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1 Introduction

A fundamental prerequisite for the design of control systems is the availability of reasonably

accurate closed form dynamical models. Typically, such models arise in the form of evo-

lution equations (ordinary differential, differential algebraic, partial differential, possibly

integrodifferential equations). Such equations are typically derived from conservation laws

(e.g. mass, momentum and energy balances) closed through constitutive equations (e.g.

Newtonian stresses in fluid flow, or mass-action kinetics expressions for chemical reactions);

system identification may also play a role in obtaining and/or closing such macroscopic

models. Many real-world problems of current engineering interest are characterized -due

to their stochastic/microscopic nature, and nonlinear complexity- by the lack of such good

explicit, coarse-grained macroscopic evolution equations. Instead, the underlying physics

description may be available at a much finer, more detailed level: the evolution rules may

be given in the form of molecular dynamics, kinetic Monte Carlo, Markov-chain or hybrid

schemes. When this is the case, conventional continuum algorithms cannot be used directly

for systems level analysis and controller design. Bridging systematically the enormous gap

between microscopic space and time scales of a complex physical/material system descrip-

tion and the macroscopic ones at which we want to design and control its behavior is a

grand challenge for modeling and computation. Over the past few years we have demon-

strated that an equation-free approach (based on coarse timesteppers) [Theodoropoulos et

al., 2002; Makeev et al.,2002; Kevrekidis et al., 2003; Siettos et al., 2003b; Kevrekidis et

al., 2004], can establish a link between traditional continuum numerical analysis and micro-

scopic/ stochastic simulation. This is a mathematics-assisted computational methodology,

inspired from continuum numerical analysis, system identification and large scale itera-

tive linear algebra, which enables microscopic-level codes to perform system-level analysis

directly, without the need to pass through an intermediate, coarse-grained, macroscopic-

level, “conventional” description of the system dynamics. The backbone of the method

is the on-demand identification of the quantities required for continuum numerics (coarse

residuals, the action of coarse slow Jacobians, eigenvalues, Hessians, etc). These are ob-

tained by repeated, appropriately initialized calls to an existing fine scale time-stepping

routine, which is treated as an input-output black box. The key assumption is that de-

terministic, macroscopic, coarse models exist and close for the expected behavior of a few

macroscopic system observables, yet they are unavailable in closed form. These observables

(coarse-grained variables) are typically a few low moments of microscopically evolving dis-

tributions (e.g. surface coverages, the zeroth moments of species distributions on a lattice
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model of a surface reaction).

The present work aims at developing a systematic approach to the feedback regulator

synthesis problem, where both the closed-loop dynamics linearization and pole-placement

objectives are simultaneously attained by using the equation-free timestepper methodology.

The feedback linearization and the pole-placement objectives for the unavailable coarse-

grained dynamics are met in a single-step, circumventing the lack of an explicit dynamic

process model. The proposed approach is illustrated through the use of a coarse time-

stepper based on a kinetic Monte Carlo realization of a simplified surface reaction scheme

for the dynamics of NO oxidation by H2 on Pt and Rh surfaces. The present paper

is organized as follows: In section 2 we briefly discuss the traditional nonlinear control

methodologies that rely on the notion of feedback linearization along with the associated

restrictions encountered at the implementation stage. In section 3 we succinctly review a

recently proposed approach that allows the attainment of both the feedback linearization

and pole placement objectives in a single step, effectively overcoming the restrictive condi-

tions associated with the classical exact feedback linearization approach. In section 4 the

interplay of the proposed nonlinear control procedure with coarse timesteppers is outlined,

and the natural integration of the respective frameworks illustrated. Section 5 presents the

simulation results using the proposed methodology on an illustrative kinetic Monte Carlo

model, followed by some concluding remarks in section 6.

2 Fundamentals of feedback linearization of nonlinear systems

In order to meet a set of performance specifications or design objectives, process control

introduces feedback to appropriately modify the dynamics of a system. Placing the closed-

loop poles at desirable locations in the complex plane, and thus shaping the closed loop

system dynamics and time constants, is a popular controller synthesis method for linear

systems, in part, due to its intuitive appeal [Chen, 1984]. Typically one requires fast decay

of the closed loop variables to their nominal steady state values; yet the design should

not lead to high feedback gains due to possible saturation problems. Fine-tuning of the

closed-loop eigenvalues is performed in practice through a combination of optimization

techniques, heuristic rules and trial-and-error approaches [Chen, 1984]. Traditional pole-

placement state feedback control laws for nonlinear systems are based on local linearization

around a reference steady state, and the subsequent use of linear design methods. The re-

sults are, of course, only locally valid, and may lead to unacceptable performance, even in

the presence of only mild nonlinearities. Nonlinear feedback control laws thus need to be

