
International Journal of Bifurcation and Chaos, Vol. 17, No. 5 (2007) 1609–1622
c© World Scientific Publishing Company

INTERACTION OF FAST-SCALE AND SLOW-SCALE
BIFURCATIONS IN CURRENT-MODE
CONTROLLED DC/DC CONVERTERS

YANFENG CHEN∗, CHI K. TSE† and SIU-CHUNG WONG
Department of Electronic and Information Engineering,

Hong Kong Polytechnic University, Hong Kong, P. R. China
∗eeyfchen@scut.edu.cn
†encktse@polyu.edu.hk

SHUI-SHENG QIU
∗College of Electronic and Information Engineering,

South China University of Technology, Guangzhou, P. R. China

Received July 13, 2006; Revised September 1, 2006

This paper investigates the interaction of fast-scale and slow-scale bifurcations in the boost
converter under current-mode control operating in continuous conduction mode. Effects of vary-
ing some chosen parameters on the qualitative behaviors of the system are studied in detail.
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slow-scale bifurcation region, fast-scale bifurcation region, interacting fast and slow-scale bifur-
cation regions are identified.
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1. Introduction

The current-mode control scheme is a widely used
control method for dc/dc converters, especially for
the boost and buck-boost types of dc/dc converters
[Redl & Sokal, 1985]. Bifurcation behaviors in dc/dc
converters under current-mode control have been
reported recently [Banerjee & Chakrabarty, 1998;
Chan & Tse, 1997]. Generally, two distinct types
of bifurcation have been identified for such circuits,
namely slow-scale bifurcation and fast-scale bifur-
cation. The slow-scale bifurcation can be regarded
as a kind of low-frequency instability which is
caused by the voltage feedback loop permitting
low-frequency oscillation [El Aroudi et al., 1999;
Tse et al., 2000; Wong et al., 2004]. The fast-scale
bifurcation, which is caused by inner current loop
instability, is often found in current-mode controlled
converters, and it manifests as period-doubling in

the time scale, as reported in [Iu & Tse, 2001]
for parallel boost converters, [Wong et al., 2006]
for noise-coupled boost converters, and [Wu et al.,
2006] for power-factor-correction converters. The
fast-scale and slow-scale bifurcations have been
independently investigated as it has been generally
believed that the outer voltage loop is much slower
than the inner current loop and the two loops can
be considered noninteracting. As a result, slow-scale
bifurcation and fast-scale bifurcation have been
studied separately.

In the usual current-mode controlled dc/dc
converter, the outer voltage feedback loop provides
the necessary current reference for the inner current
loop. The outer voltage feedback loop contains typ-
ically a proportional-integral controller and hence
has a low-pass characteristic, whereas the inner cur-
rent loop is as fast as the switching frequency. The
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instability in the outer voltage loop is a slow-scale
phenomenon, whereas the instability of the inner
current loop is a fast-scale one. Moreover, the two
loops actually interact with each other as the cur-
rent reference used to program the inductor cur-
rent in the inner current loop is produced by the
outer voltage loop. Therefore, the two mechanisms
responsible for the fast-scale and slow-scale bifur-
cations can actually interact with each other, lead-
ing to possible interacting fast-scale and slow-scale
bifurcations. Our objective in this paper is to study
such interaction and to identify the boundaries of
stable region, slow-scale bifurcation region, fast-
scale bifurcation region, and the interacting region
in terms of some chosen parameters.

As dc/dc converters may operate in continuous-
conduction-mode (CCM) or discontinuous-
conduction-mode (DCM), depending upon the
parameter choice and the dynamical status, it is
possible that such systems may toggle between the
two operating modes in a rather complex man-
ner. To facilitate analysis, the converter parameters
are chosen such that CCM is the default oper-
ating mode. Thus, normal stable operation refers
to the stable period-1 operation in CCM. Sub-
sequently, instability refers to operation that is
not the normal stable operation, and bifurcation
refers to the change from one type of operation
to another.

