {LV a− ∪ LV a+} is positively invariant. As a result, trajectories starting from points in Ib\ {LV a− ∪ LV a+},
no matter how close to E+ (resp. E−) they are, will not converge to E+ (resp. E−), indicating that neither

E+ nor E− is locally stable.

Moreover, for a given set Ω ⊂ Ib\ {LV a− ∪ LV a+}, define

Imgn (Ω) := {Fn (Ω)} ,

Ψ(Ω) := ∪∞
n=0Imgn (Ω) ,

then it is easy to verify that

F (Ψ (L1δ+)) ⊂ Ψ(L1δ+) ,

F (Ψ (L1δ−)) ⊂ Ψ(L1δ−) ,

which furthermore imply all trajectories starting within Ib\ {LV a− ∪ LV a+} will eventually move along the line

segment Ψ (L1δ+) = Ψ (L1δ−). For a point ξ ∈ Ib\ {LV a− ∪ LV a+}, let ω (x) denote its ω−limit set, define

ω (Ib\ {LV a− ∪ LV a+}) :=
{
∪ξ∈Ib\{LV a−∪LV a+}ω (ξ)

}
,

then

ω (Ib\ {LV a− ∪ LV a+}) ⊂ Ψ(L1δ+) .

Obviously

ω (Ia) = Lo.

Thus we get a characterization of the ω−limit sets of the system in Eq. (30). However, we have to admit

that this characterization is somewhat crude because all trajectories starting within Ib\ {LV a− ∪ LV a+} will

eventually move along merely a part of each line segment in Ψ (L1δ+) instead of the whole line segment. Fig.
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10 given later will visualize this observation. Now the problem of finding the exact ω−limit set of the system

is still under our study. Nevertheless, adopting the argument on pp. 24 in Robinsion [1995], it is easy, though

not straightforward due to the nature of the map F , to show that this ω−limit set is indeed invariant. By

extensive simulation, we find that this ω−limit set is also topological transitive, however, up to now we have

not been able to build solid theoretic background to support it.

Based on the above analysis, it is fair to say that the dynamics of the system in Eq. (30) is remarkably

complicated: It indeed exhibits the feature of sensitive dependence on initial conditions, this sensitivity locates

only on ∪∞
n=0 (pre

n (Lδ−) ∪ pren (Lδ+)), a subset of ∪∞
n=0 (pre

n (L1δ− ∪ L1δ+)). Hence it is weakly chaotic. Next

we will calculate its generalized topological entropy in the spirit of Kopf [2000] and Galatolo [2003].

Denote by Ibinv+ the region encircled by the lines LV a+, LV b+, L1δ+, Img1(Lδ−). Similarly denote the

region encircled by the lines LV a−, LV b−, L1δ−, Img1(Lδ+) by Ibinv−, based on the above analysis, we have the

following claim:

Claim 1: The steady state of the system will settle in the region Ibinv+∪ Ibinv−.

This claim is a straightforward application of the foregoing analysis, however it plays an important role in

the calculation of the topological entropy of the system.

For the definition of topological entropy for piecewise monotone transformations with discontinuities, please

refer to Kopf [2000]. Now we will give a construction in order to compute the topological entropy for our system,

which is clearly piecewise monotone (under some metric defined on the system rather than under the usual

Euclidean metric; however, this is not essential.) with discontinuities.

Define

PimF (0) := {Lδ−, Lδ+} ,

PimF (1) := {L : L ∩ PimF (0) = φ, F (L) ⊂ PimF (0)} ,
...

PimF (m) :=
{
L : L ∩

(
∪m−1
i=0 PimF (0)

)
= φ, Fm (L) ⊂ PimF (0)

}
, m ≥ 1, (32)

where φ stands for the empty set. Note that the elements in each PimF (m) are line segments.

Denote by # (PimF (m)) the number of elements in PimF (m).

Before calculating the topological entropy, we need to pay a bit more attention to the mapping F . Clearly,

according to Fig. 9 there exists a positive integer M such that

preM+l (Lδ+) ∩ L1δ− 6= φ,

preM+l (Lδ−) ∩ L1δ+ 6= φ, ∀l ≥ 1. (33)

In fact, each set of intersections contains exactly one element (one line segment). For each given integer

n > 0, define

#F (n) :=

n∑

m=0

#(PimF (m)) ,
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and define the topological entropy of F as

ℵ (F ) := lim
n→∞

log#F (n)

n
, (34)

which is well-defined (see the proof below). Then we have

Theorem 2 For the system in Eq. (30), the following statements hold:

• For m ≤ M ,

#(PimF (m)) = 2. (35)

• For m > M ,

#(PimF (m)) = 2 + 2 · (m−M) , (36)

and

ℵ (F ) = 0. (37)

Proof: Eq. (35) is self-evident, Eq. (36) follows from Claim 1 restricting # (PimF (m)) on Ibinv+∪ Ibinv− for

m > M and the analysis above. Then for sufficiently large n (n ≥ M),

#F (n) = 2 (M + 1) + 2
(n−M) (n−M + 1)

2
,

thus

ℵ (F ) := lim
n→∞

log#F (n)

n

= lim
n→∞

log (2 (M + 1) + (n−M) (n−M + 1))

n

= 0.

�

Remark 2: In light of this result, from the perspective of topological entropy, our system is a weakly chaotic

system.

The above discussion is mainly for the case of |b| < a. For example, given a = 0.9 and b = −0.3, Fig. 10

plots a trajectory at large time instants, i.e., its asymptotic behavior. Now consider the case when a = 0.8 and

b = −0.9, hence |b| < a, and we also draw its asymptotic behavior in Fig. 11 from the same initial point. We

observe that their asymptotic behavior is different. The reason is still unclear up to now.
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Fig. 10. A trajectory at large time instants for < a

, and Img ) by binv , based on the above
analysis, we have the following claim:

Claim 1. The steady state of the system will settle

in the region binv+ binv

This claim is a straightforward application of
the foregoing analysis, however it plays an impor-
tant role in the calculation of the topological
entropy of the system.

For the definition of topological entropy for
piecewise monotone transformations with disconti-
nuities, please refer to [Kopf, 2000]. Now we will give
a construction in order to compute the topological
entropy for our system, which is clearly piecewise
monotone (under some metric defined on the sys-
tem rather than under the usual Euclidean metric;
however, this is not essential) with discontinuities.