3



derived, capable of directly coping with the system nonlinearities. A pole-placing feedback

regulator should be capable of bringing the system/process state back to the design steady

state in a fast and smooth manner in the presence of disturbances; if the design steady

state is unstable, the primary control objective is its stabilization. In the pertinent body

of literature two main model-based pole-placing controller synthesis methods emerge, both

based on geometric control theory. The first one is exact input/output (I/O) feedback lin-

earization, where the introduction of nonlinear state feedback induces linear I/O behavior

of the system of interest, forcing the system’s output to follow a prespecified linear and

stable trajectory. This approach directly generalizes the linear result of placing the closed-

loop poles at the system’s zeros and at a set of prespecified values, and is restricted within

the class of minimum-phase systems [Isidori, 1999]. Regulation and/or stabilization of a

system/process, however, is understood in terms of forcing the system’s state to return to

the design steady state (if driven away from it in the presence of disturbances). Further-

more, process output tracking problems for step changes in the output set-point values,

can be easily reformulated as regulation problems relative to the equilibrium point that

corresponds to the final set-point value. The second approach is geometric exact feedback

linearization, traditionally implemented in a two-step design procedure [Isidori, 1999]: A

simultaneous implementation of a nonlinear coordinate transformation and a state feedback

control law in the first step transforms the original nonlinear system to a linear and con-

trollable one. Well-established linear pole-placement techniques for the transformed linear

system can be used in the second step. However, the aforementioned classical geometric

exact feedback linearization approach relies on a set of very restrictive conditions, that can

hardly be met by any physical system.

In this work a systematic approach to feedback regulator synthesis is proposed for the

coarse-grained dynamic behavior of systems described by atomistic/stochastic (“fine scale”)

simulators. The closed-loop dynamics linearization and the pole-placement objectives are

simultaneously attained using the equation-free timestepper-based methodology. Note that

our primary control objective is to assign the closed-loop eigenvalues rather than shaping

the entire I/O behavior of the system under consideration. Furthermore, applying the

methodology introduced in [Kazantzis, 2001], we investigate the possibility of circumvent-

ing the set of restrictive conditions associated with the two-step classical exact feedback

linearization approach, by meeting the feedback linearization and the pole-placement objec-

tives in a single-step, and without being limited by the availability of an explicit dynamic

process model.
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3 Mathematical Preliminaries - Problem Formulation

In the context of the present study, the system dynamics are described by a nonlinear

discrete-time macroscopic (“coarse”) model of the form:

x(k + 1) = Φ(x(k), u(k)). (1)

Here k ∈ N+ = {0, 1, ...} is the discrete-time index, x(k) ∈ Rn is the vector of (coarse)

state variables, u(k) ∈ R is the manipulated input variable and Φ(x, u) represents a vector

function defined on Rn × R. In our case this function is not known, and will be identified

on the fly with the aid of the fine scale simulator. Without loss of generality, it is assumed

that the origin x0 = 0 is an equilibrium point (coarse steady state) of (1), that corresponds

to u0 = 0: Φ(0, 0) = 0. If a non-zero coarse steady-state (x0, u0) 6= (0, 0) is located, then a

simple transformation: x̂ = x−x0, û = u−u0 will map it to the origin in the new coordinate

system. Let F be the Jacobian matrix of Φ(x, u) evaluated at x = 0: F =
∂Φ

∂x
(0, 0), and

G the vector: G =
∂Φ

∂u
(0, 0) which is assumed to be non-zero. The following assumption is

also made:

Assumption I: The n× n matrix:

C = [G|FG|...|F n−1G ] (2)

has rank n. This implies that the coarse linearization of (1) around the origin x = 0 is

controllable [Isidori, 1999].