This paper is organized as follows. In Sec. 2,
we will review the operation of the boost converter
under peak-current-mode (PCM) control. In Sec. 3,
we will present some typical waveforms of normal

stable operation, slow-scale bifurcation, fast-scale
bifurcation, interacting fast-scale and slow-scale
bifurcation, and “saturated” unstable operation (in
which the duty cycle saturates to 100% as the error
amplifier in the voltage feedback loop saturates).
Analysis of these bifurcation phenomena will be pre-
sented in Sec. 4, which is based on tracking the
movements of the eigenvalues of the Jacobians eval-
uated at the appropriate operating states [Gucken-
heimer & Holmes, 1983]. In Sec. 5 we will present
the boundaries of various operations in some cho-
sen parameter spaces by computer simulations of
the actual system and compare them with those
obtained by the analytical method derived in Sec. 4.
Here, the slope of inductor current and the compen-
sation slope in the inner current loop are selected
as the parameters for fast-scale bifurcation, whereas
the feedback gain and time constant in the outer
voltage loop are selected as the parameters for slow-
scale bifurcation. Finally we conclude this paper in
Sec. 6.

2. Operation of the Current-Mode
Controlled Boost Converter

The closed-loop current-mode controlled boost con-
verter under study is shown in Fig. 1(a). The sys-
tem has an outer voltage loop and an inner current
loop. The voltage loop consists of an error ampli-
fier (EA) and a compensation network, the out-
put of which provides the reference for the inner
current loop. The inner current loop consists of a
current transformer and a current sense amplifier

(a) (b)

Fig. 1. (a) Boost converter under current-mode control; (b) typical waveforms.
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(IA). A compensation ramp is added to stabilize
the converter if a wide range of output voltage is
required [Wong et al., 2004]. The output of the cur-
rent loop is then connected to the inputs of the
comparator whose output is used to reset a flip-
flop latch to give a pulse-width modulated waveform
to control switch ST . The operation can be briefly
described as follows. The flip-flop latch is set peri-
odically by the clock signal, turning on the switch
ST . Then, the inductor current iL goes up linearly,
and is compared with a reference level, which is
equal to the output of the error amplifier of the
voltage loop minus the compensation ramp signal.
When the peak inductor current reaches the refer-
ence level, the output of the comparator resets the
flip-flop, thereby turning off the switch. When the
switch is off, the inductor current falls almost lin-
early if the output capacitor is sufficiently large.
The cycle repeats when the flip-flop is set again
by the clock. Typical waveforms of the converter
operating in CCM are shown in Fig. 1(b), where
mc is the slope of the compensation ramp signal,
and m1 and m2 are the rising and falling slopes
of the inductor current with the switch on and off
respectively.

3. A Glimpse at Bifurcation
Behavior

We begin with a series of typical waveforms from
exact cycle-by-cycle computer simulations to show
some possible bifurcation behaviors in this system.
As our aim is to study the interaction of fast-scale
and slow-scale bifurcations, the unstable operations
associated with “saturation” of control signals (typ-
ically manifested as saturation of the duty cycle)
will not be examined because these operations occur
well beyond the boundaries of the first fast-scale
or slow-scale bifurcations.1 The main parameters
affecting fast-scale bifurcations are the rising slope
of the inductor current m1, and the compensation
slope mc, whereas those affecting slow-scale bifurca-
tions are the voltage feedback gain g and time con-
stant τf , as studied previously in [Wong et al., 2004].
To facilitate simulation study, we choose parameter
values as listed in Table 1.

For a certain range of parameters, normal
periodic operation, slow-scale bifurcation, fast-scale

Table 1. Circuit parameters for simulation study.

Component/Parameter Value

Input voltage E 3–20 V
Inductance L 120–195 µH
Capacitance C 2000 µF
Load resistance R 3–20 Ω
Switching frequency fs 25 kHz
Reference output voltage Vref 1.8 V
Voltage divider R1, R2 47.5 kΩ, 2.5 kΩ
Compensation network Ra, Ca 72.3 kΩ, 0.23 µF
Compensation ramp Vp 0.25 A
Inductance current sampling gain M 0.082

bifurcations, coexisting fast and slow-scale bifurca-
tion, and “saturated” operation (border collision)
can be observed. Typical waveforms are shown in
Figs. 2–4. Here, E = 6.1877 V and R = 10.78Ω are
fixed, and m1 (m1 = E/L) is changed by varying
the inductance L, thereby ensuring that the sys-
tem has a fixed duty cycle. Consistent with usual
understanding, we can see from these waveforms
that slow-scale bifurcations can be eliminated by
increasing the feedback gain or time constant, and
that fast-scale bifurcations can be eliminated by
increasing mc, or decreasing m1 via increasing L.

