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The use of low-density-parity-check (LDPC) codes in coding digital messages has aroused much
research interest because of their excellent bit-error performance. The behavior of the iterative
LDPC decoders of finite length, however, has not been fully evaluated under different signal-to-
noise conditions. By considering the finite-length LDPC decoders as high-dimensional nonlinear
dynamical systems, we attempt to investigate their dynamical behavior and bifurcation phe-
nomena for a range of signal-to-noise ratios (SNRs). Extensive simulations have been performed
on both regular and irregular LDPC codes. Moreover, we derive the Jacobian of the system and
calculate the corresponding eigenvalues. Results show that bifurcations, including fold, flip and
Neimark–Sacker bifurcations, are exhibited by the LDPC decoder. Results are useful for opti-
mizing the choice of parameters that may enhance the effectiveness of the decoding algorithm
and improve the convergence rates.

Keywords : Low-density-parity-check codes; iterative decoders; nonlinear dynamical systems;
phase trajectories.

1. Introduction

Turbo codes [Berrou et al., 1993; Agrawal & Vardy,
2001] and low-density-parity-check (LDPC) codes
[Gallager, 1962; Richardson et al., 2001] have been
widely used in coding digital messages. Their abil-
ity to raise bit-error performance close to the Shan-
non limit has aroused much interest in the research
community in the past decade. The LDPC codes
were first proposed by Gallager [1962]. The idea was
subsequently forgotten. Recently, with the rapid
development of computational techniques as well
as the popularization of personal computers, LDPC
codes have been revisited and shown to outperform
the popular turbo codes with lower error floor and
shorter minimum distance between codewords.

LDPC codes can be decoded using various
decoding methods, including hard-decision decod-
ing and soft-decision decoding [Kou et al., 2001;

Ryan, 2004; Shokrollahi, 2003]. Hard decision meth-
ods such as bit flipping and one-step majority-logic
are simple for hardware implementation but are
not good in error performance compared to soft-
decision methods. In contrast, the optimal maxi-
mum likelihood decoder [Proakis, 1995] provides the
lowest error rates among the various decoding algo-
rithms, but it is too complex to be implemented
in practice. A widely used algorithm is the iterative
decoding based on belief propagation (BP) [Richard-
son et al., 2001], which represents a good compro-
mise between complexity and error performance.

In the BP algorithm, information is exchanged
between two sets of intermediate nodes in the
decoding graph, namely so-called variable nodes
and check nodes, by passing messages along the
edges connecting the nodes. The decoding algo-
rithm works iteratively. The messages can be viewed
as a posteriori probability values based on the
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received information. The computation of a poste-
riori probabilities at each round requires that the
incoming messages are statistically independent,
and then the iterative equations correctly calcu-
late the corresponding probabilities based on the
observations. In fact, the independence assumption
requires that the neighborhood of a node up to a
certain depth is a tree, meaning that there is no
cycle in the graph. Therefore, the BP algorithm
assuming a cycle-free graph can achieve very good
performance. As the block length tends to infinity,
the behavior of the individual codes concentrates
around its expected behavior of the ensemble and
converges to the behavior of the cycle-free case.
Many researchers have studied the iterative decod-
ing of the infinite-length LDPC decoders and have
proposed various kinds of methods to analyze the
convergence behavior of the decoders [Richardson
& Urbanke, 2001; Chung et al., 2001; Franz et al.,
2002; Lehmann & Maggio, 2003]. As of today, the
asymptotic behavior (as the block-length tends to
infinity) of iterative decoding systems has been rea-
sonably well understood.

One of the most popular analysis methods for
studying LDPC decoders is density evolution (DE)
[Richardson & Urbanke, 2001]. Given an initial
probability density of the received signal, which
depends on the channel parameters for a given
channel, density evolution makes use of the initial
density as the input and calculates the probability
densities of the output messages iteratively accord-
ing to the structure of the code ensemble. For the
BP decoding algorithm, density evolution allows the
algorithm to converge as the block length tends to
infinity. For some classes of channels, there exists
a maximum channel parameter σ∗ (the threshold)
such that the bit error rate (BER) tends to zero
if σ < σ∗ and converges to a nonzero fixed point
if σ > σ∗. Note that bifurcation phenomena have
been observed at the LDPC decoder as the SNR
varies beyond the threshold.