Define

Pim (0) := , L

Pim (1) := Pim (0) = φ,

Pim (0)

Pim ) :=
=0

Pim (0) φ,

Pim (0) , m

(32)

where stands for the empty set. Note that the
elements in each Pim ) are line segments.

Denote by #(Pim )) the number of elements
in Pim ).

Before calculating the topological entropy, we
need to pay a bit more attention to the mapping
Clearly, according to Fig. 9 there exists a positive
integer such that

pre φ,

pre φ,
(33)

In fact, each set of intersections contains
exactly one element (one line segment). For each
given integer n > 0, define

) :=
=0

#(Pim ))

and define the topological entropy of as

) := lim
→∞

log#
(34)

which is well-defined (see the proof below). Then
we have

Theorem 2. For the system in Eq. 30 the follow-

ing statements hold

For M,

#(Pim )) = 2 (35)

For m > M,

#(Pim )) = 2 + 2 (36)

and

) = 0 (37)

Fig. 10. A trajectory at large time instants for |b| < a

2.1.2 Case 2: a = 1

Consider the system

x(k + 1) = x(k) + bv(k),

uc(k) = x(k), (38)

where |1 + b| < 1. Let v(−1) ∈ R, and for k ≥ 0,

v(k) = H1 (uc (k) , v(k − 1)) =

{
uc(k), if |uc (k)− v (k − 1)| > 0.01,
v(k − 1), otherwise.

Figs. 7-8 show that the dynamics of the system in Eq. (38) can be fairly complicated. In the rest of this

subsection we mainly study the problem when the system will have periodic orbits. From now on, we assume

−1 ≤ b < 0.

For this case, LV a−, LV a+ and Lo in Fig. 9 now become one line segment

L := {(0, x) : |x| ≤ δ} .

Define

Γin := {(v−, x) ∈ Ib : |x− v−| ≤ δ} ,

and

Γex := Ib\Γin,

the following is a necessary condition for the existence of periodic orbits.
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Proof. Equation (35) is self-evident, Eq. (36) fol-
lows from Claim 1 by restricting #(Pim )) on

binv+ binv for m > M and the analysis above.
Then for sufficiently large ),

) = 2( + 1) + 2
)( + 1)

thus

) := lim
→∞

log #

= lim
→∞

log(2( + 1) + ( )( + 1))

= 0

Remark 2. In light of this result, from the perspec-
tive of topological entropy, our system is a weakly
chaotic system.

The above discussion is mainly for the case of
< a. For example, given = 0 9 and 3,

Fig. 10 plots a trajectory at large time instants,
i.e. its asymptotic behavior. Now consider the case
when = 0 8 and 9, hence < a, and we
also draw its asymptotic behavior in Fig. 11 from
the same initial point. We observe that their asymp-
totic behavior is different. The reason is still unclear
up to now.

2.1.2. Case 2 = 1

Consider the system

+ 1) = ) + bv

) =
(38)

where 1 + 1. Let 1) , and for 0,

) = , v 1))

if 1) 01

1) otherwise.

Figures 7 and 8 show that the dynamics of the sys-
tem in Eq. (38) can be fairly complicated. In the
rest of this subsection we mainly study the problem
when the system will have periodic orbits. From
now on, we assume

b <

For this case, V a V a and in Fig. 9 now
become one line segment

:= (0, x) : | ≤

Define

in := , x | ≤

and

ex := in

the following is a necessary condition for the exis-
tence of periodic orbits.
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Fig. 11. A trajectory at large time instants for > a

Fig. 11. A trajectory at large time instants |b| > a

Theorem 3 If the system in Eq. (38) has periodic orbits, then there exist an even integer n > 0 and integers

Ki > 0 such that
n∏

i=1

(1 +Kib) = 1. (39)

Without loss of generality, we here prove the case of n = 2. The following Lemma is used in the proof of

Theorem 3:

Lemma 2 Suppose ξ0 ∈ Γex is a point on a periodic orbit at time K0, it will be inside Γin at K0 + 1.

Proof: Let ξ0 =

[
v−
x

]

. Then

ξ1 =

[
v1
x1

]

,

where,

x1 = (a+ b) x,

v1 = x.

Hence

|x1 − v1| = |1− (a+ b)| |x| = |b| |x| .

Since
[
v− x

]′

is the steady state (a periodic point),

|x| ≤ |b| δ
1− (a+ b)

= δ.
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One obtains

|x1 − v1| = |1− (a+ b)| |x| ≤ |b| δ ≤ δ,

i.e., ξ1 ∈ Γin. �

Note that Lemma 2 is not trivial because there are systems such as the case when a = 3/10 and b = −9/10

violating this property.

Proof of Theorem 3: Without loss of generality, suppose the periodic orbit begins with ξ0 ∈ Γex , and by

Lemma 2,

ξ1 = A1ξ0 ∈ Γin, (40)

where

A1 =

[
0 1
0 1 + b

]

.

Assume after a time K1 the state

ξ2 = (A1 +A2)
K1−1 ξ1

is in Γex, where

A2 =

[
1 −1
b −b

]

.

Then

ξ3 = A1ξ2 ∈ Γin.

After a time K2 the state

ξ4 = (A1 +A2)
K2−1 ξ3

returns to ξ0. Then

(A1 +A2)
K2−1 A1 (A1 +A2)

K1−1 A1ξ0 = ξ0. (41)

By straightforward algebraic computations, one gets

dcx = x, (42)

dx = v−,

where

d = 1 +K2b, c = 1 +K1b.

Since ξ0 is outside the sector,

|x− v−| > δ.

According to Eq. (42), note that c 6= 0, d 6= 0, then

cd = 1. (43)
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Given a = 1,

K1 +K2 = K1K2 (−b) , (44)

which is equivalent to Eq. (39) for n = 2. �

Remark 3: Theorem 3 provides a necessary condition for having periodic orbits. Interestingly for the case

of n = 2, extensive experiments imply that there are periodic orbits of period K1 + K2 if K1 and K2 satisfy

Eq. (39), and there are no periodic orbits if there are no such K1 and K2 that satisfy Eq. (39). Based on the

observation, Theorem 3 is not severely conservative.