4. Bifurcation Analysis of the
Closed-Loop Current-Mode
Controlled Boost Converter

From the foregoing simulation studies, we have
briefly observed slow-scale bifurcation, fast-scale
bifurcation and interacting bifurcation in certain
parameter ranges. In this section we will analyze
these bifurcations by making use of a suitable
discrete-time model. We will first derive the exact
discrete-time model that describes the dynamics of
the system, and investigate the dynamical behav-
ior by examining the movements of the character-
istic multipliers (eigenvalues) of the Jacobians as
some chosen parameters are varied [Guckenheimer
& Holmes, 1983].

4.1. Derivation of state equations

The boost converter described above can be
regarded as a variable structure that toggles its
topology according to the states of the switches.

1By “first” fast-scale or slow-scale bifurcations, we mean those bifurcations adjacent to the normal operation. This type of
bifurcation is the only practically meaningful type of bifurcation as it gives the mechanism through which the system loses
stability.
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Fig. 3. Simulated behaviors for different values of m1 and τf , with g = 0.4 and mc = 6.25 × 103 A/s. (a) Coexisting

(interacting) fast and slow-scale bifurcations with 1/m1 = 9 × 10−6 s/A and τf = 0.362 ms, (b) coexisting (interacting) fast

and slow-scale bifurcations with 1/m1 = 19.835 × 10−6 s/A and τf = 0.8265 ms, (c) slow-scale bifurcation with 1/m1 =

31.514 × 10−6 s/A and τf = 1.3538 ms.

When operating in CCM, two switch states can be
identified.

State 1: switch ST on and diode SD off.
State 2: switch ST off and diode SD on.

The two switch states toggle periodically in
the steady state. We assume that the circuit takes
state 1 for nTs ≤ t < (n + d)Ts, and state 2 for
(n + d)Ts ≤ t < (n + 1)Ts, where n is an integer,
Ts is the switching period, and d is the duty cycle,
which is defined as the ratio of the turn-on time of
switch ST to the switching period Ts. In a closed-
loop converter system, d is usually a function of the
system’s state variables, as will be discussed in a
later section.

As shown in Fig. 1(a), the compensator used
here is a first-order PI controller. In addition to the
two state variables chosen from the converter (i.e.
inductor current iL and output voltage vo), the volt-
age across the compensation capacitor, va, can be
described by the following state equation:

dva

dt
=

vo

τf
− kdVref

τf
(1)

where Vref is the reference output voltage, kd =
(R1+R2)/R2 is the ratio of the voltage divider, and
τf = R1Ca denotes the time constant of the voltage
feedback loop. The system is thus third-order, with
the possible choice of state vector as

x = [iL vo va]T (2)
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Fig. 4. Simulated behaviors for different values of mc, with g = 0.4, τf = 1.3253 ms, and 1/m1 = 31.514 × 10−6 s/A.

(a) Coexisting (interacting) fast and slow-scale bifurcations with mc = 2.825 × 103 A/s , (b) critical coexisting (interacting)
fast and slow-scale bifurcations with mc = 3.825 × 103 A/s, (c) slow-scale bifurcations with mc = 4.0 × 103 A/s.

where superscript T denotes matrix transposi-
tion. Thus, the system operating in CCM can be
described by the following state equations:

ẋ = A1x + B1E for nTs ≤ t < (n + d)Ts

ẋ = A2x + B2E for (n + d)Ts ≤ t < (n + d)Ts,

(3)

where E is the input voltage, and the A’s and B’s
for this current-mode controlled boost converter are
given by

A1 =




0 0 0

0 − 1
RC

0

0
1
τf

0




, A2 =




0 − 1
L

0

1
C

− 1
RC

0

0
1
τf

0




,

(4)

B1 = B2 =




1
L

0

kdVref

τfE




. (5)

4.2. Derivation of the discrete-time
map

In this subsection we attempt to derive a discrete-
time map that describes the dynamics of the
current-mode controlled boost converter system
with a PI controlled voltage feedback loop, as shown
in Fig. 1. The form of the discrete-time map we aim
to get is

xn+1 = f(xn) (6)
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where subscript n denotes the value at the begin-
ning of the nth cycle, i.e. xn = x(nT ). Note that
for the closed-loop system, dn should not appear
explicitly in the state equation because it is related
to xn via a feedback function.