It is appropriate, at this point, to briefly review and outline basic features of the classical

exact feedback linearization approach in the discrete-time domain. In the first step, and

under a set of rather restrictive conditions [Aranda-Bricaire et al., 1996; Califano et al.,

1999; Grizzle, 1986; Jacubczyck, 1987; Lee et al., 1987; Lin and Brynes, 1995; Nam, 1989],

a nonlinear coordinate transformation: z = T (x) is sought along with a state feedback

control law: u = Ψ(x, v) (with v being an external reference input), such that the original

system (1) is transformed to the following linear one:

z(k + 1) = Az(k) + bv(k) (3)

where (A, b) is a Brunowsky controllable pair of matrices [Chen, 1984]. In the second step,

standard linear pole-placing feedback techniques are used to arbitrarily assign the poles

(equivalently the time-constants) of the closed-loop system. In particular, a constant-gain

vector K is calculated, such that the state feedback law: v = −Kz induces the desirable

closed-loop dynamics:

z(k + 1) = Āz(k) = (A− bK)z(k) (4)
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with Ā = A − bK being the closed-loop system’s characteristic matrix with prescribed

eigenvalues.

At this point it would be appropriate to review an alternative single-step design method

for linear systems:

x(k + 1) = Ax(k) + bu(k), (5)

where A, b are constant matrices with appropriate dimensions, that was first introduced by

D. Luenberger (1963). This alternative approach serves as the methodological basis for the

development of a nonlinear analogue introduced in [Kazantzis, 2001] and briefly outlined

in the next section. According to the ideas reported in [Luenberger, 1963] a single-step

simultaneous implementation of a linear coordinate transformation: z = Tx coupled with

a linear state feedback control law: u = −Kz is sought, that induce the following closed-

loop dynamics:

z(k + 1) = Āz(k) (6)

Ā is the closed-loop system’s characteristic matrix that carries the prescribed set of eigen-

values due to the control law applied. This requirement can be mathematically translated

into a quadratic matrix equation that the unknown transformation matrix T should satisfy:

TA− ĀT = TbKT (7)

If T is non-singular (invertible), one can easily show that the inverse transformation matrix

W = T−1 satisfies the following linear matrix equation:

AW −WĀ = bK. (8)

It is known from linear algebra that, if matrices A and Ā have disjoint eigenspectra, the

above matrix equation (8) admits a unique solution W [Chen, 1984; Gantmacher, 1960].

Furthermore, invertibility of the solution can be ensured iff the pair of matrices (A, b) is

controllable and the pair (K, Ā) is an observable one [Chen, 1984]. As shown in [Luenberger,

1963], if T is the unique invertible solution to the matrix equation (7), then the linear state

feedback control law expressed in the original variables x

u(k) = −KTx(k) (9)

induces the closed-loop dynamics:

x(k + 1) = T−1ĀTx(k) (10)

Since matrices T−1ĀT and Ā are similar, it can be easily inferred that the closed-loop

system has the desirable set of poles assigned by the control law (9).
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3.1 Single-Step Feedback Linearization With Pole-Placement

Motivated by D. Luenberger’s linear approach [Luenberger, 1963], let us now succinctly

review the ideas presented in [Kazantzis, 2001] on its nonlinear generalization. One seeks

to simultaneously implement a nonlinear coordinate transformation, z = S(x) coupled with

a nonlinear state feedback control law, u = −cz = −cS(x), where c is an arbitrary constant

row vector (a design parameter of the proposed method) that induce linear closed-loop z-

dynamics:

z(k + 1) = Az(k). (11)

The poles of the closed-loop dynamics (11) are realized by the eigenvalues of the arbitrar-

ily prescribed matrix A: the characteristic matrix of the linear closed-loop dynamics (11).

Therefore, the eigenspectrum of A should be judiciously selected to favorably shape the

dynamic characteristics of the controlled system’s response. In the nonlinear case, these de-

sign requirements are embodied into the following system of nonlinear functional equations

(NFEs) that need to be satisfied by the unknown transformation map S(x):

S(Φ(x,−cS(x))) = AS(x)

S(0) = 0. (12)

The accompanying initial condition S(0) = 0 merely reflects the fact that equilibrium

properties must be preserved under the proposed coordinate transformation.

For the study of the mathematical properties of the solution of the NFEs (12) and

within the class of real analytic systems, a number of assumptions are essential as shown

in [Kazantzis, 2001]:

Assumption II: All the eigenvalues ki, (i = 1, ..., n) of matrix A should lie inside the

unit disc on the complex plane (stability requirement imposed on the closed-loop dynamics

(11)).

Assumption III: The eigenspectra σ(A), σ(F ) of matrices A and F respectively should

be disjoint: σ(A) ∩ σ(F ) = ∅.