Following the above analysis, we immediately have

Corollary 2 Suppose a is rational and b is irrational in Eq. (10), then there are no periodic orbits.

Proof: Following the proof above, it suffices to show that

n∏

i=1



aKi +

Ki−1∑

j=0

ajb



 = 1 (45)

has no positive integer solutions for any given even number n > 0. This can be easily verified. �

Though the above result is simple, its significance can not be underestimated: If a system has periodic

orbits, then it is not structurally stable.

Now suppose a system has periodic orbits, how to find them? And how to determine their periods? we first

consider an example.

Example 1: In the case when a = 1 and b = −0.3, there are two periodic solutions. One is of period 24

corresponding to K1 = 4 and K2 = 20, the other is of period 15 corresponding to K1 = 5 and K2 = 10. Observe

that

−b = 0.3 =
3

2 · 5 :=
p

q1 · q2
,

where p = 3, q1 = 2, q2 = 5. Interestingly

4 =
q2 + 1

p
q1, 20 =

q2 + 1

p
q1·q2,

5 =
q1 + 1

p
q2, 10 =

q1 + 1

p
q1·q2.

Based on this observation, we propose a necessary condition for Theorem 3 for the case when n = 2.

Theorem 4 Given

a = 1 and b = −p

q
,

suppose positive integers p and q satisfy 1 < p < q, p 6= 2(which is the trivial case), and gcd(p, q) = 1, i.e., the

greatest common divisor of p and q is 1. Define

∆ := {qi : qi is a prime number, qi|q} . (46)
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Then if p| (qi + 1), (
qi + 1

p

q

qi
,
qi + 1

p
q

)

is a solution of Eq. (39).

Proof: Obviously, given p| (qi + 1),
(
qi+1
p

q
qi
, qi+1

p
q
)

is a solution of Eq. (39). Now we show how the set ∆ is

constructed in the above way. Given qi ∈ ∆, If there are two positive numbers m and n satisfying

1

m
+

1

n
=

p

qi
, (47)

then
(

m q
qi
,mq

)

is a solution to Eq. (39). Hence we need only to pay attention to solutions to Eq. (47).

Suppose (m,n) is a solution of Eq. (47), then either gcd (m, qi) = 1 or gcd (n, qi) = 1 (otherwise, p = 2 or does

not exist). For convenience, we always assume gcd (m, qi) = 1. According to Eq. (47),

m+ n

nm
=

p

qi
,

i.e.,

(m+ n) qi = pmn.

Then qi|pmn. Since gcd (p, qi) = gcd (m, qi) = 1, qi|n. Let

n = kqi, (48)

which leads to
1

m
+

1

kqi
=

p

qi
.

Consequently,

m (pk − 1) = kqi,

hence m|kqi. Since gcd (m, qi) = 1, m|k. In light of Eq. (48), we set

n = ml.

Substituting it into Eq. (47), one has
1

m
+

1

ml
=

p

qi
,

equivalently,

mpl = qi (l + 1) ,

which means qi|mpl. i.e., qi|l. Similarly, l|qi (l + 1), hence l = qi. Therefore,

m =
qi + 1

p
.

If p| (qi + 1), then (
qi + 1

p
,
qi + 1

p
qi

)
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solves Eq. (47), and (
qi + 1

p

q

qi
,
qi + 1

p
q

)

is a solution of Eq. (39). �

The above theorem provides a construction for the solutions to Eq. (39). However, this is somewhat

inadequate. For example, for a = 1 and b = −3
7 , the set ∆ is empty. There are no positive integers satisfying

Eq. (39) for n = 2 either. This is good for us. However for a = 1 and b = − 3
2·5·11 , we have the following

observations (Table 1):

Table 1. Some periodic orbits
(v−, x0)

(
7

1000 , 0
) (

2
1000 , 0

) (
1

1000 , 0
) (

1
2000 , 0

)

Periods 165 147 243 480

(v−, x0)
(

1
2000 ,

1
2000

) (
1

2000 ,
1

8000

) (
1

2000 ,
1

8500

) (
1

3000 , 0
)

Periods 264 480 243 1083

Periods 165, 264 and 480 can be obtained based on Theorem 4, however, others can not. Actually there

are more periodic and aperiodic orbits (Table 2):

Table 2. More periodic orbits and aperiodic orbits

(v−, x0)
(

δ
1000 ,

(a+b)δ
1000

) (
δ

100 ,
(a+b)δ
100

) (
δ
10 ,

(a+b)δ
10

) (
2δ
10 ,

2(a+b)δ
10

)

Periods 4107 264 243 165

(v−, x0)
(
4δ
10 ,

4(a+b)δ
10

) (
9δ
20 ,

9(a+b)δ
20

) (
5δ
10 ,

5(a+b)δ
10

) (
6δ
10 ,

6(a+b)δ
10

)

Periods aperiodic aperiodic 147 aperiodic

(v−, x0)
(
7δ
10 ,

7(a+b)δ
10

) (
8δ
10 ,

8(a+b)δ
10

) (
9δ
10 ,

9(a+b)δ
10

) (
10δ
10 ,

10(a+b)δ
10

)

Periods 165 165 243 4107

Furthermore, we observed that there are at least 55 solutions to Eq. (39) for n = 4.

The foregoing analysis tells us:

• There may exist periodic orbits of very large periods.

• There are always aperiodic orbits.

Inspired by the proof of Corollary 2, especially by Eq. (45), now we attempt to construct systems with

|a| < 1 that have periodic orbits. First choose n = 2, a = 9/10, choose K1 = 15 and K2 = 7. Then
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b = − 9015229097816388767119

41428905812371212328810

solves Eq. (45). Surprisingly the trajectory starting from

(v−, x0) =

( −b ∗ δ
1− |a+ b| −

1

104
, 0

)

will become a periodic orbit of period 22(= K1 + K2) after some iterations, i.e., it is an eventually periodic

orbit. It can be shown this periodic orbit is locally stable. However, a trajectory starting outside the stability

region, say, from

(v−, x0) =

( −b ∗ δ
1− |a+ b| −

1

104
,

1

103

)

is aperiodic. For the case when |a| > 1, suppose a = 11/10, choose K1 = 7 and K2 = 5. Then

b = −2138428376721

5792012767210

solves Eq. (45). And the trajectory starting from

(v−, x0) =

(
δ

105
,
(a+ b) ∗ δ

105

)

will become a periodic orbit of period 12(= K1 + K2) after some iterations, i.e., it is an eventually periodic

orbit. It can be shown this periodic orbit is also locally stable and there are aperiodic orbits too.