As mentioned above, the state equation for the
circuit in any switch state can be written in the form
of a linear differential equation, i.e. ẋ = Ajx+BjE,
where j = 1, 2. At the sampling instant, i.e. t =
nTs, switch ST is turned on and the system enters
state 1. At t = ts = (n + d)Ts, ST is turned off, and
the system goes to state 2.

Using a successive substitution method, the
value of x at the end of the nth cycle, i.e. xn+1,
can be expressed as

xn+1 = Φ2((1 − dn)Ts)(Φ1(dnTs)xn

+ A−1
1 (Φ1(dnTs) − 1)B1E)

+ A−1
2 (Φ2((1 − dn)Ts) − 1)B2E (7)

where 1 is the unit matrix and Φj(ξ) is the transi-
tion matrix corresponding to Aj and is given by

Φj(ξ) = eAjξ = 1 +
∞∑

k=1

1
k!

Ak
j ξ

k, for j = 1, 2. (8)

To complete the derivation, we have to find the
feedback relation that connects the duty cycle dn

and the state variables xn. In the closed-loop sys-
tem, dn is controlled via the control signal vk, which
is derived from the output voltage via a PI compen-
sation network, i.e.

vk = Vref(1 + gkd) − gvo − va (9)

where g = Ra/R1 is the DC gain of the feedback
voltage loop. Also, from (2), the control signal vk

can be expressed as a linear function of x, i.e.

vk = k0 + k1x (10)

where k0 = Vref(1 + gkd) and k1 = [0 −g −1].
Suppose vl is the sensed inductor current ana-

log, i.e. vl = MiL, where M is the current sampling
gain. During state 1, iL rises linearly, and so does vl.
When vl reaches the control signal level, i.e. vl = vk,
switch ST is turned off. From (10), we may define a
switching function s(xn, dn) as

s(xn, dn) def= vk(ts) − MiL(ts) − mcdnTs

= k0 + k1x(ts) − MiL(ts) − mcdnTs

= k0 + k1x(ts) − MiLn

− (Mm1 + mc)dnTs (11)

where k0, k1 are as defined before, and m1 = E/L is
the rising slope of the inductor current. Obviously,

at t = ts, we have s(xn, dn) = 0, and ST is turned
off. In other words, s(.) = 0 defines the condition
for the system to go from state 1 to state 2. Substi-
tuting x(ts) in (11), we get

s(xn, dn) = k0 + (k1Φ1(dnTs) + k2)xn

+ k1A
−1
1 (Φ1(dnTs) − 1)B1E

− (Mm1 + mc)dnTs (12)

where k2 = [−M 0 0], and dn can be expressed as

dn =

k0 + k1(Φ1(dnTs) + k2)xn

+ k1A
−1
1 (Φ1(dnTs) − 1)B1E)

(Mm1 + mc)Ts
. (13)

We note that (13) is transcendental, and can
only be solved numerically. Combining with (7),
we have the nonlinear discrete-time model for the
closed-loop system.

4.3. Derivation of the Jacobian

In this section, we aim to find the Jacobian for any
given equilibrium state. The essence of using a Jaco-
bian in the analysis of dynamical systems lies in
the capture of the dynamics in the small neighbor-
hood of the equilibrium point or orbit. Then, by
inspecting the eigenvalues of the Jacobian, we are
able to determine the stability of the equilibrium
state. Furthermore, by studying the movement of
the eigenvalues (also called characteristic multipli-
ers for discrete-time systems) of the Jacobian under
the variation of selected parameters, stability infor-
mation such as the occurrence of bifurcations and
boundaries of operating regimes can be identified.