Assumption IV: The eigenvalues ki of A should not be related to the eigenvalues

λj, (j = 1, ..., n) of F through any equations of the type:

n
∏

i=1

kmi

i = λj (13)

(j = 1, ..., n), where all the mi’s are non-negative integers that satisfy the condition:

n
∑

i=1

mi > 0. (14)
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Assumption V: The pair of matrices (c, A) is chosen such that the following matrix

O:

O =















c

cA

.

.

cAn−1















(15)

has rank n: rank(O) = n (Observability condition imposed on (c, A)).

Lemma: [Kazantzis, 2001] For a real analytic system (1), let the above assumptions I-V

hold true. Then, the system of NFEs (12) admits a unique locally analytic and invertible

solution z = S(x) in a neighborhood of the origin x = 0.

We include here a number of remarks discussing the conditions and implications of this

Lemma; a more detailed discussion can be found in [Kazantzis, 2001].

Remark 1: The “non-resonance” conditions (13) and (14) are required for the existence

of a unique formal power-series solution to the system of NFEs (12). The assumption for

the eigenspectrum of matrix A to lie inside the unit disc plays a key role in the uniform

convergence of this formal power-series solution in the neighborhood of the origin x = 0

with a non-zero radius of convergence, and thus for the solution’s analyticity. Finally,

Assumptions I and V are necessary and sufficient conditions for local invertibility of the

solution.

Remark 2: It is useful to consider the linear case: Φ(x, u) = Fx+Gu where F,G are a

constant matrix and vector of appropriate dimensions respectively. In this case, the unique

solution of the system of NFEs (12) is w = Sx, where S is the solution to the quadratic

matrix equation:

SF −AS = SGcS. (16)

which coincides with (7) in D. Luenberger’s analysis. Please notice, that under the as-

sumptions stated the above matrix equation (16) admits a unique and invertible solution

S [Chen, 1984].

Let us now consider: z = S(x) to be the solution to the associated system of NFE’s

(12) defined in a neighborhood of x = 0. It has been shown in Kazantzis (2001) that the

simultaneous implementation of the nonlinear coordinate transformation: z = S(x) and

the nonlinear state feedback control law:

u(k) = −cS(x(k)) (17)

results in linear closed-loop z-dynamics:

z(k + 1) = Az(k) (18)
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whose poles are realized by the eigenvalues of matrix A. Indeed, one can easily show that

the closed-loop system dynamics expressed in the z-coordinates satisfy:

z(k + 1) = S(x(k + 1)) = S(Φ(x(k),−cS(x(k))

= AS(x(k)) = Az(k). (19)

Remark 3: Note that in the linear case, one calculates a feedback control law:

u(k) = −cSx(k) (20)

where S is the solution to (16), that induces the following closed-loop dynamics:

x(k + 1) = (F −GcS)x(k) (21)

Using equation (16), the closed-loop dynamics (21) can be rewritten as follows:

x(k + 1) = (S−1AS)x(k) = Ãx(k). (22)

Notice that A, Ã = S−1AS are similar matrices, and therefore, the closed-loop system (22)

has the desirable poles. One can consider this approach as the natural extension of D.

Luenberger’s linear result for pole-placement (10) to nonlinear systems.

Remark 4: The graph of the mapping z = S(x) is rendered invariant for the com-

posite system (1) and (11) under the state feedback control law: u(k) = −cS(x(k)) [Carr,

1981]. Furthermore, the system of NFEs (12) represent the associated invariance functional

equations for the composite system (1)-(11) [Guckenheimer and Holmes, 1983], and the re-

striction of the composite system dynamics under the above feedback law on the invariant

manifold/solution of (12) coincides with the linear closed-loop dynamics (11).

Remark 5: The primary idea of the proposed single-step design approach is to avoid

the intermediate step of transforming the original system into a linear controllable one

with an external reference input, which allowed us to circumvent the restrictive conditions

associated with the classical exact feedback linearization method [Aranda-Bricaire, 1996;

Califano, 1999; Grizzle, 1986; Jakubczyck, 1987; Lee, 1987; Lin and Byrnes, 1995; Nam,

1989]. It should be pointed out, that the design method described does not involve an

external reference input, however, and therefore other control objectives such as trajectory

tracking or model matching can not be met [Isidori, 1999].