Remark 4: From this construction, one finds out that most systems with |a| < 1 or |a| > 1 will be unlikely

to have periodic orbits.

2.1.3 Case 3: |a| > 1

This case is analogous to that of |a| < 1 except that all the fixed points are unstable. The Fig. 12 is one

trajectory at sufficiently large time instants.

The complex dynamics exhibited by our system is due to its nonlinearity. This is different from a quantized

system. The complicated behavior of an unstable quantized scalar system is extensively studied in Delchamps

[1988, 1989, 1990], Fagnani & Zampieri [2003], etc. In Delchamps [1990], it is mentioned that given that

the system parameter a is stable, a quantized system may have many fixed points as well as many periodic

orbits which are all asymptotically stable. However, for our constrained systems, most of them will not possess

periodic orbits. For the systems with a = 1, periodic orbits are locally stable, this is not the case of for

a quantized system (Delchamps [1990]). Given that a is unstable, the ergodicity of the quantized system is

studied in Delchamps [1990]. In essence, related results there depend heavily on the affine representation of

the system by which the system is piecewise expanding, i.e., the absolute value of derivative of the piecewise

affine map in each interval is greater than 1. Based on this crucial property, the main theorem (Theorem 1) in

Lasota & Yorke [1973] and then that of Li & Yorke [1978] are employed to show there exists a unique invariant
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Fig. 12. A trajectory at large time instants.

a quantized system. The complicated behavior of
an unstable quantized scalar system is extensively
studied in [Delchamps, 1988, 1989, 1990], [Fagnani
& Zampieri, 2003], etc. In [Delchamps, 1990], it is
mentioned that given that the system parameter
is stable, a quantized system may have many fixed
points as well as many periodic orbits which are
all asymptotically stable. However, for our systems,
most of them will not possess periodic orbits. For
the systems with = 1, periodic orbits are locally
stable, this is not the case of for a quantized sys-
tem [Delchamps, 1990]. Given that is unstable,
the ergodicity of the quantized system is studied in
[Delchamps, 1990]. In essence, related results there
depend heavily on the affine representation of the
system by which the system is piecewise expanding,
i.e. the absolute value of derivative of the piecewise
affine map in each interval is greater than 1. Based
on this crucial property, the main theorem (The-
orem 1) in [Lasota & Yorke, 1973] and then that
of Li and Yorke [1978] are employed to show there
exists a unique invariant measure under the affine
mapping and which is also ergodic with respect to
that mapping. Therefore ergodicity is established
for scalar unstable quantized systems. However, this
is not the case for our system. Though the system is
piecewise linear, it is singular with respect to the
Lebesgue measure and furthermore, the derivative
of the system in the region Γin is ( ), whose abso-
lutely value is strictly less than 1. Hence the results
in [Lasota & Yorke, 1973] and [Li & Yorke, 1978]

are not applicable here. By extensive experiments,
we strongly believe that the system indeed has the
property of ergodicity, however, the problem still
remains open.

To appreciate what qualitative behavior of a
higher dimensional system can have, we give the
following example.

Example 2. Suppose the system in Fig. 2 is
given by

+ 1) = 2 ) + 3

) =

and the controller is given by

+ 1) = ) + 1

) =

) =

where ) and ) are outputs of Eqs. (4) and
(5) respectively. We set 0. We call the result-
ing system Σ . It is easy to see that the closed-
loop system without the constraints and
is asymptotically stable. Under and , three
figures, Figs. 13–15, are drawn. The first is for

1), x )), the second for ( 1), x )) and
the last for ( , x )).

Next we analyze the chaotic behavior of sys-
tem Σ using nonlinear data analysis. First we
show sensitive dependence on initial conditions.

Fig. 12. A trajectory at large time instants

measure under the affine mapping and which is also ergodic with respect to that mapping. Therefore ergodicity

is established for scalar unstable quantized systems. However, this is not the case for our system. Though the

system is piecewise linear, it is singular with respect to the Lebesgue measure and furthermore, the derivative

of the system in the region Γin is (a+ b), whose absolutely value is strictly less than 1. Hence the results in

Lasota & Yorke [1973] and Li & Yorke [1978] are not applicable here. By extensive experiments, we strongly

believe that the system indeed has the property of ergodicity, however, the problem still remains open.

To appreciate what qualitative behavior of a higher dimensional system can have, we give the following

example.

Example 2: Suppose the system G in Fig. 2 is given by

x (k + 1) = 2x(k) + 3v(k),

yc(k) = x(k),

and the controller C is given by

xd (k + 1) = −2xd(k) + 1.5ec(k),

uc(k) = xd(k),

ec(k) = r (k)− z (k) ,

where v(k) and z (k) are outputs of Eqs. (4)-(5) respectively. We set r ≡ 0. We call the resulting system

Σo. It is easy to see that the closed-loop system without the constraints H1 and H2 is asymptotically stable.

Under H1 and H2, three figures, Figs. 13–15, are drawn. The first is for (v (k − 1) , x (k)), the second for

(z (k − 1) , xd(k)) and the last for (x (k) , xd(k)).
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Fig. 13. Plot of ( 1), x )) at large time instants ( 95 000).

Fig. 14. Plot of ( 1), x )) at large time instants ( 95 000).

Choose an initial condition [ 1), x(0), z 1)
(0)] = [ 1000 1000 1000 1000],

set the iteration number to be 600 000, then
we get a trajectory of ; perturb the initial
condition above slightly to [ 1000 1000 +
1013 1000 1000], under the same iter-

ation, we get another trajectory of , the fol-
lowing plot (Fig. 16) is the difference between
these two of the last 1200 points of the itera-
tion: From this figure, one can clearly see sensi-
tive dependence on initial conditions. In general,

the spectra of a chaotic orbit will be continuous.
Here we draw the spectrum of starting from

1000 1000 1000 1000] (Fig. 17):
What about the Lyapunov exponents? Based on the
last 10 000 point of , using the software “Chaos
Data Analyzer”, choosing parameters = 3, = 3
and = 10 , we get the largest Lyapunov expo-
nent 0 407 027, indicating the trajectory is
indeed a chaotic one.