We now begin with finding the equilibrium
point XQ and the corresponding duty cycle DQ of
the system, i.e. the steady-state solution. Obviously,
the desired steady-state solution can be solved by
putting xn = XQ in (13). As the system is nonlin-
ear, numerical procedures have to be used for find-
ing XQ. By using the definition of the equilibrium
point xn+1 = xn = XQ in (7), XQ can be explicitly
expressed as a function of DQ (steady-state value
of dn). Then, from (13), DQ can be solved numeri-
cally and hence XQ can be obtained. The Jacobian
of the discrete-time map evaluated at the equilib-
rium point can be written as

J(XQ) =
∂f

∂xn
− ∂f

∂dn

(
∂s

∂dn

)−1 (
∂s

∂xn

)∣∣∣∣∣
xn=XQ

.

(14)
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Using (7) and (12), we can find all the deriva-
tives in (14). First, ∂f/∂xn can be found from (7),
i.e.

∂f

∂xn
= Φ2((1 − dn)Ts)Φ1((dn)Ts). (15)

Also, direct differentiation gives ∂f/∂dn as

∂f

∂dn
= TsΦ2((1 − dn)Ts)[Φ1(dnTs)(A1xn + B1E)

−A2Φ1(dnTs)xn − A2(Φ1(dnTs)
−1)A−1

1 B1E − B2E]. (16)

From (12), we obtain ∂s/∂xn readily as

∂s

∂xn
= k1Φ1(dnTs) + k2. (17)

Again, by direct differentiation, we get

∂s

∂dn
= k1TsΦ1(dnTs)(A1xn + B1E)

− (Mm1 + mc)Ts. (18)

Finally, putting all the derivatives into (14) gives
an expression of J(XQ). Numerical algorithms can
now be developed for computing J(XQ) and hence
the eigenvalues, as will be shown in the next
subsection.

4.4. Interacting bifurcations

Bifurcation and stability information can be
obtained by examining the eigenvalues (character-
istic multipliers) of the Jacobian derived in the
foregoing. In particular, we are interested in the
movement of the eigenvalues as some chosen param-
eters are varied. This information essentially reveals
the bifurcation phenomena and the way in which
variation of parameters affect the operation of the
system. First, we need to compute the eigenvalues,
which can be accomplished by solving the following
polynomial equation in λ:

det[λ1 − J(XQ)] = 0 (19)

where J(XQ) is the Jacobian found previously. We
will pay special attention to the movement of the
eigenvalues as some chosen parameters are varied.
Specifically, if all eigenvalues of the Jacobian are
inside the unit circle, the equilibrium state about
which the Jacobian has been evaluated is stable.
Any crossing from the interior of the unit circle to
the exterior indicates a loss of stability of the equi-
librium state, i.e. a bifurcation occurs at the point
of crossing. When a pair of complex eigenvalues

move out of the unit circle, the system undergoes
a slow-scale bifurcation, and when a negative real
eigenvalue moves out of the unit circle (i.e. crossing
−1), a fast-scale period-doubling bifurcation occurs
[Stjepan et al., 1991]. Moreover, if both conditions
are satisfied, some interaction of these two kinds
of bifurcation is expected. Thus, we may identify
the critical values of the bifurcation parameters as
those values where the loci of the eigenvalues cross
the unit circle.

Using (14) and (19), we can generate loci of
the eigenvalues numerically. As we are interested in
the loci of the eigenvalues corresponding to interact-
ing bifurcations, we will systematically examine the
loci under variation of different sets of parameters.
As a quick overview, we first vary E and L/E and
track the loci of the eigenvalues, as shown in Fig. 5.
Here, all parameters, except L, R and E, are chosen
as listed in Table 1. In Fig. 5(a), L = 195µH and
R = 10.78Ω, with E being varied from 6.1466 V to
6.5758 V. The movement of the complex eigenvalues
across the unit circle at E = 6.40332 V indicates a
slow-scale bifurcation, which is consistent with the
simulated result shown in Fig. 8(a). In Fig. 5(b),
E = 6.1877 V and R = 10.78Ω and L/E is vary-
ing from 12.87 × 10−6 s/A to 34.67 × 10−6 s/A.
The locus of the negative real eigenvalue crosses
the unit circle at L/E = 13.639 × 10−6 s/A (while
the complex eigenvalues stay inside the unit cir-
cle), indicating that a fast-scale bifurcation occurs.
Also, as the complex eigenvalues cross the unit cir-
cle at L/E = 30.49 × 10−6 s/A (while the real
eigenvalue stays inside the unit circle), a slow-scale
bifurcation occurs. In both cases, the critical values
are close to the simulated results shown earlier in
Fig. 8(b). Under these conditions, there is no inter-
acting bifurcation.

