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On the attractors of two-dimensional Rayleigh oscillators including noise
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We study sustained oscillations in two-dimensional oscillator systems driven by Rayleigh-type
negative friction. In particular we investigate the influence of mismatch of the two frequencies.
Further we study the influence of external noise and nonlinearity of the conservative forces. Our
consideration is restricted to the case that the driving is rather weak and that the forces show
only weak deviations from radial symmetry. For this case we provide results for the attractors and
the bifurcations of the system. We show that for rational relations of the frequencies the system
develops several rotational excitations with right/left symmetry, corresponding to limit cycles in
the four-dimensional phase space. The corresponding noisy distributions have the form of hoops
or tires in the four-dimensional space. For irrational frequency relations, as well as for increasing
strength of driving or noise the periodic excitations are replaced by chaotic oscillations.

Keywords: two-dimensional linear and nonlinear oscillators, active friction of Rayleigh-type, frequency mismatch,

Arnold tongues, probability distributions

I. INTRODUCTION

The first comprehensive theory of nonlinear oscilla-
tions was developed by Lord Rayleigh in the years 1883–
1894 and is represented in his pioneering book (Rayleigh,
1894). The present state of art of nonlinear dynamics
was deeply influenced by the pioneering work of Leonid
Shilnikov (see Shilnikov, 1997; Shilnikov et al., 1998a,b,
and references therein) which is reflected e.g. in the
books of Anishchenko (1995); Anishchenko et al. (2002).
In the last decade many investigations were devoted to
the stochastic dynamics of dissipative hamiltonian sys-
tems (Anishchenko et al., 2002; Klimontovich, 1994).

In this paper we extend previous studies on rota-
tional excitations of two-dimensional oscillators driven
by Rayleigh-type negative friction (Erdmann et al., 2002,
2000). The study of driven oscillatory modes on a plane
has interesting applications for modeling animal mobil-
ity all the way from microorganisms like bacteria and
Dictyostelium discoedium slime mold (Ben-Jacob et al.,
2000; Czirók et al., 1996; Rappel et al., 1999) upto flocks
of birds (Toner and Tu, 1995; Weimerskirch et al., 2001),
schools of fish (Hubbard et al., 2004; Inada and Kawachi,
2002; Niwa, 1994; Parrish et al., 2002), swarms of Daph-

nia (Erdmann et al., 2004; Ordemann et al., 2003) or
wildebeest (Topaz and Bertozzi, 2004). For example we
introduced in earlier work the general idea of stochasti-
cally moving species, active Brownian particles. We want
to recall this approach which will be used later on. Ac-
tive Brownian particles are Brownian particles with the
ability to take up energy from the environment and use it
for the acceleration of motion. Simple models composed
of active Brownian particles were studied in many ear-
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lier works (e.g. Helbing and Molnár, 1995; Klimontovich,
1994; Schienbein and Gruler, 1993).

A specific problem we would like to address here
is: what is the consequence of broken radial symme-
try (asymmetry of the conservative forces). In par-
ticular we are interested in the problem: Can sponta-
neous rotations be stopped by certain amount of asym-
metry? In contrast to previous studies (Albano, 1996;
Czirók et al., 1996, 1997; Grégoire and Chaté, 2004;
Grégoire et al., 2001; Hubbard et al., 2004; Levine et al.,
2001; Shimoyama et al., 1996; Vicsek et al., 1995) the
self-propelling feature is modeled here by active Brow-
nian particles with negative friction (Ebeling et al.,
1999; Erdmann et al., 2000; Schweitzer et al., 1998;
Steuernagel et al., 1994) which are able to convert stored
internal energy into motion. In this paper, we will study
only the motion, especially rotational ones, in external
fields on a two-dimensional plane.

