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Abstract

Centrality indices are an essential concept in network analysis. For

those based on shortest-path distances the computation is at least quadratic

in the number of nodes, since it usually involves solving the single-source

shortest-paths (SSSP) problem from every node. Therefore, exact compu-

tation is infeasible for many large networks of interest today. Centrality

scores can be estimated, however, from a limited number of SSSP compu-

tations. We present results from an experimental study of the quality of

such estimates under various selection strategies for the source vertices.
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1 Introduction

An essential tool in the analysis of complex networks are centrality indices de-

fined on the vertices or edges of the underlying graph [Koschützki et al. 2005a,b].

Depending on the type of network studied, they are proxies for the structural

importance of an element for the overall functioning of the network. Many pop-

ular centrality indices are based on shortest paths, measuring, e.g., the average

distance from other vertices, or the ratio of shortest paths a vertex lies on. Our

impression is that the majority of network-analytic studies relies at least in part

on an evaluation of such indices.

With the rapidly increasing amount of data gathered and made available in

electronic form, there is a likewise increasing demand for the computation of

centrality indices on networks that are orders of magnitude larger than before.

Although exact centrality index computation is tractable in the conventional

sense that there exist polynomial time and space algorithms, these are not

practical.

It is therefore of considerable interest to evaluate the practical performance

of methods for estimating centrality indices. For most feedback-based indices

defined via systems of linear equations there is a natural method of approxima-

tion inherent in iterative solvers for linear equations and eigenproblems. For the

discrete concepts of centrality based on shortest paths, these are not applicable.

In fact, approximation of betweenness centrality (defined below) is stated as an

important open problem, e.g., in [Carpenter et al. 2002].

We here present an experimental study of estimators for the two most com-

monly used shortest-path centralities, closeness and betweenness. The estimates

are based on a restricted number of single-source shortest-paths computations

from a set of selected pivots. For doing so, we generalize an approach of Epp-

stein and Wang [2004] in a number of ways (explained in Sec. 3), and test it

experimentally.
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This paper is organized as follows. The basic concepts needed are defined in

Sec. 2, and algorithms for estimating shortest-path centralities using pivots are

given in Sec. 3. In Sec. 4 we introduce several pivot selection strategies. The

results of our experimental study are presented in Sec. 5, and we conclude in

Sec. 6.

2 Shortest-Path Centralities

Indices for measuring the structural importance of nodes in a network abound

(see [Brandes and Erlebach 2005] for an overview). Two of the indices most

commonly used in the social sciences are closeness centrality [Beauchamp 1965,

Sabidussi 1966] and betweenness centrality [Anthonisse 1971, Freeman 1977].

Both are based on shortest-path distances, but while a node has high closeness

centrality if its total (and therefore also average) distance to all other vertices

is small, a high betweenness centrality score indicates that a node is contained

in relatively many shortest paths connecting pairs of others.

2.1 Definition

Throughout this paper the topology of a networks will be represented by a

graph G = (V,E), where V is a set of vertices, and E ⊆
(
V
2

)
is a set of edges, i.e.

unordered pairs of vertices. In particular, we do not allow directions, self-loops,

multiple edges between the same pair of vertices, or weights on the edges; i.e.

our graphs are simple, undirected, and unweighted. If not stated otherwise,

n = |V | denotes the number of vertices and m = |E| the number of edges. A

vertex v ∈ V is called incident to an edge e ∈ E, if v ∈ e, and two vertices are

called adjacent, if they are incident to a common edge.

A path is an alternating sequence of vertices and edges, such that edges in

the sequence appear between their two incident vertices. The length of a path is
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simply its number of edges. Two vertices s, t ∈ V are connected, if their exists

a path starting at one and ending at the other; such a path is also called an

st-path. A graph is called connected, if every pair of vertices is connected.

We restrict ourselves to connected graphs (otherwise the connected compo-

nents can be treated individually).

The distance d(s, t) between two vertices s, t ∈ V is the length the shortest

path connecting them. In particular, d(s, t) = d(t, s), since the reversal of an

st-path yields a ts-path, and d(s, s) = 0, since the path s is an alternating

sequence with no edges. The largest distance between any two vertices of a

graph is called the diameter of G, diam(G).

Closeness centrality [Beauchamp 1965, Sabidussi 1966] measures how close

a vertex is to all other vertices in the graph. To obtain large values for small

sums of distances, it is defined as the inverse of the total distance,

cC(v) =
1∑

t∈V d(v, t)
. (1)

Thus, the distance from a vertex of high closeness centrality to any other

vertex is short on average. These vertices are considered to be structurally

important, because they can easily reach or be reached by others.

An alternative concept of centrality is based on the idea of control over

the connections between other pairs of vertices. Denote by σ(s, t) the number

of different shortest st-paths, and by σ(s, t|v) the number of shortest st-paths

that contain v as an inner vertex, i.e. v 6= s, t or σ(s, t|s) = 0 = σ(s, t|t).