In the present study the NFEs (12) will be solved using the equation-free computational

framework. However, for completeness and comparative accuracy, one needs to employ a

alternative solution scheme/method for the system of NFE’s (12). This method involves

expanding Φ(x, u) as well as the unknown solution S(x) in a Taylor series and equating
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the Taylor coefficients of the same order of both sides of the NFE’s (12). This procedure

leads to linear recursion formulas, through which one can calculate the N -th order Taylor

coefficients of S(x), given the Taylor coefficients of S(x) up to the order N − 1. As shown

in [Kazantzis, 2001], in the derivation of the recursion formulas, it is convenient to use the

following tensorial notation:

a) The entries of a constant matrix A are represented as aji , where the subscript i refers

to the corresponding row and the superscript j to the corresponding column of the matrix.

b) The partial derivatives of the µ-th component Φµ(x, u) of the vector function Φ(x, u)

with respect to the state variables x evaluated at (x, u) = (0, 0) are denoted as follows:

f i
µ =

∂Φµ

∂xi

(0, 0)

f ij
µ =

∂2Φµ

∂xi∂xj

(0, 0)

f ijk
µ =

∂3Φµ

∂xi∂xj∂xk

(0, 0) (23)

etc., where i, j, k, ..=1, ..., n

c) The partial derivatives of the µ-th component Φµ(x, u) of the vector function Φ(x, u)

with respect to the input variable u evaluated at (x, u) = (0, 0) are denoted as follows:

giµ =
∂iΦµ

∂ui
(0, 0) (24)

etc.

d) The standard summation convention where repeated upper and lower tensorial indices

are summed up.

Under the above notation the l-th component Sl(x) of the unknown solution S(x) can

be expanded in a multivariate Taylor series as follows:

Sl(x) =
1

1!
Si1
l xi1 +

1

2!
Si1i2
l xi1xi2 + ...+

+
1

N !
Si1i2...iN
l xi1xi2 ...xiN + ... (25)

Similarly one expands the components of the vector function Φ(x, u) in multivariate Taylor

series. Substituting the Taylor expansions of S(x) and Φ(x, u) into (12) and matching the

Taylor coefficients of the same order, the following relation for the N -th order terms may

be obtained [Kazantzis, 2001]:

N
∑

L=1

∑

0≤m1≤m2≤...≤mL

m1+m2+...+mL=N

S
j1...jL
l (fm1

j1
...fmL

jL
− πm1

j1
...πmL

jL
) = a

µ
l S

i1...iN
µ (26)

10



where:

πmL

jl
=

L
∑

P=1

∑

0≤n1≤n2≤...≤nP
n1+n2+...+nP=mL

gn1

jl
ckSn2...nP

k (27)

i1, ..., iN = 1, ..., n and l = 1, ..., n. Notice that the second summation symbol in (26)

(and similarly in (27)) suggests summing up the relevant quantities over the
N !

m1!...mL!
possible combinations to assign the N indices (i1, ..., iN) as upper indices to the L positions

{fj1, ...fjL} (and {πj1, ...πjL}), withm1 of them being put in the first position, m2 of them in

the second position , etc. (
L
∑

i=1

mi = N). Moreover, notice that equations (26,27) represent

a set of linear algebraic equations in the unknown coefficients Si1,...,iN
µ for N ≥ 2. For

N = 1, equations (26,27) yield the quadratic matrix equation (16) (or (7) in D. Luenberger’s

approach). It should be pointed out, that the above series solution method for the NFE’s

(12) is amenable to a computer-based implementation and can be readily carried out in an

automatic fashion with the aid of a symbolic software package such as MAPLE.

4 An Equation-Free Approach to the Feedback Linearization Prob-

lem

As shown in the previous section, the system of NFEs (12) admits a unique analytic solu-

tion. However, such an analytic transformation is difficult to derive in the general case, and

a numerical solution scheme becomes necessary. We will now assume that the model equa-

tions are not explicitly available, but we do have a “black box” subroutine that, given the

state of the system x0 ∈ Rn, u0 ∈ R at time tk = kT reports the result of the system after a

time horizon T (i.e., will report x(tk+1 = (k+1)T ) ≡ ΦT (x0, u0)). This subroutine could be

a “legacy” dynamic simulator; alternatively, it can be a “coarse timestepper” involving the

lift, run and restrict steps discussed briefly below and in more detail in [Makeev et al., 2002;

Gear et al., 2002; Kevrekidis et al. 2003, Siettos et al., 2003b]. The coarse timestepper,

which we use in the equation-free framework for coarse-grained controller design (for linear

quadratic control, pole placement and feedback linearization) [Siettos et al., 2003a, Siettos,

et al., 2004a, Armaou et al., 2004a, 2004b, Siettos et al., 2004b] consists of the following

elements (Figure 1):

• a lifting operator µ, transforming a macroscopic initial condition (typically zeroth-

or first-order moments of the microscopically evolving distributions) to one (or more)

consistent microscopic realizations;

• evolution of the microscopic realizations using the microscopic simulator for an appro-
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priately chosen (relatively short) macroscopic time T , (the reporting horizon).