Now we look at the dynamics of Example 2 geo-
metrically. For a given dynamical system, generally

Fig. 13. Plot of (v (k − 1) , x (k)) at large time instants (≥ 95000)

Next we analyze the chaotic behavior of system Σo using nonlinear data analysis. First we show sensitive

dependence on initial conditions. Choose an initial condition

[v(−1), x(0), z(−1), xd(0)] = [−1/1000, 1/1000, 2/1000,−1/1000],

set the iteration number to be 600000, then we get trajectory of x; perturb the initial condition above slightly

to [−1/1000, 1/1000 + 1/1013, 2/1000,−1/1000], under the same iteration, we get another trajectory of x, the

following plot (Fig.16) is the difference between these two x of the last 1200 points of the iteration: From this

figure, one can clearly see sensitive dependence on initial conditions. In general, the spectra of a chaotic orbit

will be continuous. Here we draw the spectrum of x starting from [−1/1000, 1/1000, 2/1000,−1/1000] (Fig.

17): What about the Lyapunov exponents? based on the last 10000 point of x, using the software “Chaos

Data Analyzer”, choosing parameters D = 3, n = 3 and A = 10−4, we get the largest Lyapunov exponent

0.407 ± 0.027, indicating the trajectory is indeed a chaotic one.

Now we look at the dynamics of Example 2 geometrically. For a given dynamical system, generally compli-

cated manifold structure will lead to complex dynamics. we now indicate that the manifold structure of system

Σo is indeed very complicated. To simplify the discussion, suppose there is no constraint H2 in Fig. 2, i.e.,

v(k) ≡ uc(k). The fixed points of the system Σo is given by

{

(x, xd, z ) : x =
3

2
z−, xd = −1

2
z−, |z−| ≤ 2δ

}

(49)

Define

x :=
[
x xd z

]′

,
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Fig. 13. Plot of ( 1), x )) at large time instants ( 95 000).

Fig. 14. Plot of ( 1), x )) at large time instants ( 95 000).

Choose an initial condition [ 1), x(0), z 1)
(0)] = [ 1000 1000 1000 1000],

set the iteration number to be 600 000, then
we get a trajectory of ; perturb the initial
condition above slightly to [ 1000 1000 +
1013 1000 1000], under the same iter-

ation, we get another trajectory of , the fol-
lowing plot (Fig. 16) is the difference between
these two of the last 1200 points of the itera-
tion: From this figure, one can clearly see sensi-
tive dependence on initial conditions. In general,

the spectra of a chaotic orbit will be continuous.
Here we draw the spectrum of starting from

1000 1000 1000 1000] (Fig. 17):
What about the Lyapunov exponents? Based on the
last 10 000 point of , using the software “Chaos
Data Analyzer”, choosing parameters = 3, = 3
and = 10 , we get the largest Lyapunov expo-
nent 0 407 027, indicating the trajectory is
indeed a chaotic one.

Now we look at the dynamics of Example 2 geo-
metrically. For a given dynamical system, generally

Fig. 14. Plot of (z (k − 1) , xd(k)) at large time instants (≥ 95000)

T :=





1 0 −3
2

0 1 1
2

0 0 1



 ,

x̃ :=
[
x̃ x̃d z̃

]′

= Tx.

Then the system under new coordinates is

Σn1 : x̃ (k + 1) =





1
2 3 −3

4
−1 −2 −1

2
1 0 3

2



 x̃ (k)

under

|x̃− z̃ | > δ, (50)

and

Σn2 : x̃ (k + 1) =





2 3 0
0 −2 0
0 0 1



 x̃ (k)

under

|x̃− z̃ | ≤ δ. (51)

For convenience, we denote this system by Σn. It is easy to see that the fixed points of Σn are

{(0, 0, z̃ ) : |z̃−| ≤ 2δ} . (52)

Some comments are appropriate here:

• The subsystem Σn1 is a stable system.
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Fig. 15. Plot of ( , x )) at large time instants ( 95 000).

Fig. 16. Sensitive dependence on initial conditions.
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• If Eq. (51) is satisfied, a trajectory (governed by Σn2) will move on a surface

z̃− = γ

for some γ ∈ [−2δ, 2δ]. We call such a surface Ωγ . The point (0, 0, γ) is the origin of Σn2 on Ωγ .

Furthermore, the line

Γs,γ : x̃ = 0, z̃− = γ (53)

is the stable manifold of Σn2 and similarly, the line

Γu,γ : x̃d = 0, z̃− = γ (54)

is the unstable manifold of Σn2.

Suppose a trajectory Γ of the system Σn starts from a point p and is governed by Σn2, if p ∈ Γu,γ (or in

general p /∈ Γs,γ) on some surface Ωγ , then the trajectory will contract along x̃d−axis and stretch along x̃−axis.

Due to the Eq. (51), after some time, Γ will move according to the stable subsystem Σn1. At this moment, Γ

will leave the surface Ωγ , and move toward the origin (0, 0, 0). Due to the Eq. (50), after some time, it will

move again on some surface Ωγ
′ for some γ

′ ∈ [−2δ, 2δ]. If it is not exactly on the line Γs,γ
′ , it will once more

contract along x̃d−axis and stretch along x̃−axis and repeat the above behavior. So normally a trajectory

never settles done, indicating its intriguing behavior.

2.2 Chaotic control?

The complex dynamical behavior of the system in Fig. 2 has been studied in detail in the foregoing sections,

compared to the standard control scheme such as that in Fig. 2, whose dynamics can only be either converging
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to the origin, or being periodic or unbounded trajectories, the scheme adopted in Fig. 2 provides much more

dynamical properties. Of course this means that a control engineer has more flexibility at his/her disposal.