Recently, many researchers have begun to
pay attention to LDPC codes of finite length.
Various construction methods such as the geomet-
ric approach [Kou et al., 2001] and girth con-
trol algorithms [Mao & Banihashemi, 2001] have
been proposed to produce good LDPC codes of
finite length. Graph-based BP algorithms [Xiao
& Banihashemi, 2004] have also been studied to
improve the BER performance by removing loops
during decoding. For easy hardware implementa-
tion, Chen and Fossorier [2002] have put forward

a series of simplified BP methods. While some
researchers focus on the constructions of “good”
codes and the design of low-complexity encoding/
decoding techniques, others are interested in study-
ing the behavior of the iterative decoding algo-
rithms. Assuming a binary erasure channel, Di
et al. [2002] have derived an analytical expression of
the average bit error probability for regular LDPC
ensembles with finite-length and have analyzed the
convergence of the decoder as the channel parame-
ter (block erasure probability) varies. The analysis
is further generalized to include the study of irreg-
ular codes [Zhang & Orlitsky, 2002]. Unfortunately,
both analyses are limited by the huge computa-
tional effort required, except for some simple codes.
Under the same binary erasure channel, Richardson
et al. [2002] and Amraoui et al. [2004] have investi-
gated the behavior of the iterative decoding pro-
cess. They have also found some approximated
BER expressions for the average performance of
an LDPC code ensemble of finite length. Much
effort has been spent in studying the behavior of
the LDPC decoder under a binary erasure channel,
but the dynamical behavior of the decoder of finite
length under a Gaussian noise channel has not been
evaluated at all.

In their pioneering papers, Richardson [2000]
and Agrawal and Vardy [2001] have studied in detail
the performance and nature of the turbo decod-
ing algorithm of finite length under a Gaussian
noise channel by modeling the decoder as a discrete
dynamical system. They have shown that in addi-
tion to fixed points, bifurcations leading to period
doubling and oscillations may be produced by the
decoding algorithm. Later, Kocarev et al. [2002] dis-
covered that chaos exists in turbo decoding and a
control method has been proposed to improve the
convergence rate under such a scenario. Since both
turbo decoders and LDPC decodes are iterative sys-
tems, it is highly probable that the decoding pro-
cesses are rich in nonlinear phenomena.

In this paper, we attempt to study in depth the
behavior of finite-length LDPC decoders. Assum-
ing a Gaussian noise channel, we analyze the phase
trajectories of a posteriori probabilities as the itera-
tive process progresses. Extensive simulations have
been performed for a wide range of SNRs. In Sec. 2,
we will briefly review the representations of the
LDPC codes and the iterative decoding process.
The dynamical equations governing the decoding
process are also given. When a fixed point exists, the
corresponding Jacobian matrix is also derived. In
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Sec. 3, we will present some results for both regular
and irregular LDPC codes. Finally, we give our con-
clusions in Sec. 4.

2. Overview of LDPC Coding
Systems

2.1. LDPC codes

2.1.1. Graph representation

Low-density-parity-check codes are linear block
codes which can be represented by bipartite graphs
consisting of two sets of nodes, namely variable
nodes and check nodes. The variable nodes corre-
spond to the elements of the codeword and the
check nodes correspond to the sets of parity-check
constraints satisfied by the codewords of the code.
The connections between the two different types
of nodes are called edges. The number of edges
emanated from a node is referred to as the degree of
the node. The key property of LDPC codes is the
sparsity of the graph. In other words, the degree
of every node is low. Also, there are two kinds of
LDPC codes: regular and irregular.

For regular LDPC codes, all nodes of the same
type have the same degree. The degrees of the vari-
able nodes and check nodes are usually called col-
umn weight and row weight, denoted by wc and wr,
respectively. For irregular LDPC codes, the degree
of each set of nodes is chosen according to some dis-
tributions. For a given distribution pair (λ, ρ) of an
LDPC ensemble,

λ(x) :=
dv∑
i=2

λix
i−1


ρ(x) :=

dc∑
j=2

ρjx
j−1


 (1)

specifies the variable (check) node degree distribu-
tion, where λi denotes the fraction of all edges con-
nected to degree-i variable nodes and ρj denotes
the fraction of all edges connected to degree-j
check nodes. Moreover, dv and dc denote the max-
imum variable-node degree and maximum check-
node degree, respectively. Note that regular code
is just a special case of the irregular ones. For reg-
ular codes with column weight wc and row weight
wr, all variable nodes are connected with wc edges,
i.e.