The article is organized as follows. In Section II we
introduce the equations of motion, the pumping by neg-
ative friction and outline the basic dynamics of our model
including Langevin equations. In Section III we out-
line our previous studies of rotationally symmetric ex-
ternal potentials and discuss the attractors for rational
frequency relations. In Section IV we give an analysis of
frequency mismatch and of Arnold-type bifurcations of
linear oscillators as a function of the mismatch. Further
we study in Section V the limit cycle attractors of non-
linear oscillators with radial symmetry. In Section VI
we investigate the influence of noise on the attractors
and show that noise leads to a broadening on the line-
attractors.

http://arxiv.org/abs/nlin/0510031v1
mailto:udo.erdmann@physik.hu-berlin.de
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II. DYNAMIC EQUATIONS FOR TWO-DIMENSIONAL

OSCILLATORS

The dynamics of the systems studied here is based on
Langevin equations, known from the theory of conven-
tional Brownian motion (Hänggi et al., 1990; Langevin,
1908). For the two-dimensional space we get four first
order coupled differential equations in the phase space
{x1, x2, v1, v2}:

ẋ1 = v1 (1a)

ẋ2 = v2 (1b)

v̇1 =
1

m

∂U

∂x1

− γ(v1, v2)v1 +
√
2Dξ1(t) (1c)

v̇2 =
1

m

∂U

∂x2

− γ(v1, v2)v2 +
√
2Dξ2(t) . (1d)

In this dynamics we assumed three kinds of forces in the
dynamics:

1. Conservative external forces generated by the po-
tentials U(x1, x2),

2. nonlinear dissipative forces modeled by the friction
(−vγ(v)),

3. stochastic forces assigned by ξ(t).

Several linear and nonlinear conservative forces will be
introduced and studied in the following sections. The
dissipative forces are modeled by the friction function
γ(v). This function is the source of dissipative interac-
tions with the surrounding. In equilibrium the friction is
passive

γ(v) = γ0 = const. (2)

We will consider here in more detail active friction mod-
eled by the classical Rayleigh law (Rayleigh, 1894):

γ(v) = γ(v1, v2) = α− β(v21 + v22) . (3)

The stochastic forces are modeled by white Gaussian
noise ξ with vanishing mean and

〈ξ(t)ξ(t′)〉 = δ(t− t′) (4)

and scaled with strength D. In equilibrium and in case
of passive friction following Einstein (1956) one gets an
energy balance between the strength of the stochastic
force, D, and the passive friction acting on the object. It
is expressed by the simple fluctuation-dissipation relation

D =
γ0θ

m
(5)

where θ = kBT is a measure for the temperature.

III. ATTRACTORS FOR LINEAR OSCILLATORS DRIVEN

BY RAYLEIGH FRICTION

We will study in this section two-dimensional linear
oscillators described by the potential

U(x1, x2) =
m

2
(ω2

1
x2

1
+ ω2

2
x2

2
) (6)

which are driven by Rayleigh-type negative friction as
in Eq. (3). It is well known since Rayleigh (1894) that
in the one-dimensional case the system possesses a limit
cycle corresponding to sustained oscillations with the en-
ergy E0 = α/β. The two-dimensional case is much more
complicated. Erdmann et al. (2000) have shown for the
symmetrical case with ω2 = ω1, that two limit cycles
in the four-dimensional phase space are developed. The
projection of these sustained oscillations on the {v1, v2}-
plane and on the {x1, x2}-plane are circles

v21 + v22 = v2
0

=
α

β
(7a)

x2

1
+ x2

2
= r2

0
=

v0
ω1

(7b)

The limit cycle energy is

E0 =
mv2

0

2
+

mω2

1

2
r2
0
. (8)

Ebeling et al. (1999) have shown, that any initial value
of the energy converges (at least in the limit of strong
pumping) to

H −→ E0 = mv20 (9)

This corresponds to an equal distribution between kinetic
and potential energy i.e. both parts contribute the same
amount to the total energy. The motion on the limit
cycle in the four-dimensional space may be represented
by the four equations

x1 = r0 cos(ω0t+ φ0) (10a)

v1 = −r0ω0 sin(ω0t+ φ0) (10b)

x2 = r0 sin(ω0t+ φ0) (10c)

v2 = r0ω0 cos(ω0t+ φ0) (10d)