Now we focus on the loci when g, τf , L/E and
mc are varied. Results are shown in Tables 2–5, and
also illustrated in Figs. 6 and 7. In summary, the
system’s behavior can be identified according to the
movement of the eigenvalues of the Jacobian:

(1) All the eigenvalues inside the unit circle indi-
cates stable operation.

(2) Slow-scale bifurcation occurs when a pair of
complex eigenvalues move out of the unit cir-
cle while other eigenvalues stay inside the unit
circle.

(3) Fast-scale bifurcation occurs when a negative
real eigenvalue moves out of the unit circle while
all other eigenvalues stay inside the unit circle.
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Fig. 5. Loci of eigenvalues for relatively large g = 1.522 and τf = 10.925 ms under (a) varying E for L = 195 µH and
R = 10.78 Ω; (b) varying L/E for E = 6.1877 V and R = 10.78 Ω. Arrows indicate the direction of movement of the eigenval-
ues as the chosen parameters are increased.

Table 2. Eigenvalues for different values of τf .

τf (ms) Eigenvalues Modulus (Complex Pair) Remarks

0.16530 1.0455 ± j0.10435, −1.0033 1.0507 “saturated” unstable
0.31407 1.0172 ± j0.079517, −1.0305 1.0203 “saturated” unstable
0.61161 1.0026 ± j0.057766, −1.0455 1.0042 “saturated” unstable
0.80997 0.9989 ± j0.050127, −1.0493 1.0001 interacting bifurcation
1.05792 0.9962 ± j0.043641, −1.0522 0.9972 fast-scale bifurcation
1.20669 0.9951 ± j0.040702, −1.0533 0.9960 fast-scale bifurcation
1.65300 0.9931 ± j0.034295, −1.0555 0.9937 fast-scale bifurcation

Table 3. Eigenvalues for different values of g.

g Eigenvalues Modulus (Complex Pair) Remarks

0.1 1.0054 ± j0.045937, −1.2346 1.0064 “saturated” unstable
0.2 1.0033 ± j0.04718, −1.1813 1.0045 “saturated” unstable
0.3 1.0011 ± j0.048407, −1.1167 1.0023 “saturated” unstable
0.4 0.99863 ± j0.049611, −1.0496 0.9999 interacting bifurcation
0.5 0.9959 ± j0.050774, −0.97975 0.9972 stable
0.6 0.99286 ± j0.051875, −0.90699 0.9942 stable
0.7 0.98946 ± j0.052883, −0.83107 0.9909 stable

(4) Interacting fast and slow-scale bifurcation
occurs when a negative real eigenvalue and a
pair of complex eigenvalues move out of the unit
circle at the same time.

(5) Complex border collision bifurcation involving
“saturated” operation occurs when some eigen-
values leap out of the unit circle.

The above analytical procedure is useful for
identifying the behavior for a particular set of
parameters (at a particular point in the param-
eter space). However, in order to be useful for
engineering applications, it would be imperative to
know the structure of the parameter space with
respect to the various operations and bifurcation
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Table 4. Eigenvalues for different values of L/E.