λi =
{

1 i = wc

0 otherwise,
(2)

and consequently, we have λ(x) = xwc−1. For the
same reason, we have ρ(x) = xwr−1.

Fig. 1. A graph representation of (10, 5) irregular LDPC
code.

In Fig. 1, an example of (10, 5) irregular LDPC
code is shown. The (10, 5) code indicates that there
are ten variable nodes (as shown on the left-hand
side) and five check nodes (as shown on the right-
hand side) in the bipartite graph. Each check node
represents a check equation satisfied by the code-
word. Referring to the figure, it can be observed
that three edges emanate from v1 and hence the
degree of node v1 equals 3.

For a given block length and a given degree dis-
tribution, we define an ensemble of codes by choos-
ing the edges randomly. By definition, all elements
from the same ensemble of infinite length have the
same performance. But in practice, for finite-length
codes, we need to choose the edges carefully to avoid
the small loops, which will degrade the error per-
formance of a code.

2.1.2. Matrix representation

Consider a linear block code with k information bits
and (n− k) check bits. The set of codewords C can
be described as a k-dimensional vector subspace of
the space of all n-tuples over Fn

2 , where Fn
2 repre-

sents the binary field with n dimensions. In other
words, the set of all n-bit vectors in C are formed by
linear combinations of k linearly independent basis
vectors {g1,g2, . . . ,gk} over Fn

2 , and the basis vec-
tors can be arranged as rows of a k × n generation
matrix G such that G = {gT

1 gT
2 . . . gT

k }T .
The null space of G is associated with a matrix H,
which is called the parity-check matrix. The (i, j)th
element of the parity-check matrix H, denoted by
hij, is 1 if and only if the ith check node is con-
nected to the jth variable node. As a consequence,
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the LDPC code can be defined as the set of vectors
C such that all elements c ∈ C satisfy cHT = 0. In
the bipartite graph, such as the one shown in Fig. 1,
the edges represent the connections between the
variable nodes and the check nodes. Such connec-
tions are also indicated by the corresponding parity-
check equations. Therefore, based on the bipartite
graph, the corresponding matrix representation of
the LDPC code can be derived. For example, it is
readily shown that the parity-check matrix of the
(10, 5) code in Fig. 1 is given by

H =




1 1 1 0 0 0 1 0 1 0
1 0 1 0 1 1 0 1 0 0
0 1 0 1 1 0 1 0 0 1
1 0 0 0 0 1 0 0 1 0
0 0 0 1 1 0 1 1 0 1


 . (3)

2.1.3. Decoding algorithm

Without loss of generality, we consider a binary-
input additive white Gaussian noise channel and
a transmitted codeword with a block length n.
We denote the ith code bit (i = 1, 2, . . . , n) by
ci ∈ {0, 1}. The transmitted signal corresponding
to this code bit is denoted by si ∈ {−1, 1} and
equals (−1)ci . The received signal, denoted by yi,
is given by yi = si + zi, where the variables zi are
independent and identically distributed zero-mean
Gaussian random variables with variance (noise
power) σ2.

We assume that the received signal is yi, and
the message rj′i(b) (b = 0, 1) is passed from the
neighboring check-node set Ci excluding the check
node j. We define qij(b) as the conditional poste-
rior probability of the bit ci being equal to b. We
further assume that the message qi′j(b) is passed
from the neighboring variable-node set Vj exclud-
ing the variable node i. We may define rji(b) as
the conditional posterior probability of the event
that the jth check equation is satisfied. Assum-
ing that the passed messages in the iterative pro-
cess are independent random variables, the BP
algorithm in the probability domain proceeds as
follows.

1. Estimate the noise power σ2. For i = 1, 2, . . . , n,
initialize Pi(b) := Pr(ci = b|yi), where Pr(ci =
b|yi) denotes a posteriori probability that bit
ci equals b given the received signal yi. Set
qij(b) = Pi(b) if the variable node i and the
check node j are connected.