Betweenness centrality [Anthonisse 1971, Freeman 1977] measures the degree to

which a vertex is needed by others when connecting along shortest paths,

cB(v) =
∑

s 6=v 6=t

σ(s, t|v)
σ(s, t)

. (2)

There are many other structural indices that are based on similar notions

of importance. For instance, we can replace the sum of distances in closeness
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centrality by the maximum distance to any other vertex [Harary and Hage

1995], or subtract each distance from an upper bound rather than taking the

inverse [Botagfogo et al. 1992, Valente et al. 1998]. Variants of betweenness

count all shortest paths equally [Shimbel 1953] or use maximum network flow

instead of shortest paths [Freeman et al. 1991]. Natural variants of closeness

and betweenness are also obtained by replacing spread along shortest paths with

current flow [Newman 2005, Brandes and Fleischer 2005]. A different class of

measures is based on feedback, i.e. the centrality of a vertex directly influences

that of its neighbors. Well-known members of this class are eigenvector cen-

trality [Bonacich 1972], Google’s PageRank [Brin and Page 1998], and hubs &

authorities [Kleinberg 1999].

For most of these measures, generalizations have been proposed for directed,

non-simple, weighted, and unconnected graphs, and there is a similar range

of indices that value the importance of edges rather than vertices. We refer

to [Brandes and Erlebach 2005] for a comprehensive survey.

In this paper, we focus on shortest-path closeness and betweenness for ver-

tices in simple, undirected, connected graphs without weights as defined by

Eqs. (1) and (2). Note, however, that our results also apply to more general

settings.

2.2 Computation

For sparse networks, which we loosely define as those for which m ∈ O(n log n),

i.e. in which the number of actual edges is small compared to the number of

potential edges, the closeness centrality index is best computed by solving a

single-source shortest-path (SSSP) problem from every vertex. In each iteration,

we may sum up all distances found and invert the total to obtain the centrality

score of the source. Using standard breadth-first search, the running time per

source is bounded by O(n + m), and thus O(nm) in total.
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For betweenness centrality, the computation is less straightforward, since we

do not have to evaluate lengths, but numbers of shortest path between pairs

with given intermediates. We reformulate (2) by introducing the dependency

δ(s, t|v) = σ(s,t|v)
σ(s,t) of a pair s, t ∈ V on v ∈ V and summing out all targets t,

cB(v) =
∑

s 6=v 6=t

σ(s, t|v)
σ(s, t)

=
∑

s 6=v 6=t

δ(s, t|v) =
∑
s 6=v

δ(s|v) ,

where δ(s|v) =
∑

t6=v δ(s, t|v) is the one-sided dependency of s on v. In [Brandes

2001] it is shown how to compute the one-sided dependencies of all v ∈ V for

a given s ∈ V by solving an SSSP. Therefore, betweenness centrality can be

computed in the same asymptotic time bounds, and in fact using essentially the

same basic algorithm, as closeness centrality.

A notable feature of the above SSSP-based algorithms is that the space

requirement is linear, since the quadratic distance matrix is needed only row-

wise. All distance-information computed during one iteration can be discarded

before starting the next.

3 Approximate Computation

For large graphs, the exact computation of centralities as described in the pre-

vious section is too costly since the running time is Ω(n2) even for the sparsest

connected graphs.

On the other hand, the computation consists of solving n single-source

shortest-paths problems, one for each vertex, and each SSSP contributes one

summand to the result. This contribution is the distance to the source for

closeness, and the one-sided dependency of the source for betweenness. The

vertices for which an SSSP is solved are called pivots. Based on an idea put for-

ward by Eppstein and Wang [2004], the exact centrality value can be estimated

by extrapolating the contributions obtained from just a few SSSP computations,

i.e. from a small set of pivots.
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The foundation of this idea is a bound on the deviation of the average of

a given number of bounded random variables from its expectation. Hoeffd-

ing [1963] proves that for independent identically distributed random variables

X1, . . . , Xk with 0 ≤ Xi ≤ M (i = 1, . . . , k) and an arbitrary ξ ≥ 0,

P

(∣∣∣∣X1 + . . . + Xk

k
− E

(
X1 + . . . + Xk

k

)∣∣∣∣ ≥ ξ

)
≤ e−2k( ξ

M )2

. (3)

If pivots are selected at random, the contributions of different SSSP com-

putations to the centrality of a single vertex can be considered the result of a

random experiment. In the following two subsection we derive estimates for

closeness and betweenness using this idea.

3.1 Closeness centrality

The contribution of an SSSP computation from pivot pi ∈ V to the centrality

of a vertex v ∈ V is d(pi, v) = d(v, pi). In order to extrapolate from k such

samples, let

Xi(v) =
n

n− 1
· d(v, pi) (4)

be the random variable associated with the random experiment of selecting pivot

pi. Let

M =
n

n− 1
· diam(G)

ξ = ε · diam(G) .

Since the expectation of estimate 1
k (X1(v)+ . . .+Xk(v)) is the sum of distances

of all vertices from v, Hoeffding’s bound (3) guarantees that its error is bounded

from above by ε · diam(G) with probability at least exp{−2k( ε(n−q)
n )2}.