The angular frequency follows by estimations of the time
the particle needs for one period moving on the circle of
radius r0 with constant speed v0:

ω0 =
v0
r0

= ω1 = ω2 . (11)

This means, the particle rotates even at strong pump-
ing with the frequency given by the linear oscillator fre-
quency ω1 = ω2. The trajectory defined by Eqs. (10)
is an exact solution of the dynamic equations describ-
ing the first (forward) limit cycle. The shape of the
trajectory is like a hoop in the four-dimensional space.
Most projections to the two-dimensional subspaces are
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circles or ellipses however there are two subspaces namely
{x1, v2} and {x2, v1} where the projection is like a rod
(Erdmann et al., 2000). Reversing the initial velocities
of the system, a second limit cycle can be obtained. This
limit cycle forms also a hula hoop which is different from
the first one. However both limit cycles have the same
projections on the {x1, x2} and on the {v1, v2}-plane.
The projection to the {x1, x2}-plane has the opposite
sense of rotation in comparison with the first limit cy-
cle. The projections of the two hoops on the {x1, x2}-
plane or on the {v1, v2}-plane are two-dimensional rings.
The hoops intersect perpendicular {x1, v2}- and {x2, v1}-
planes. The projections to these planes are rod-like
and the intersection manifold with these planes consists
of two ellipses located in the diagonals of the planes
(Erdmann et al., 2000).
So far we repeated known results for the symmetrical

case. Dynamical systems with radial symmetry are de-
generate and structurally unstable in the mathematical
context. From the physical viewpoint, radial symmetry
is a special situation, i.e. the gravitational field of point
masses or the Coulomb field for charges has strict radial
symmetry. Therefore radial symmetry holds also for a
two-dimensional mass-point pendulum. In real physical
systems the radial symmetry is in general broken, e.g.
a real pendulum in the earth field has no strict radial
symmetry. Thus the oscillator with radial symmetry can
only be considered as a particular case of correspond-
ing real system which often has some asymmetry. Thus
our motivation is, to investigate the consequences of bro-
ken radial symmetry and deviations from linearity on the
generation of oscillatory modes.
First we are going to study systems with frequency

mismatch ω2 6= ω1. In the conservative case γ = 0 and
D = 0 we find a dense set of exact solution for the deter-
ministic dynamics given by

x1(t) = A1 cos(ω1t+Φ1) (12a)

v1(t) = −A1ω1 sin(ω1t+Φ1), (12b)

x2(t) = A2 sin(ω2t+Φ2) (12c)

v2(t) = A2ω2 cos(ω2t+Φ2) , (12d)

where Ai and Φi are given by the (arbitrary) initial con-
ditions. Let us study now the driven case with negative
friction according to the Rayleigh law (3) without noise.
Then for α > 0 the above periodic solution (12) would
remain to be a solution, if

v21 + v22 = v20 =
α

β
(13)

is fulfilled. In the case of symmetrical oscillators ω1 =
ω2 = ω0 we could fulfill this condition in an exact way
by a special choice of the amplitudes:

A1 = A2 = r0 =
v0
ω0

(14)

This means, we find instead of a dense set of exact so-
lutions just one attracting solution (which still is ex-
act). This periodic and stable exact solution represents

a limit cycle corresponding to a circular path even at
strong pumping with the frequency given by the simple
harmonic oscillator frequency ω0. However in the case
ω1 6= ω2 the situation is much more difficult than in the
symmetrical case. First we are looking for approximate
stable solutions in the case of rational relations of the fre-
quencies ω2 = nω0 and ω1 = mω0 with n,m = 1, 2, . . ..
The condition (13) is in average over one period fulfilled,
if

A2

1ω
2

1 = A2

2ω
2

2 = v20 (15)