2. Update {rji(b) : i, j = 1, 2, . . . , n; b = 0, 1},
using


rji(0) =

1
2

+
1
2

∏
i′∈Vj/i

(1 − 2qi′j(1))

rji(1) = 1 − rji(0).

(4)

3. Update {qij(b) : i, j = 1, 2, . . . , n; b = 0, 1},
using

qij(b) = KijPi(b)
∏

j′∈Ci/j

rj′i(b) (5)

where Kij is chosen to ensure that qij(0) +
qij(1) = 1.

4. Compute a posteriori probability of bit ci using

Qi(b) = KiPi(b)
∏
j∈Ci

rji(b) (6)

where Ki is chosen to ensure that Qi(0) +
Qi(1) = 1.

5. For i = 1, 2, . . . , n, set

Qi(1)
ĉi=1
>
<

ĉi=0
Qi(0). (7)

If ĉHT = 0 or the number of iterations equals
the maximum limit, stop; else, go to Step 2.

2.2. Nonlinear dynamics of the
finite-length LDPC decoder

For infinite-length LDPC codes, careful construc-
tion according to the density evolution produces
very good LDPC codes with no loops in the graph,
which means that the messages passed are indepen-
dent of one another. Then, the decoders will always
converge either to the indecisive fixed points or
the unequivocal fixed point. However, finite-length
LDPC codes with good minimum distance should
contain some loops. Hence, in the iterative decoding
process, the message may be trapped in the loops
and the output may oscillate.

To analyze the convergence behavior of the
finite-length LDPC decoder, we can rewrite the
whole iterative process as{

ql(0, σ) = f1(rl(0, σ))

rl+1(0, σ) = f2(ql(0, σ))
(8)

where both rl(0, σ) and ql(0, σ) are vectors param-
eterized by σ and of length M = n/

∫ 1
0 λ(x)dx.
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(Recall that λ(x) specifies the variable node degree
distribution.)

It can be observed that the whole process is
parameterized by the probabilities Pr(ci = 0|yi), i =
1, 2, . . . , n, which are determined by the transmit-
ted codeword and the noise values. Simulations have
also shown that the iterative decoder is very sensi-
tive to such parameters.

Suppose that a fixed point exists in the dynam-
ical system. Linearizing (8) around the fixed point,
we get{

ql(0, σ∗) = J1rl(0, σ∗)

rl+1(0, σ∗) = J2ql(0, σ∗)

⇒ rl+1(0, σ∗) = J2J1rl(0, σ∗)|rl+1=rl

= Jrl(0, σ∗)|rl+1=rl (9)

where J1 and J2 are the Jacobian matrices of the
functions f1 and f2, respectively, J = J2J1, and σ∗
is the parameter at the fixed point. For specific vari-
able nodes i and i1 and check nodes j and j1, the
(φ(i, j), φ(i1 , j1))th element of the matrix J can be
shown equal to

Jφ(i,j)φ(i1,j1)

=

(2rl+1
ji (0) − 1) · Pi1 ·

∏
j′∈Vi1

/j

Rl
j′i1


1 −


Pi1 ·

∏
j′∈Vi1

/j

Rl
j′i1




2
 · rl

j1i1
(0) · rl

j1i1
(1)

·π(i, j, i1 , j1) (10)

where Pi = Pi(1)/Pi(0) and Rl
ji = rl

ji(1)/r
l
ji(0).

φ(i, j) is an index function defined as φ(i, j) =∑i−1
i′=1

∑m
j′=1 hj′i′+

∑j
j′=1 hj′i, and the output range

of which is from 1 to M . Also, m is defined as the
check length of the code, i.e. the number of check
equations. For the function π(i, j, i1, j1), its value
equals 1 if the variable nodes i and i1 are both con-
nected to the check node j, with check node j1 con-
nected to variable node i1; otherwise, it equals 0.