L/E (× 10−6 s/A) Eigenvalues Modulus (Complex Pair) Remarks

9.00 0.99269 ± j0.046400, −2.3270 0.9938 fast-scale bifurcation
12.833 0.99465 ± j0.047575, −1.7594 0.9958 fast-scale bifurcation
16.667 0.99676 ± j0.048710, −1.3312 0.9979 fast-scale bifurcation
19.925 0.99868 ± j0.049636, −1.04237 0.9999 interacting bifurcation
24.333 1.0015 ± j0.050809, −0.72956 1.0028 “saturated” unstable
28.167 1.0042 ± j0.051733, −0.51107 1.0055 “saturated” unstable
32.000 1.0071 ± j0.052537, −0.32969 1.0085 “saturated” unstable

Table 5. Eigenvalues for different values of mc.

mc (× 103 A/s) Eigenvalues Modulus (Complex Pair) Remarks

3.4425 0.99971 ± j0.014857, −1.5014 0.9998 interacting bifurcation
3.8250 0.99972 ± j0.014857, −1.3525 0.9998 interacting bifurcation
4.2075 0.99972 ± j0.014857, −1.2203 0.9998 interacting bifurcation
4.5900 0.99972 ± j0.014856, −1.1021 0.9998 interacting bifurcation
4.9572 0.99972 ± j0.014856, −1.0000 0.9998 interacting bifurcation
5.3350 0.99972 ± j0.014856, −0.9000 0.9998 slow-scale bifurcation
5.7375 0.99972 ± j0.014856, −0.8128 0.9998 slow-scale bifurcation

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 Reλ

 Im
λ

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 Reλ

 Im
λ

(a) (b)

Fig. 6. Loci of eigenvalues for E = 6.1877 V, R = 10.78 Ω under (a) varying τf when 1/m1 = 19.835 × 10−6 s/A, g = 0.4,

(b) varying g when 1/m1 = 19.835 × 10−6 s/A and τf = 0.8265 ms. Arrows indicate the direction of movement of the
eigenvalues as the chosen parameters are increased.

scenarios. Such information allows the engineers
to know how “far” or “close” the system is from
the boundary of instability and in what way the
system would lose stability should the parame-
ters vary in some given directions. In Sec. 5,

we will provide extensive simulations, alongside
with analytical results, to illustrate the bound-
aries of slow-scale bifurcation, fast-scale bifurca-
tion and interacting bifurcation in the parameter
space.
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Fig. 7. Loci of eigenvalues for E = 6.1877 V, R = 10.78 Ω with (a) varying 1/m1 when g = 0.4 and τf = 0.8625 ms, (b) vary-

ing mc when 1/m1 = 31.514 × 10−6 s/A, g = 0.4 and τf = 1.3253 ms. Arrows indicate the direction of movement of the
eigenvalues as the chosen parameters are increased.

5. Application: Derivation of
Boundaries of Operations

In this section, we take a detailed look into the
qualitative behaviors of the system, and present
the boundaries of stable region, slow-scale bifurca-
tion region, fast-scale bifurcation region, and coex-
isting (interacting) fast and slow-scale bifurcation
region in terms of selected circuit parameters. The
operation boundaries, as shown in Figs. 8–10, are
derived from cycle-by-cycle simulations and the

theoretical analysis is discussed in Sec. 4. As men-
tioned previously, such boundaries of operations
provide essential design-oriented information that
allows the system parameters to be selected in an
informed manner.

5.1. Effects of varying input voltage
E and load resistance R

The behavior of the system varies with E and
R. Two perspectives of operating boundaries are
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Fig. 8. Operating boundaries under (a) varying E and D; (b) varying L/E.
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Fig. 9. Operating boundaries under varying feedback gain and time constant for E = 6.1877 V and R = 10.78 Ω.

shown in Fig. 8(a), where the boundaries divide
regions of stable operation and “saturated” region.
The transition from the stable region to the other
is a slow-scale Hopf type bifurcation. Parameters
except R and E are kept as listed in Table 1. As
shown in Fig. 8(a), the simulated boundaries are
completely consistent with the analysis described
in the previous section. See Fig. 5(a) for a corre-
sponding illustration of the loci of eigenvalues.

5.2. Effects of varying rising slope
of inductor current E/L

The rising slope of the inductor current, m1 = E/L,
has significant influence on the operation of the

system. For each pair of E and R used in the
simulation, we choose those points located on the
boundary curve in Fig. 8(a), and change L while
keeping all other parameters as listed in Table 1.
Note that the value of L should be chosen to ensure
CCM operation. The simulated operation bound-
aries are shown in Fig. 8(b) in two perspectives.
Note that E/L can be varied by changing either E
or L. In order to maintain the desired duty cycle
and for convenience of plotting, we only change
L and keep E constant. The simulated bound-
aries are completely consistent with the analysis
described in the previous section. See Fig. 5(b)
for a corresponding illustration of the loci of
eigenvalues.
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Fig. 10. Operating boundaries with varying compensation slope and τa = RaCa = gτf .