This way we get the stable amplitudes and phases

A1 =
v0
ω1

; A2 =
v0
ω2

(16a)

Φ1 = −π

2
; Φ2 = +

π

2
(16b)

We will show that these approximative solutions de-
scribe at least for small relations n : m again a pair of
forward/backward limit cycles. By introducing the ap-
proximation 16 into Eq. (12) we find for the n > m the
following analytical approximation for the limit cycles:

x1(t) = r0 sin(mω0t) (17a)

v1(t) = r0mω0 cos(mω0t) (17b)

x2(t) = r0 cos(nω0t) (17c)

v2(t) = −r0nω0 sin(nω0t) . (17d)

The curves obtained by this approximation for n :
m = 2, 3, 4, 5 are shown in Fig. 1. In the analyti-

-1

-0.5

 0

 0.5

 1

-0.4 -0.2  0  0.2  0.4

x2

x1

FIG. 1 Projections of asymmetric limit cycles to the {x1, x2}-
plane for several cases of rational relations between the two
frequencies m : n = 2, 3, 4, 5 (analytical approximation for the
attractors (Eqs. (12) and (16)).

cal approximation given above, the forward limit cycles
and the backward limit cycles have identical projections
on the {x1, x2}-plane. However our analytical formula
(Eqs. (12) and (16)) is only a rough approximation, as
we will demonstrate by simulations. We show in Figs. 2
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FIG. 2 Projections of the two limit cycles to the {x1, x2}-
plane corresponding to m : n = 2 resonance obtained from
simulations (Rayleigh law: α = 5, β = 1).

FIG. 3 Projections of the two limit cycles to the {v1, v2}-
plane corresponding to m : n = 2 to the {v1, v2}-plane ob-
tained from simulations (same parameters as in Fig. 2).

and 3 the result of simulations for the two attractors in
the case m : n = 2. Clearly, the two attractors have
different projections on the {x1, x2}-plane (see Fig. 2)
as well as on the {v1, v2}-plane (see Fig. 3). As we see,
the projection differ in amplitude and phase a little bit
from the analytical approximation; in particular clock-
wise and counterclockwise limit cycles are shifted in the
projections. It is interesting to note that the projections
to the {x1, v1}-plane and to the {x2, v2}-plane shown in
Fig. 4 are equal for the clockwise and the counterclock-
wise limit cycles.
The rather complex winding structure of the attractor

for n = 2 in the four-dimensional phase space can be
guessed by looking at projections on three-dimensional
subspaces as demonstrated in Fig. 5.
The results obtained from simulations for n = 3 are

shown in Figs. 6 and 7. We see that the attractors ob-

FIG. 4 Projections of the two limit cycles to the {x2, v2}-
plane for m : n = 2 and respectively obtained from simula-
tions (same parameters as in Fig. 2). Clockwise and counter-
clockwise limit cycle have practically the same projections.

FIG. 5 Projections of the two limit cycles to the {x1, x2, v2}-
plane corresponding to them : n = 2-resonance obtained from
simulations (same parameters as in Fig. 2).

tained from simulations are more complex than the from
the nice and rather symmetrical curves obtained from
the analytical approximation for the case n = 3 which
were presented in Fig. 1. With increasing rational n the
attractor fills more or less dense a rectangular region.
For irrational values of ω2/ω1 the trajectories are always
dense in a nearly rectangular region of the coordinate
space. This case will be studied below.

IV. BIFURCATION ANALYSIS OF THE LINEAR

OSCILLATORS WITH FREQUENCY MISMATCH

Our study was limited so far to small rational fre-
quency relations m : n and small or moderate strength of
driving (small positive values of the bifurcation param-
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FIG. 6 Projections of the two limit cycles to the {x1, x2}-
plane corresponding to the m : n = 3-resonance obtained
from simulations (ω1 = 2.7, ω2 = 1, all other parameters as
in Fig. 2).