This is particularly attracting from the viewpoint of multi-purpose control. We believe this is the main merit

this control scheme can provide. In this subsection, we will study the following problem: Given a control

performance specification, can we achieve it by possibly adjusting the system parameters? We will discuss two

control specifications:

(1) The system has one unique fixed point.

(2) A periodic orbit is desirable.

For item (1), without loss of generality, assume that the desirable unique fixed point is the origin. If the

parameter a in the system in Eq. (9) satisfies |a| < 1, then we can achieve asymptotic stability with respect

to the origin by adjusting the nonlinear block H1, though the system itself has no such property. According to

Fig. 9, we need merely to let the value v (k − 1) stored in H1 be 0 when |x (k)| < δ (This feature is illustrated

in Figs. 10-11). Then the trajectory will move along the x−axis toward the origin, i.e., the asymptotic stability

of the origin is achieved. If the parameter a in the system in Eq. (9) satisfies |a| ≥ 1, we can not expect

asymptotic stability of the origin because it itself is unstable. However, we can keep the trajectory arbitrarily

close to the origin at large time instants, by adopting the following scheme: Suppose it is desirable to keep

the trajectory within the distance ǫ around the origin, then choose δ small enough so that x (k∗) satisfies

|x (k∗)| < ǫ/ |a|2 at some time instant k∗(this can be realized, see Fig. 12). Next let v (k∗ − 1) = 0 when

|x (k∗)| < ǫ/ |a|. If |a| = 1, then the trajectory will stay at (0, x (k∗)) forever. The goal is achieved. On

the other hand, assume a > 1. If x (k∗) > 0, we first let the trajectory move along the x−axis until we get
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Then the system under new coordinates is

+ 1) =

1 0

under

> δ, (50)

and

+ 1) =

2 3 0

2 0

0 0 1

under

| ≤ δ. (51)

For convenience, we denote this system by Σ . It is
easy to see that the fixed points of Σ are

(0 ) : | ≤ (52)

Some comments are appropriate here:

The subsystem Σ is a stable system.
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x (k∗ + 1) < ǫ/ |a|, then choose v (k∗) > 0. In this way (x (k∗ + 1) , v (k∗)) is below the line segment of fixed

point (then (x (k∗ + 1) , v (k∗)) will move downward at the next step) such that

x (k∗ + 2) > 0,

and

x (k∗ + 2) = ax (k∗ + 1) + bv (k∗) < ǫ/ |a|2 .

(Note this is guaranteed by the property of the vector field of the system.) Then let v (k∗ + 1) = 0, and repeat

the above procedure. Similarly if x (k∗) < 0, all we need to do is to choose suitable v (k∗) < 0 such that

(x (k∗ + 1) , v (k∗)) is above the line segment of fixed points, then follow the above procedure. In this way we

can keep the trajectory within the distance ǫ of the origin. Based on the above analysis, we observe that the

instability of the parameter a poses a difficulty for implementing our scheme, there are more discussions from

the perspective of higher dimensional systems (e.g. Theorem 6 below). The foregoing discussion is reminiscent

of Proposition 2.2 in Delchamps [1990], however our scheme is better since the K1 in that paper can be ∞
here. Moreover, our algorithm is simpler too.

For the item (2), suppose it is desired that the system operates on a periodic orbit Γ of periodic T . If

a = 1, according to Theorem 4, by suitably choosing b, a periodic orbit of period T can be built. If a 6= 1, then

following the discussion at the end of Sec. 2.1.2, it is also possible to construct a periodic orbit of period T .

Then the real question is: Can we really find an initial condition which produce or converge to the desirable

periodic orbit Γ? If Γ is within a strange attractor, then from almost all initial points, trajectories will be within

an arbitrarily small neighborhood of Γ at some time k; this is the property of a stranger attractor. So we can

just pick up such an initial condition, let the system run automatically first, and apply control similarly to the
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case in item (1) when the trajectory is sufficiently close to Γ, and keep it remain within a small neighborhood of

Γ. Therefore the problem boils down to constructing a strange attractor containing Γ. This is the problem we

are currently studying. Note that our chaotic system seems different than many known chaotic systems, which

have strange attractors within which there are periodic orbits of any periods. However in light of Corollary 2,

there may be no periodic orbits at all when a is rational and b is irrational. This annoying fact may probably

be due to the scheme we are proposing involves discontinuities. We have already known that there may be

a great variety of dynamics this scheme can produce, which brings more freedom to a control engineer, and

especially suitable for multi-purpose controller design. However in order to make the proposed scheme more

useful, a thorough study of this scheme has to be conducted.

We have to acknowledge that the preceding analysis is naive, nevertheless, it illustrates that by using the

trajectories of the system, i.e., some extra information in addition to system parameters, we can achieve better

control in some sense. For chaotic control, interested readers may refer to Schuster [1999]. These will be our

future research directions. Here we still adhere to classic control theory.

2.3 Stability analysis of higher-dimensional systems

Now we return to our analysis of higher dimensional system in Fig. 2. We will find a positively invariant set

for this system. For simplicity, let Dd = 0. Define

Ǎ :=

[
A BCd

−BdC Ad

]

, B̌ :=

[
B 0
0 −Bd

]

, B̃ := B̌C̃ =

[
0 BCd

−BdC 0

]

.

Since the controller C is stabilizing, the closed-loop system in Fig. 1 is asymptotically stable. Then there

exists a Lyapunov function v(ξ(k)) = ξ
′

(k)Pξ(k) with P =

[
P1 P2

P
′

2 P3

]

> 0 such that

△v(ξ(k)) = ξ
′

(k + 1)Pξ(k + 1)− ξ
′

(k)Pξ(k)

= ξ
′

(k)
(

Ǎ
′

PǍ− P
)

ξ(k)

= −‖ξ(k)‖22 for all ξ(k).