The stability of the fixed point can then be
determined from the eigenvalues of the Jacobian of
the iterative system evaluated at the fixed point.
Perturbations grow exponentially if one of the abso-
lute values of the eigenvalues is larger than 1 and
decay if all the eigenvalues lie in the unit circle.
A fixed point is said to be stable if all sufficiently
small disturbances remote from it damp out in
time. Conversely, unstable equilibria, in which dis-
turbances grow in time, are represented by unsta-
ble fixed points. If an eigenvalue approaches −1

and 1, respectively, flip bifurcation and fold bifurca-
tion would occur. Also, Neimark–Sacker bifurcation
occurs when a pair of complex conjugate eigenvalues
move towards the unit circle from inside [Strogatz,
1994].

Although we can find the entire phase trajec-
tories of rl(0, σ) and ql(0, σ), it is impractical to
plot and study them all because both rl(0, σ) and
ql(0, σ) are very high dimensional variables in the
order of tens of thousands. Instead, we make use
of the measure E(l) to investigate the dynamical
behavior of the decoder, and E(l) is defined as the
mean-square value of a posteriori, probabilities of
the code bits being equal to 0 at the lth itera-
tion, i.e.

E(l) :=
1
n

n∑
i=1

[Ql
i(0)]

2. (11)

In our study, codewords with all zeros are used
because it is known that the all-zero codeword is
adequate for assessing the performance of a linear
code with a symmetrical channel and a symmetri-
cal decoding algorithm. Therefore, if all code bits
are detected correctly after some iteration number,
Ql

i(0) = 1 for all i and consequently E(l) = 1.

3. Bifurcation Phenomena by
Simulations

Suppose the noise samples are represented by z =
(z1, z2, . . . , zn). If the ratios between consecutive
sample values, i.e. (z1/z2, z2/z3, . . . , zn−1/zn), are
fixed, we refer to such noise samples as one noise
realization. Different noise realizations correspond
to different noise-ratios vectors. For a given noise
realization, the noise vector z completely deter-
mines the SNR because 1/(2R × SNR) = σ̂2 =
(1/n)

∑n
i=1 z2

i where R is the code rate. Usually, n is
a large integer and σ̂2 will be a good approximation
of the channel noise power σ2.

Extensive simulations have been performed to
identify the relevant dynamics. In particular, it is
found that fold bifurcation, flip bifurcation and
Neimark–Sacker bifurcation occur within a certain
range of the SNR called the “waterfall region”.
For regions with high and low SNRs, two kinds of
fixed points in the decoding system are observed,
namely the unequivocal one and the indecisive one.
Note that the unequivocal fixed point is the desired
fixed point which produces a definite decoding out-
come. In Fig. 2, we plot the histograms of a poste-
riori probability (based on (6)) at the fixed points
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Fig. 2. Histogram of posterior probability corresponding to (a) an unequivocal fixed point, and (b) an indecisive fixed point.

for an arbitrary LDPC code. For an unequivocal
fixed point, all the probability values converge to
either 1 or 0, which is unequivocal for hard deci-
sion [see Fig. 2(a)]. Conversely, we refer to a fixed
point as an indecisive fixed point when the LDPC
decoding algorithm is relatively ambiguous regard-
ing the values of the information bits, with poste-
rior probability values heavily clustered around 0.5
[see Fig. 2(b)]. It is also interesting to note that the
algorithm converges to the unequivocal fixed point
if, and only if, the decoder finds a valid codeword.

3.1. Irregular LDPC codes

We first consider an irregular (1008, 504) LDPC
code [MacKay, 2005] and study the trajectories of
the iterative decoding algorithm.

3.1.1. Fold bifurcation

For some noise realizations, only fold bifurcations
occur as we vary the SNR. Figure 3 shows the
changes in the phase trajectories induced by a typi-
cal fold bifurcation for a particular noise realization.
The figures on the left-hand side plot the value of
E(l) against l, whereas those on the right plot the
number of error bits against l. At an SNR value of
0.911785184 dB, the phase trajectory of the LDPC
decoder converges to a stable indecisive fixed point,
as indicated by the plots in [Fig. 3(a)]. As the SNR
is increased to 0.911785185 dB, the indecisive fixed
point disappears and the phase trajectory is able to
move away from this neighborhood and converges to

an unequivocal fixed point. But there is a long time
transient behavior of about 400 iterations before
convergence finally takes place, as seen in Fig. 3(b).
When the SNR is further increased to 0.92 dB, it
takes less than 60 iterations for the trajectory to
converge. In Fig. 4, the values of E(l) at the steady
state are plotted against SNR. It can be seen that
in the low SNR region, the iterative algorithm con-
verges to an indecisive fixed point, whereas in the
high-SNR region, the algorithm converges to an
unequivocal fixed point. Also, the two SNR regions
are separated by a fold bifurcation.