5.3. Effects of varying feedback
gain g and time constant τf

The feedback gain and time constant have obvious
influence on the stability, especially for the slow-
scale bifurcation because of the bandwidth limita-
tion imposed by the time constant. We keep E and
R constant, and vary L/E. We can then change
g and τf by varying Ra and Ca. Figure 9 shows
the stability boundaries for different values of L/E,
corresponding to the slow-scale bifurcation bound-
ary, stable region and fast-scale bifurcation region of
Fig. 8(b). In Fig. 9, the regions under the boundary
curves corresponds to the “saturated” operation,
and the operations above the boundaries depend
on the values of L/E and g. As seen from Fig. 9,

interacting slow and fast-scale bifurcations can be
observed for some parameter ranges corresponding
to relatively small L/E. As shown in Fig. 9, the
simulated boundaries agree well with those derived
from the analysis described in Sec. 4. As exam-
ples, corresponding illustrations of eigenvalues when
varying g, τf and L/E under relative small g and
τf can be seen in Tables 2–4 and Figs. 6(a), 6(b)
and 7(a), respectively.

5.4. Effects of varying compensation
ramp mc

It has been known that the compensation ramp
strongly affects the instability. Varying mc will lead
to interacting slow and fast-scale bifurcations. In
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our simulation, we vary mc by changing the ramp
amplitude Vp. Boundary of operations are plotted
in Fig. 10, from which we see clearly that both
fast-scale and interacting fast and slow-scale bifur-
cations are possible. It is worth noting that varying
mc has little effect on slow-scale bifurcation, such as
the period of the limit cycle and the amplitude of
the low-frequency oscillations, as shown previously
in Fig. 4. As shown in Fig. 10, the simulated bound-
aries are consistent with the analysis described in
the previous section. A corresponding illustration
of the loci of eigenvalues has been shown earlier in
Fig. 7(b) and also in Table 5.

6. Conclusion

In this paper we have studied the interaction of
slow and fast-scale bifurcations both by cycle-by-
cycle computer simulation and theoretical analysis
based on a nonlinear discrete-time model. Basically
we have observed that under certain parameter
ranges, current-mode controlled boost converters
can be fast-scale and slow-scale unstable simulta-
neously. Such interacting bifurcation occurs when
the low-frequency voltage loop and the fast inner
current loop become unstable simultaneously. In
general, the main parameters affecting fast-scale
bifurcations are the rising slope of the induc-
tance current, and the slope of compensation ramp,
whereas those affecting slow-scale bifurcations are
the voltage feedback gain g and time constant, as
studied previously in [Banerjee & Verghese, 2000].
The results in this paper show that the slow-scale
bifurcation can be eliminated by decreasing the
feedback gain and/or bandwidth, and the readi-
ness of fast-scale bifurcation can be reduced by
increasing the slope of the compensation ramp or
decreasing the rising slope of the inductor cur-
rent while keeping the input voltage constant. In
this paper, we have identified the parameter ranges
under which slow-scale, fast-scale, and interacting
slow and fast-scale bifurcations occur for facilitat-
ing the design of such converters.
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controlled Ćuk switching regulator,” IEEE Trans.
Circuits Syst.-I 47, 448–457.

Wong, S. C., Tse, C. K. & Tam, K. C. [2004] “Intermit-
tent chaotic operation in switching power converters,”
Int. J. Bifurcation and Chaos 14, 1971–2978.

Wong, S. C., Tse, C. K., Orabi, M. & Ninomiya, T. [2006]
“The method of double averaging: An approach for
modeling power-factor-correction power converters,”
IEEE Trans. Circuits Syst.-I 53, 454–462.

Wu, X., Tse, C. K., Dranga, O. & Lu, J. [2006]
“Fast-scale instability of single-stage power-factor-
correction power supplies,” IEEE Trans. Circuits
Syst.-I 53, 204–213.