Correspondingly, define vc(η(k)) = η
′

(k)Pη(k), then

△vc(η(k)) = η
′

(k + 1)Pη(k + 1)− η
′

(k)Pη(k)

= η
′

(k)
(

Ǎ
′

PǍ− P
)

η(k) + 2η
′

(k)Ǎ
′

PB̌

([
H1 (uc (k) , v(k − 1))
H2 (yc (k) , z(k − 1))

]

−
[
uc (k)
yc (k)

])

+

([
H1 (uc (k) , v(k − 1))
H2 (yc (k) , z(k − 1))

]

−
[
uc (k)
yc (k)

])′

B̌′
�

PB̌

([
H1 (uc (k) , v(k − 1))
H2 (yc (k) , z(k − 1))

]

−
[
uc (k)
yc (k)

])

≤ −‖η(k)‖22 + 2 ‖η(k)‖2 ·
∥
∥
∥Ǎ

′

PB̌
∥
∥
∥
∞

· γ · δ̄ +
(
γ · δ̄

)2 ·
∥
∥
∥B̌

′

PB̌
∥
∥
∥
∞
,
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where the positive constant γ =
√
m+ p and δ̄ = max {δ1, δ2}. Hence △vc(η(k)) < 0 if

‖η(k)‖2 > γ · δ̄
∥
∥
∥Ǎ

′

PB̌
∥
∥
∥
∞

+ γ · δ̄
√

∥
∥Ǎ

′

PB̌
∥
∥
2

∞
+

∥
∥B̌

′

PB̌
∥
∥
∞
.

For convenience, define

r1 := γ · δ̄
∥
∥
∥Ǎ

′

PB̌
∥
∥
∥
∞

+ γ · δ̄
√

∥
∥Ǎ′PB̌

∥
∥
2

∞
+

∥
∥B̌′PB̌

∥
∥
∞
,

r2 :=
∥
∥Ǎ

∥
∥
∞
r1 +

∥
∥B̌

∥
∥
∞
δ̄,

then we have

Theorem 5 The set Ω defined by

Ω :=
{

η
∣
∣
∣η

′

(k)Pη(k) ≤ max
{
σ̄ (P ) r21, σ̄ (P ) r22

}}

is a positively invariant set, where σ̄ (P ) is the largest singular value of P .

Proof: We need only to show that for each η (0) ∈ Ω, η (k) ∈ Ω for all k ≥ 1. Suppose for some integer k0 > 0,

we have ‖η(k0)‖2 ≤ r1, and ‖η(k0 + 1)‖2 > r1, then △vc(η(k0 + 1)) < 0, which means η
′

(k0 + 2)Pη(k0 + 2) <

η
′

(k0 + 1)Pη(k0 + 1). Furthermore, the trajectory will eventually fall into the set
{

η
∣
∣
∣η

′

(k)Pη(k) ≤ σ̄ (P ) r21

}

.

Therefore it suffices to show η(k0 + 1) ∈ Ω. Since

‖η(k0 + 1)‖2 ≤
∥
∥Ǎ

∥
∥
∞
r1 +

∥
∥B̌

∥
∥
∞
δ̄,

one has

η
′

(k0 + 1)Pη(k0 + 1) ≤ σ̄ (P ) r22,

which gives η(k0 + 1) ∈ Ω. �

The preceding result ascertains the existence of a positively invariant set for the system in Fig. 2, the

system behavior insider this invariant set may be very complex. The next result gives an upper bound for all

equilibria of the system in Eq. (7).

Defining

Φ := −
[

I −Cd (I −Ad)
−1 Bd +Dd

−C (I −A)−1 B I

]

, (55)

then we have:

Corollary 3 For the system in Eq. (7), supposing both G and C are stable, if the matrix
(

Cd (I −Ad)
−1 Bd −Dd

)

C (I −A)−1B has no eigenvalue at (−1, 0), then

∥
∥
∥
∥

(

I − Ã
)−1

B̌

∥
∥
∥
∥
1

·
∥
∥Φ−1

∥
∥
1
δ̄ is an

upper bound for all equilibria of this system.
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Proof: Suppose x̄ is an equilibrium of the system in Eq. (7), then there are an integer K > 0 and some

vector ̟ such that

η (k + 1) = Ãη (k) +

[
B 0
0 Bd

]

̟ (56)

for all k > K. Letting k → ∞, we get

x̄ = Ãx̄+

[
B 0
0 Bd

]

̟,

then

x̄ =
(

I − Ã
)−1

[
B 0
0 Bd

]

̟,

and ∥
∥
∥
∥
C̃x̄+

[
0 Dd

0 0

]

̟ −̟

∥
∥
∥
∥
∞

= ‖−Φ̟‖∞ .

Because the matrix
(

Cd (I −Ad)
−1Bd −Dd

)

C (I −A)−1B has no eigenvalue at (−1, 0), Φ is invertible.

Furthermore, since

∥
∥
∥
∥
C̃x̄+

[
0 Dd

0 0

]

̟ −̟

∥
∥
∥
∥
∞

≤ δ̄, ‖̟‖∞ ≤
∥
∥Φ−1

∥
∥
1
‖Φ̟‖∞ ≤ δ̄, we have

‖x̄‖∞ ≤
∥
∥
∥
∥

(

I − Ã
)−1

B̌

∥
∥
∥
∥
1

·
∥
∥Φ−1

∥
∥
1
δ̄. (57)

Because x̄ is arbitrarily chosen, the result follows. �

In particular, assume we have a scalar system with a static state feedback:

x (k + 1) = ax (k) + bv (k) ,

u (k) = −fx (k) , (58)

v (k) = H1 (u (k) , v(k − 1)) ,

where |a− bf | < 1. Then following the above procedure, |x̄| ≤ (δ |bf |) / (1− |a− bf |) where x̄ can be any

equilibrium.

An upper bound has been found for all equilibria. Will any of these equilibria be stable if either G or C in

unstable? We have a result reminiscent of that in Delchamps [1990]

Theorem 6 Assume either G or C is unstable, and Ǎ is invertible, then the set of all initial points η0 whose

closed-loop trajectories tend to an equilibrium as k → ∞ has Lebesgue measure zero.