• a restriction operator M , transforming the resulting microscopic distributions back to

the macroscopic description (obtaining their macroscopic observables). Lifting from

microscopic to the macroscopic and then restricting again should have theoretically

no effect (modulo roundoff), that is, µM = I.

This coarse timestepper, appropriately initialized and executed can serve in the “on

demand” estimation of model right-hand-sides, of the action of “coarse slow” Jacobians as

well as derivatives with respect to parameters, in the computation of coarse fixed points

and their leading eigenvalues – in short, of exactly the quantities that a linear or nonlinear

controller design algorithm would need evaluated through a macroscopic model (had such

a model been available) to perform its task.

For our problem, we use the coarse timestepper in a coarse fixed point algorithm to

converge on the desired coarse nominal equilibrium x0; we then proceed as follows (re-

markably, the algorithm is the same for the case of legacy dynamic simulators and coarse

timesteppers of microscopic/stochastic models):

• Discretize the domain Dn ⊆ Rn of the state-space, where a numerical solution of the

feedback linearization problem is sought in a mesh of, say, N points.

• Write the transformation vector S(x) as a power series expansion up to order p around

the equilibrium x0 i.e. write S(x) as S(x; h), where h ∈ Rm is the vector of the power

series coefficients. For example for a 2-dimensional problem S(x; h) ≡ S(x1, x2; h) can

be written as:

S1(x1, x2; ai=1,...p) = a1x1 + a2x2 +
1

2!
a3x

2
1 +

1

2!
a4x

2
2 + a5x1x2 + ... +O(p+ 1) (28)

S2(x1, x2; bi=1,...p) = b1x1 + b2x2 +
1

2!
b3x

2
1 +

1

2!
b4x

2
2 + b5x1x2 + ... +O(p+ 1) (29)

where:

h = [a1, a2, ..., ap, b1, b2, ..., bp] (30)

Then, write the feedback control law as in (17).

• Calculate the values of the unknown coefficients of S(x; h) using a matrix-free iterative

nonlinear solver [Kelley, 1999], or possibly an unconstrained optimization algorithm,

such as the Broyden, Fletcher, Goldfarb, Shanno (BFGS) method.
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The optimization problem can be stated as finding the values of the vector h such that

the sum of squared errors on the discretization mesh is minimized, i.e.:

min
h

1

2

N
∑

i=1

‖ Gi(h) ‖
2
2 (31)

where the vector function Gi(h) is defined as: Gi(h) = S(ΦT (xi,−cS(xi); h) − AS(xi; h),

∀xi on the discretized mesh, and ‖ • ‖2 is the standard Euclidean norm in the above

minimum norm problem [Luenberger, 1969].

The quantities involved in the optimization computations (e.g. the values Gi) are eval-

uated repeatedly using the (legacy or coarse) timestepper for each value xi in the mesh.

Remark 6: The single-step feedback linearization problem under consideration admits an

alternative formulation, where the inverse transformation map: x = w(z) is sought that

satisfies the following system of NFEs:

w(Az) = Φ(w(z),−cz)

w(0) = 0 (32)

where:

x = w(z) = S−1(z) (33)

The above functional equation is structurally simpler (first-order) than (12) (second-order),

since in the latter the unknown vector function S(x) appears through two consecutive

function composition operations. Furthermore, it can be easily shown that the above

problem reformulation leads to the same results, namely the same feedback linearizing

control law [Kazantzis, 2001]. Notice, that in this case we expand w(z) (instead of S(x))

in a power series and we then seek the values of the vector h
′

such that the sum of squared

errors on the discretized domain (w.r.t z state-space, say D
′n ⊆ Rn) is minimized, i.e.:

min
h
′

1

2

N
∑

i=1

‖ G
′

i(h
′

) ‖22 (34)

where the vector function G
′

i(h
′

) is defined as: G
′

i(h
′

) = w(Azi) − ΦT (w(Azi),−czi); h
′

),

∀zi on the discretized mesh.