FIG. 7 Projections of the two limit cycles for m : n = 3 to
the {x1, x2, v2}-plane obtained from simulations.

eter α). In order to introduce the consequences of a an
irrational frequency mismatch between the partial sub-
systems in a more general setting we write the expression
for the potential Eq. (6) as follows:

U(x1, x2) =
m

2
ω2

0(x
2

1 +∆2x2

2), (18a)

∆ =
ω1

ω2

; ω0 = ω1. (18b)

In the general case the potential U(x1, x2) has an elliptic,
slightly extended shape, the asymmetry is measured by
the parameter ∆. For irrational values of ∆ the solutions
in the conservative case α = β = 0 fill densely a box in the
phase space. In the general driven case the deterministic

part of Eq. (1) may be written as

ẋ1 = v1 (19a)

v̇1 =
[

α− β
(

v2
1
+ v2

2

)]

v1 − ω2

0
x1 (19b)

ẋ2 = v2 (19c)

v̇2 =
[

α− β
(

v21 + v22
)]

v2 − ω2

0∆
2x2 (19d)

The system (19) is structurally stable or is one of the
common propositions according to V. I. Arnold’s nomen-
clature (Arnold, 1965). It can be interpreted as a model
for one oscillator on the plane or as a model for two in-
teracting linear oscillators.
To understand the dynamics of system (19) in the gen-

eral case, we introduce a complex variable z = x1 + jx2.
Let us first turn again to the symmetric case where
ω1 = ω2 = ω0. Then from (19) follows

z̈ − β

(

α

β
− |ż|2

)

ż + ω2

0z = 0. (20)

Equation (20) has periodic solutions of the form:

z(t) = z exp(±jω0t) = |z| exp(jΦ) exp(±jω0t), (21)

where the phase Φ takes any value in the interval [0, 2π].
When we consider the symmetric case, we have an infinite
number of periodic solutions (see Eq. (21)). However,
linear analysis cannot yield information about their sta-
bility. In numeric calculations, we can detect several limit
cycles each of them possessing its own type of symmetry.
As by Erdmann et al. (2002) has been investigated, the
stability of periodic solutions can can be predicted by the
calculation of the Floquet multipliers of the fixed points
within the Poincarè section of the limit cycle. When there
is a detuning (∆ 6= 1), only two limit cycles, representing
clockwise and counterclockwise rotations remain stable
as has already been found by Erdmann et al. (2000). All
other solutions have at least one multiplier leaving the
unit circle on the complex plane. The two limit cycles
representing the rotations of a particle in the coordinate
space are situated within the first Arnold tongue whereas
outside this region the existence of the cycles vanishes
and the particles move irregularly. Increasing the de-
tuning ∆ any further new stability regions appear which
represent the period-n cycles of the oscillators as have
been shown in Figs. 1-7. The parameter region where
stability of periodic motion can be observed is shown in
Fig. 8.

V. NONLINEAR OSCILLATORS WITH RADIAL

SYMMETRY

In the present section we will discuss several exten-
sions of the theory developed in the previous section to
nonlinear oscillators. However, for simplicity, we will re-
strict our study to systems with rotational symmetry,
U = U(r) with U(0) = 0 and U(r)− monotonically
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FIG. 8 Stability regions (Arnold tongues) of the m : n res-
onances. Within the light gray areas the limit cycles as de-
scribed above are stable. The arrows show the parameter set
of Figs. 2-7.

increasing. For the general case of radially symmet-
ric but anharmonic potentials U(r) the equal distribu-
tion between potential and kinetic energy is violated. In
other words the relation mv2

0
= mω2

0
r2
0
which leads to

ω0 = v0/r0 = ω is no more valid. This relation has to be
replaced by the more general condition that on the limit
cycle the attracting radial forces are in equilibrium with
the centrifugal forces. This leads to

mv2
0

r0
= |U ′(r0)| (22)

If v0 is given, the equilibrium radius may be found from
the implicit relation

v2
0
=

r0
m

|U ′(r0)| (23)