3.1.2. Flip bifurcation and
Neimark–Sacker bifurcation

For some other noise realizations, both flip bifur-
cations and Neimark–Sacker bifurcations occur.
Figure 5 illustrates such bifurcations occurring at
the LDPC decoder for another noise realization.

At an SNR value of 0.30 dB, the LDPC decod-
ing algorithm converges to a stable indecisive fixed
point [see Fig. 5(a)]. As the SNR increases to about
0.44 dB, flip bifurcation occurs. Figure 5(b) shows
a stable period-two cycle at the steady state at
SNR = 0.55 dB. The periodic points lose their sta-
bility and eventually bifurcate at around SNR =
0.595 dB. Figure 5(c) shows that the trajectory
converges to an indecisive fixed point at SNR =
0.601 dB. When the SNR is further increased to
0.615 dB, the phase trajectory converges to the
steady state much slowly, as can be seen in Fig. 5(d).
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Fig. 3. A typical fold bifurcation. (Left) E(l) versus l. (Right) Number of error bits versus l. (a) SNR = 0.911785184 dB;
(b) SNR = 0.911785185 dB; (c) SNR = 0.92 dB.
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Fig. 4. Bifurcation diagram of E(l) for a particular noise
realization. Dotted line corresponds to the SNR at which fold
bifurcation occurs.

At around SNR = 0.62 dB, the fixed point under-
goes a Neimark–Sacker bifurcation and the phase
trajectory goes into an invariant set. As a result,
after a transient period, the phase trajectory con-
verges to a quasi-periodic orbit. Figure 5(e) depicts
the quasi-periodic orbit at the steady state at
SNR = 0.65 dB. As the SNR increases, the trajec-
tory finally loses its stability and chaos emerges
at SNR = 0.85 dB. The chaotic trajectory at
SNR = 0.94 dB is shown in Fig. 5(f). Finally, when
the SNR is large enough, the LDPC decoding algo-
rithm is able to find an unequivocal fixed point after

a number of iterations. A trajectory corresponding
to SNR = 1.004 dB is shown in Fig. 5(g).

In Fig. 6, the values of E(l) at the steady
state are plotted against SNR. It can be observed
that bifurcations occur in the SNR range of around
0.45 dB to 1 dB. In the SNR range of 0.45 dB to
0.595 dB, the oscillations can hardly be displayed in
the figure because the amplitude of the oscillation,
typically in the order of 10−4 as shown in Fig. 5(b),
is too small.

Based on the values of E(l) as the iteration
progresses, we compute the Lyapunov exponent.
In Fig. 7, we plot the Lyapunov exponent value
against SNR. It is found that the Lyapunov expo-
nent value approaches zero at SNR = 0.45 dB
and at SNR = 0.62 dB, where flip bifurcation and
Neimark–Sacker bifurcation occur, respectively. At
SNR = 0.86 dB, the exponent turns positive, cor-
responding to the beginning of the chaotic region
in Fig. 6. As the SNR is increased to around 1dB,
the Lyapunov exponent rapidly drops from a posi-
tive value to less than −30 (not shown in the figure
due to its very small value), indicating the super-
stability of the unequivocal fixed point. Comparing
Figs. 3 and 5, we also find that although different
noise realizations produce different bifurcation dia-
grams, the whole SNR range can be roughly divided
into three regions: (i) low-SNR region correspond-
ing to indecisive fixed points; (ii) waterfall region
where bifurcations occur; and (iii) high-SNR region
corresponding to unequivocal fixed points.
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Fig. 5. (Continued)
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3.2. Regular LDPC codes

In this section, we present some results for the reg-
ular LDPC codes. From our extensive simulation
results, we observe that decoders for regular LDPC
codes have similar behavior as those for irregu-
lar codes. Here, we choose the regular LDPC code
(504,252) with variable degree being 3 and check

degree being 6. To describe the characteristics of
bifurcations more clearly, we plot E(l) against l and
also the eigenvalues of the Jacobian for the corre-
sponding fixed points.