Upon convergence we find the desired transformation S(x) symbolically by applying a

functional inverse on w(z). More generally, matrix-free iterative linear algebra approaches

can be used to solve the discretized nonlinear functional equations; in these methods the

action of the Jacobian is estimated by appropriately initialized nearby initial conditions

(dictated, for example, by a GMRES protocol). It is worth noting that, if the problem

dynamics are characterized by a separation of time scales, and the long-term dynamics lie on
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a low dimensional, attracting manifold, the dynamical integration involved in timestepping

may be beneficial to the convergence of such iterative solution techniques [Wington et al.,

1985; Kelley et al., 2004].

5 An Illustrative Case Study

5.1 The Deterministic Version

Our illustrative example consists of a simplified mechanism for the dynamics of NO reduc-

tion by H2 on Pt and Rh surfaces. The simplified deterministic mean field model for this

mechanism is given by:

dx

dt
= α(1− x)− γx− u(1− x)2x ≡ L(x, u) (35)

where x is the coverage of adsorbed NO, α is the rate constant for NO adsorption (incor-

porating the gas phase NO partial pressure), γ is the rate constant for NO desorption,

and u is the reaction rate constant (and, in our scheme, the control variable). In order to

transform the problem back to the discrete time formulation, we take a forward Euler step

of the continuous time problem

x(k + 1) = x(k) + TL(x(k), u(k)) ≡ Φ(x(k), u(k)). (36)

Simulation results were obtained for: α = 1, γ = 0.01. This model, exhibits two regular

turning points (at u ≃ 3.96 and u ≃ 26) as shown in the bifurcation diagram (Figure 2).

We want to derive a nonlinear feedback control based on the proposed methodology, to

stabilize the timestepper at the open-loop unstable stationary state (x0 = 0.5559, u0 = 4).

We chose T = 0.1 as the reporting time horizon; the open loop eigenvalue at the nominal

steady state is 0.1459, and the characteristic time is 6.85; A time step of 0.1 is therefore

sufficient for accuracy of the Euler integration step and numerical stability.

5.2 The Microscopic/Stochastic Version

The procedure remains essentially the same when the timestepper results are obtained

through short bursts of microscopic simulation. Here for the stochastic simulations of the

mechanism embodied in (36) we used the Gillespie Stochastic Simulation Algorithm (SSA)

[Gillespie, 1976, 1977].

Given the value of the surface coverage at time t = 0 we computed the expected value

of the coverage after a reporting time horizon T by simulating a system with a relatively

large number of available sites (say Nsize), averaging over several realizations (say Nrun); the

14



system size and number of realizations were chosen here to be Nsize = 1002 and Nrun = 100,

respectively. The time horizon was again selected to be T = 0.1. The Monte Carlo model

is considered as a “black box” coarse timestepper x(k + 1) = ΦT (x(k), u(k)).

The coarse Jacobian (here, a single derivative, which doubles as the coarse eigenvalue)

at the fixed point is estimated by wrapping a Newton’s method around the coarse KMC

timestepper. The coarse identified model (Jacobian and right hand-side) is then used for

tracing the solution branch by coupling to a pseudo-arc-length continuation scheme [Keller,

1977]. For the continuation we used Nsize = 2002 and Nrun = 1000. For details on the

computation of coarse stationary states and coarse bifurcation diagrams in an equation-

free framework see [Makeev et al., 2002; Gear et al., 2002; Kevrekidis et al. 2003]. The

resulting bifurcation diagram coincides with the one obtained through the deterministic

timestepper. Given the unstable coarse stationary state at u = 4, the requisite functional

equation for simultaneous feedback linearization and pole placement was solved using the

coarse timestepper and minimizing Equation (30) using the BFGS method. To implement

this procedure we used deviation variables defined as x′ = x− x0 and u′ = u− u0, while A

now is a scalar chosen as 0.8.

We derived the unknown transformation map S(x) numerically by the following distinct

ways:

a) Analytically, by expanding S(x) in a power series and retaining quadratic terms of the

form S(x) = α1x+0.5α2x
2, substituting u = −S(x) into Φ(x(k), u(k)) and then expanding

Φ(x(k),−S(x)) in Taylor series around the equilibrium (0,0). The values of the unknown

coefficients αi’s are computed by equating terms of the same order on both sides of NFEs

(12).

b) Equation-free by using the “black-box” KMC timestepper approach, i.e. by solving

the optimization problem as appearing in (31) using the BFGS quasi-Newton method and

a line search technique.