Then the frequency of the limit cycle oscillations is given
by

ω2

0 =
v20
r2
0

=
|U ′(r0)|
mr0

(24)

In the case of linear oscillators this leads us back to pre-
vious result given in Sec. III. For the case of quartic
oscillators

U(r) =
k

4
r4 (25)

we get the limit cycle frequency

ω0 =
k1/4

v
1/2
0

(26)

The explicite solution (10) remains valid, i.e. we find
again an exact analytical description of the pair of limit
cycles. For monotonically increasing potentials there ex-
ist just one stable radius r0. If the equation (23) has

several solutions, the dynamics might be much more
complicated. An interesting application of the theoret-
ical results given above is the case of Coulomb forces
(Schimansky-Geier et al., 2005). Another possible appli-
cation is the following: Let us imagine a system of Brow-
nian particles which are pairwise bound by a Lennard-
Jones-like potential U(|r1 − r2|) to dumb-bell-like con-
figurations. Then the motion consists of two indepen-
dent parts: The free motion of the center of mass, and
the relative motion under the influence of the potential.
As a consequence, the center of mass of the dumb-bell
will make a driven Brownian motion but in addition the
dumb-bells are driven to rotate around there center of
mass. What we observe then is a system of pumped
Brownian molecules which show driven translations with
respect to their center of mass. On the other side the in-
ternal degrees of freedom are also excited and we observe
driven rotations. Erdmann et al. (2002) have shown that
this approach can be extended to systems of many par-
ticles in the sense that as far as the mean field of the
interaction potential can be approximated like potentials
of the shape of Eq. (6), rotations are going to be sta-
ble within the first Arnold tongue (Fig. 8). In this way
we have shown that the mechanisms described here may
be used also to excite the internal degrees of freedom of
Brownian molecules.

VI. THE INFLUENCE OF NOISE

The main effect of noise is the spreading of the deter-
ministic attractors. Let us consider here only the case
of radially symmetric potentials U(r) which have a mini-
mum U = 0 at r = 0 and are monotonically increasing
with r. Then as shown above, the system has two limit
cycles in the four-dimensional space which are hoop-like
and have projections at the {x1, x2}-space which are cir-
cles with the radius r0. This radius is determined by the
equilibrium between centripetal and centrifugal forces for
right/left rotations on the circle with the radius r0. In-
cluding stochastic effects the two hoop-like limit cycles
are converted into distributions looking like two embrac-
ing hoops with finite size, which for strong noise convert
into two embracing tires in the four-dimensional phase
space.
The transformation of the limit cycles into tires can

easily be obtained from simulations including white ad-
ditive noise. Several results for both symmetric (∆ = 1)
and asymmetric (∆ 6= 1) parabolic potentials are demon-
strated in Fig. 9. The probability distributions may
be obtained as solutions of the Fokker-Planck equation
for the probability distribution P (r,v, t) (Klimontovich,
1994)

∂P

∂t
= −v

∂P

∂r
−∇U(r)

∂P

∂v
(27)

+
∂

∂v

{

γ(v)v P +D
∂P

∂v

}
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(d) ∆ = 2
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(f) ∆ = 3

FIG. 9 Distributions according to simulations of 2500 Active Brownian particles on limit cycles in symmetric (a-b) and
asymmetric (c-f) parabolic potentials. We show projections of simulations on the {x1, x2}-plane and on the subspace {x1, x2, v2}.
Parameters: α = 5, β = 1, D = 0.01.