In Fig. 8, at SNR = 1.400 dB, all the eigenval-
ues for the indecisive fixed points fall within the unit
circle, indicating the stability of the fixed points.
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Fig. 8. A typical fold bifurcation. (Left) E(l) versus l. (Right) Polar plots of eigenvalues. (a) SNR = 1.400 dB; (b) SNR =
1.478 dB; (c) SNR = 1.480 dB.
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Fig. 9. Phase trajectory of E(l) before Neimark–Sacker bifurcation. (Left) E(l) versus l. (Right) Polar plots of eigenvalues.
SNR = 0.80 dB. (Note that two pairs of complex eigenvalues approach the unit circle.)
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Fig. 10. Phase trajectory of E(l) after Neimark–Sacker
bifurcation. SNR = 0.85 dB.

As SNR increases to 1.478 dB, one of the eigen-
values approaches 1, implying that fold bifurcation
occurs. At SNR = 1.480 dB, the indecisive fixed
point disappears, and an unequivocal fixed point
appears.

To analyze the stability of the unequivocal fixed
point, we derive the Jacobian as follows. As we
know, when the algorithm converges to an unequiv-
ocal fixed point, all the messages passing between
the variable nodes and check nodes converge to
either 1 or 0. In our simulations, only the all-
zero codes are transmitted, and hence the mes-
sages rl(0, σ) and rl(1, σ) converge to the all-one
vector and all-zero vector, respectively. So, the
(φ(i, j), φ(i1 , j1))th element of the Jacobian J where
π(i, i, i1, j1) = 1 can be written as

Jφ(i,j)φ(i1,j1) = lim
rl(0,σ)→1

rl(1, σ)→0

(2rl+1
ji (0) − 1) · Pi1 ·

∏
j′∈Vi1

/j

Rl
j′i1


1 −


Pi1 ·

∏
j′∈Vi1

/j

Rl
j′i1




2
 · rl

j1i1
(0) · rl

j1i1
(1)

= lim
x→0

Pi1 · x(λi1
−1)

x

=
{

Pi1 λi1 = 2
0 otherwise.

(12)
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Fig. 11. Phase trajectory of E(l) before flip bifurcation. (Left) E(l) versus l. (Right) Polar plots of eigenvalues. SNR =
0.60 dB. Note that one eigenvalue approaches −1.

The above equation indicates that if the degree
of the variable nodes is larger than 2, i.e. λi1 > 2,
i1 = 1, 2, . . . , n, the eigenvalues at the unequivo-
cal fixed point are all zeros and have nothing to
do with the channel parameter. In Fig. 8(c), the
eigenvalues all lie in the circle of diameter less than
8 × 10−20 (nonzero values caused by small compu-
tational inaccuracy).

With other noise realizations, the phenomena
of Neimark–Sacker bifurcation (see Figs. 9 and 10)
as well as flip bifurcation (see Figs. 11 and 12)
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Fig. 12. Phase trajectory of E(l) after flip bifurcation.
SNR = 0.65 dB.

can be observed. Note that the noise realization
used to observe a Neimark–Sacker bifurcation is dif-
ferent from that used to observe a flip bifurcation.

4. Conclusions

In this paper, we have studied the dynamical behav-
ior of iterative LDPC decoders under a Gaussian
noise channel to some depth. Simulation results
have shown that bifurcations, including fold, flip
and Neimark–Sacker bifurcations, occur in the
“waterfall SNR region”. Specifically in the water-
fall region, oscillations and chaos are produced and
the decoding algorithms do not converge. How-
ever, the exact bifurcation behavior in the water-
fall region varies for different noise realizations.
Based on the analysis of the eigenvalues of the
iterative algorithm at the fixed points, we note
that the indecisive fixed point loses stability as
SNR increases, whereas the unequivocal fixed point
remains stable in the whole SNR region. Since the
attracting basin of the desired unequivocal fixed
point shrinks as SNR decreases, it will become
more difficult for the algorithm to converge to
such a fixed point. For practical purposes, it will
be interesting to investigate the effects of vari-
ous decoding parameters on the bifurcation behav-
ior as such knowledge will be directly relevant to
the design of the decoders to achieve improved
performance.
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