Proof: Denote this set by U . Let Es be the generalized stable eigenspace of Eq. (7), Then the Lebesgue

measure of Es is zero since Eq. (7) is unstable. Suppose η (0) ∈ U , following the process in the proof of

Corollary 1, there exist K > 0 and some vector ̟ such that

η (K) =

[
A−BDdC BCd

−BdC Ad

]

̟, (59)
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and Eq. (56) holds for all k > K. Since Ã is unstable, η (k) ∈ Es for all k ≥ K. Furthermore, the invertibility

of Ǎ implies that ̟ is uniquely determined by η (K). Due to the uniqueness of the state trajectory the system

in Eq. (7), note also that this system is essentially a system with unit time delay, the trajectory starting from

(η (−1) = 0, η (0)) is identical to that starting from (̟, η (K)). Define a mapping ̥ as

̥ : U → Es,
η (0) 7−→ η (K) ,

(60)

where η (0) and η (K) satisfying Eqs. (59) and (56), then ̥ is injective. Therefore the Lebesgue measure of U

is zero. �

3 An Example

In this section, one example will be used to illustrate the effectiveness of the scheme proposed in this paper.

In this example, the networked control system consists of two subsystems, (each composed of a system and

its controller), the outputs of the controlled systems will be sent respectively to controllers via a network.

For the ease of notation, we denote the two systems, their controllers and their outputs by G1, G2, C1, C2,

y1 and y2 respectively. Here two transmission methods will be compared: one is just letting the outputs

transmitted sequentially, i.e., the communication order is [y1(0), y2(0), y1(1), y2(1), · · · ]. Another method is

adding the nonlinear constraint H2 to the subsystem composed of G1 and C1, if the difference between the two

adjacent signals are greater than δ2 = 0.01, then this subsystem gets access to the network; otherwise the other

gets access. Here, we will compare the tracking errors produced under these two schemes respectively. For

convenience, we call the first method the regular static scheduler and the second the modified static scheduler.

The controlled system G1 is:

x1 (k + 1) =







1.0017 0.1000 0.0250 0.0009
0.0500 1.0000 0.5000 0.0259
0.2000 −0.0003 1.0000 0.1052
−0.0034 −0.2103 −0.0517 1.1034






x1 (k)

+







0.0050
0.0991
−0.0052
−0.1155






w (k) +







−0.0050 −0.0000
−0.1000 −0.0001
0.0000 −0.0005
0.0103 −0.0105






u1 (k) ,

z1 (k) =

[
1 0 0 0
1 0 −1 0

]

x1 (k) +

[
−1
0

]

w (k) ,

y1 (k) =

[
1 0 0 0
0 0 1 0

]

x1 (k) ,
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and G2 is:

x2 (k + 1) =







1.0000 0.0100 0.0002 0.0000
0.0005 1.0000 0.0500 0.0003
0.0200 −0.0000 1.0000 0.0101
−0.0000 −0.0201 −0.0005 1.0100






x2 (k)

+







0.0000
0.0100
−0.0001
−0.0102






w (k) +







−0.0000 −0.0000
−0.0100 −0.0000
0.0000 −0.0000
0.0001 −0.0010






u2 (k) ,

z2 (k) =

[
1 0 0 0
1 0 −1 0

]

x2 (k) +

[
−1
0

]

w (k) ,

y2 (k) =

[
1 0 0 0
0 0 1 0

]

x2 (k) ,

where w is a unit step. z1 and z2 are tracking errors. Controllers C1 and C2 can be obtained using the technique

in Chen & Francis [1995]. Denote the first element of y1 by y11 and that of y2 by y21; the second element of y1

by y12 and that of y2 by y22, then the subsystem with variables x1, x2, z1, z2, y11, y21 is G1 controlled by C1 and

the subsystem with variables x1, x2, z1, z2, y12, y22 is G2 controlled by C2. The simulation results are in Figs.

18–19.
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that both systems are unstable. If one of the two
systems is stable, one can expect better convergence
rate. In essence, our scheme is based on the follow-
ing principle: Allocate access to the network to the
systems with faster dynamics first, then take care of
the systems of slower dynamics. In this way, we hope
we can improve system performance. Interestingly,
a similar idea is explored in [Hristu & Morgansen,
1999].

Fig. 18. The first elements of z1 and z2

From these two figures, one finds that the tracking errors approach zero faster under the modified static

schedular than under the regular one. Note that both systems are unstable. If one of the two systems is

stable, one can expect better convergence rate. In essence, our scheme is based on the following principle:

Allocate access to the network to the systems with faster dynamics first, then take care of the systems of slower

dynamics. In this way, we hope we can improve system performance. Interestingly, a similar idea is explored
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systems is stable, one can expect better convergence
rate. In essence, our scheme is based on the follow-
ing principle: Allocate access to the network to the
systems with faster dynamics first, then take care of
the systems of slower dynamics. In this way, we hope
we can improve system performance. Interestingly,
a similar idea is explored in [Hristu & Morgansen,
1999].

Fig. 19. The second elements of z1 and z2

in Hristu & Morgansen [1999].

4 Conclusion

In this paper, a new networked control technique is proposed and its effectiveness is illustrated via simulations.

The complicated dynamics of this type of systems is studied both numerically and theoretically. A simulation

shows that the scheme proposed here has possible application in networked control systems. There are several

problems guiding our further research: 1) Continuity of state trajectories with respect to the initial points

under space partition induced by the discontinuities of the system. 2) How to find a precise characterization of

the attracting set for our system, and is it topologically transitive (i.e., is it a chaotic attractor)? Topological

transivity, an indispensable feature of a chaotic attractor, is closely related to ergodicity of a map. As discussed

in Sec. 2.1.3, the proof of topological transitivity or ergodicity is difficult for our system from the point of view

of measure theory due to the singularity of the map and its violation of conditions in Lasota & Yorke [1973].

However, this investigation is unavoidable should one want to find the chaotic attractor inherited in the system

studied. 3) For different system parameters, different aperiodic orbits can be obtained, what are the differences

among these orbits? In particular, given two aperiodic orbits, one generated from a system having no periodic

orbits and the other generated by a system having periodic orbits, is there any essential difference between

them? 4) In Sec. 2.1.2, periodic orbits are constructed for some originally stable (|a| < 1) and originally

unstable (|a| > 1) systems. However given a system, how to determine if there are periodic orbits, and if so,

how to find all of them is still an unsolved problem. 5) How to effectively design controllers based on chaotic

control? Obviously the solution of this problem depends on the forgoing ones. 6) How to incorporate properly

the scheme proposed in this paper into the framework of networked control systems? The simulation in Sec. 3
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is naive, more research is required here to make the proposed scheme practical.
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