Here the domain of interest was chosen as D ∈ R ≡ [−0.1 0.1] and was discretized into

25 equally spaced points. In Figure 3 we plot the derived S(x).

The transformation found by solving the NFE using timestepping is later used to close

the loop (simultaneously linearizing and assigning poles for the closed loop system dy-

namics) Figure 4 demonstrates responses resulting from the desired closed loop dynamics

z(k + 1) = S(k + 1) = 0.8z(k) = 0.8S(k) (dotted lines) and that of the numerically

obtained transformation S(x) when applying the control law on the coarse KMC timestep-

per (solid ones). Figure 5 shows the closed loop responses of the deterministic mean field

model and of the Kinetic Monte Carlo version starting from different initial conditions.
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These were obtained through the solution of the norm minimization problem (31) using

the deterministic and the stochastic KMC model respectively. The feedback linearizing

transformation was found by minimizing (31) using the BFGS method. The obtained re-

sults confirm the effectiveness of the proposed equation-free nonlinear controller design

methodology, demonstrating successful stabilization and regulation of the process at the

unstable stationary state.

6 Concluding Remarks

We demonstrated how feedback linearization with pole placement in a single step, analyzed

in [Kazantzis, 2001] for closed form equation models, can be performed in an equation-free

framework by acting directly on a fine scale simulator. The illustrative example used a

stochastic realization of a simplified model of a catalytic surface reaction. Admittedly,

the example is a very simple one; in particular, it is (coarsely) one-dimensional, and for

such systems a feedback linearization transformation always exists [Isidori, 1999]. Yet the

timestepper based, equation-free methodology illustrated is not restricted to one dimen-

sional (when coarse-grained) problems; all the elements of the method (the timestepper,

the location of unstable fixed points and their leading slow eigenvalues, the solution of

the corresponding functional equation) remain effectively the same in higher-dimensional

cases. More sophisticated matrix-free iterative methods can be used to solve the requisite

functional equation by acting directly on the fine-scale simulator. Parallel computation (a

different replica fine scale simulation of the same initial condition performed on each proces-

sor) and computational tools like In situ Adaptive Tabulation (ISAT, [Pope, 1997]) can be

used to alleviate, when appropriate, the computational wall clock time and effort required

to estimate the necessary coarse-grained quantities. Furthermore, if a strong separation

of time scales (a spectral gap) appears in the coarse-grained dynamics, and the long-term

behavior lies on a low-dimensional “slow manifold”, it is possible to take advantage of this

through timestepping to solve an effective NFE of reduced dimension [Gear et al., 2004]. In

this paper we assumed that we knew what “the right” macroscopic observable was, in which

to restrict the microscopic system dynamics; the detection of appropriate such observables,

either through data analysis [Coifman et al., 2004] or observer design is a subject we are

currently pursuing.
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Figure Captions

Figure 1: Schematic of the coarse timestepper in a controller design framework

Figure 2: (a) Coarse Bifurcation diagram of the kMC model, obtained by the coarse

timestepper, (b) blow up of the diagram near the equilibrium of interest; solid lines corre-

spond to stable coarse steady states while the dotted ones correspond to unstable coarse

steady states

Figure 3: S(x) as computed analytically (solid line) and using the black-box coarse

KMC timestepper (dotted line)

Figure 4: Transients of S(k + 1) = 0.8S(k), corresponding to the desired closed loop

dynamics, (solid lines) and S(x(k)) using the computed control law on the coarse KMC

timestepper (dotted lines)

Figure 5: (a) Transient response for 0.1 initial perturbation of the coarse state variable

from the coarse equilibrium. (b) Transient response for 0.2 initial perturbation of the coarse

state variable from the coarse equilibrium, (c) Transient response of the control variable

for 0.2 initial perturbation of the coarse state variable from the coarse equilibrium (lower

ones correspond to -0.2). Simulation runs for the KMC timestepper were obtained with

Nsize = 1002 and Nrun = 100.
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Figure 1: Schematic of the coarse timestepper in a controller design framework
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Figure 2: (a) Coarse Bifurcation diagram of the kMC model, obtained by the coarse timestepper, (b) blow
up of the diagram near the equilibrium of interest; solid lines correspond to stable coarse steady states
while the dotted ones correspond to unstable coarse steady states
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