8

To find explicite solutions of Eq. (27) is a very diffi-
cult task (Anishchenko et al., 2002; Klimontovich, 1994).
Only in the force-free case U = 0, the solution is ele-
mentary. The stationary solution reads for the Rayleigh-
model (Erdmann et al., 2002, 2000):

P0(v) = C exp

[

αv2

2D

(

1− v
2

2v2
0

)]

. (28)

The shape of this velocity distribution Eq. (28) can be
seen in (e.g. Erdmann et al., 2002). The bifurcation to
a limit cycle at the transition from negative to positive
α occurs for the noisy system as a qualitative change
of the shape of the distribution from a Maxwell-like to
a hat-like shape. It is obvious that the system above
the bifurcation point is far from equilibrium and shows
a permanent active motion of the particles. Applying
similar arguments to the stochastic motion in confining
potentials we expect that the two hoops are converted
into a distribution with the appearance of two embracing
hoops with finite size, which for strong noise converts into
two embracing hoops in the four-dimensional phase space
(see Erdmann et al., 2000, for details). In order to obtain
the explicit form of the distribution, we may introduce
the amplitude-phase representation

x1 = ρ cos(ω0t+ φ) (29a)

v1 = −ρω0 sin(ω0t+ φ) (29b)

x2 = ρ sin(ω0t+ φ) (29c)

v2 = ρω0 cos(ω0t+ φ) , (29d)

where radius ρ and phase φ are slow and fast stochastic
variables respectively. By using the standard procedure
of averaging with respect to the fast phases we obtain for
the Rayleigh-model of pumping the following distribution
of the radii:

P0(ρ) ≃ exp

[

αv2
0

D

(

ρ

r0

)2 (

1− ρ2

2r2
0

)

]

. (30)

FIG. 10 Probability distribution P0(ρ) for a radially symmet-
ric potential in the coordinate space {x1, x2}. The parameters
α, r0, v0, D are set equal to 1.

This distribution is (in the present approximation) uni-
versal and valid for any radially symmetric potential of
the type specified above. We see that the probability

crater is determined by the two deterministic limit cycles
(see Fig. 10). The velocity distribution given by Eq. (28)
remains to be exact for all radially symmetric potentials.
The full stationary probability in the four-dimensional
space has the form of two hula hoop distributions
(Deng and Zhu, 2004; Schimansky-Geier et al., 2005).
The projections of the distribution onto the {x1, x2}-
plane and to the {v1, v2}-plane are two-dimensional rings
(see also Fig. 9(a-b)). As in the deterministic case
the hula hoop distribution intersects perpendicularly the
{x1, v2}-plane and the {x2, v1}-plane. Again, the pro-
jections to these planes are rod-like, and the intersec-
tion manifold with these planes consists of two ellipses
located in the diagonals of the planes (Erdmann et al.,
2000; Schimansky-Geier et al., 2005). In the determinis-
tic case one of two the rotational motions within the con-
fining potential is excited, this rotation remains a stable
solution of the trajectory of one particle. To this rota-
tion belongs a certain value of the angular momentum.
For non-vanishing stochastic perturbations, the particle
is able to cross the separatrix between the two rotational
modes (limit cycles). Due to this ability of the particles
one can observe, sometimes, an inversion of the angular
momentum of the particle (Erdmann et al., 2002). Note
that one initial condition will be sufficient to rotate either
clockwise or counterclockwise (see Fig. 9(b)).

VII. CONCLUSIONS

We study here two-dimensional oscillations with non-
linear Rayleigh-type active friction, extending earlier
work to

1. oscillations with frequency mismatch

2. oscillations with radially symmetric nonlinear at-
tractive forces.

We investigate several right/left symmetric pairs of limit
cycles corresponding to 1:1, 2:1 and 3:1 resonances and
their location in the stability regions (Arnold tongues).
We show that in the presence of noise the limit cycles
are converted into hoops in the four-dimensional space
and give analytical estimates for the probability distri-
butions of the coordinates and velocities. Thinking of
applications especially for coherent behavior in animal
motion on could think of looking for interacting particles
where the interaction could be approximated (in mean
field approximation) as a deviated parabolic potential.
In extention to (Erdmann et al., 2002) on should inves-
tigate more the question if there would be any coherent
motion which could be located within the higher Arnold
tongues. How would the motion of a swarm of particles
look than?
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