Eppstein and Wang [2004] concludes that in graphs with constantly bounded

diameter, k ∈ O(log n) pivots are sufficient to estimate closeness centrality up

to a constant with high probability. In the sequel of this paper, we will consider
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four generalizations with respect to this approach. Pivot-based estimation will

also be computed

• on graphs of arbitrary diameter,

• using fewer pivots,

• using deterministic pivot-selection, and

• for betweenness centrality.

Clearly, we can trade estimator accuracy and confidence for running time by

increasing or decreasing the number of pivots.

3.2 Betweenness centrality

When computing betweenness, the contribution of a pivot pi ∈ V to the cen-

trality of a vertex v ∈ V is δ(pi|v). Again, to extrapolate from the average

contribution of k pivots, we use

Xi(v) =
n

n− 1
· δ(pi|v) (5)

for a single estimate. Setting

M =
n

n− 1
· (n− 2)

ξ = ε(n− 2) ,

we can again apply Hoeffding’s bound as above. Note that one-sided depen-

dencies are bounded by 0 from below and by n − 2 from above. While the

assumption of constantly bounded or at least small diameter made for closeness

is reasonable for many practical examples, a one-sided dependency of n − 2 is

easily attained (simply consider a vertex with a neighbor that has degree one

and is chosen for pivoting). It can thus be suspected that estimation of (non-

normalized) betweenness is much more difficult and unreliable than estimation

of (non-normalized) closeness.
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4 Pivot Selection

To ensure that pivot contributions Xi(v) are independent, pivots need to be

selected at random. This appears to be a technical assumption introduced only

to make sure that (3) holds in general. For practical purposes it might be ad-

vantageous to choose pivots deterministically, e.g. by spreading them uniformly

over the graph. We used the following strategies in our experiments described

in the next section. See also Tab. 1.

place Table 1 about here

All strategies are supposed to select k distinct pivots p1, . . . , pk ∈ V , such

that the results obtained by solving an SSSP from every pivot are representative

for solving it from every vertex in V .

The most straightforward strategy, call it Random, is to select the piv-

ots uniformly at random. Since high-degree vertices are likely to be hubs in

many shortest paths, a potentially useful alternative is to choose pivots with a

probability proportional to their degree. This strategy will be called RanDeg.

In the following, deterministic strategies, the first pivot p1 is chosen uni-

formly at random from V . For i = 0, . . . , k, let Pi = {p1, . . . , pi} be the first

i pivots, and Vi = V \ Pi−1 be the set of non-pivots from which pi may be

chosen.

MaxMin To spread pivots uniformly over the entire graph, this strategy se-

lects the next pivots to be as far away from any previous pivot as possible. It

thus places a pivot in a region not covered well. Formally, pi is chosen to be a

vertex v ∈ Vi maximizing

min
p∈Pi−1

d(p, pi) . (6)

This strategy is a well-known 2-approximation (and best possible unless P =

NP) for the k-center problem in facility location, in which the goal is to find
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a set of k vertices, the centers, such that the distance from any vertex to the

closest center is minimized [Hochbaum and Shmoys 1986].

MaxSum Intuitively, the sum of distances is an even better indicator of how

badly covered a vertex is by the current set of pivots. We may therefore wish

to select the next pivot pi from Vi by maximizing

∑
p∈Pi−1

d(p, pi) (7)

rather than the minimum. Note that this corresponds to selecting a vertex that

is among the most peripheral with respect to the current estimates of closeness

centrality.

MinSum The above strategies favor the selection of vertices in the periphery

of the graph, thus creating a tendency to overestimate distances. The dual

approach of is to choose new pivots to be the most central with respect to

the closeness estimate among the non-pivots, i.e. by minimizing (7). Note that

this strategy grows a connected set of pivots around the initial one. Since the

corresponding variant of MaxMin exhibits the same behavior only with the

added randomness of choosing any vertex connect to the current set of pivots,

we did not include it in our experiments.

Mixed Note that it is easy to construct examples in which the deterministic

strategies are significantly off for at least some vertices, even if the number of

pivots is large. To balance systematic errors while hopefully maintaining the de-

sired reduction in the number of pivots needed, we also consider a mixed strategy

that combines Random, MaxMin and MinSum in a round-robin fashion.
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5 Experiments

We have conducted an extensive suite of experiments on both generated and

observed data to assess the quantitative and qualitative behavior of pivot-based

centrality estimation. To be able to compute the exact centrality scores for

baseline comparison, the experiments are restricted to networks of relatively

small size (order of 1,000 vertices and 10,000 edges). See Tab. 2 for a summary.

place Table 2 about here

5.1 Data

There are numerous models for generating random graphs with specific struc-

tural characteristics [Baumann and Stiller 2005]. We have selected three of the

more common ones.

Random Graphs. The basic random graph model of Gilbert [1959]1 is de-

fined by two parameters, the number of vertices n and an edge probability

0 < p < 1. Between each of the binomn2 pairs of the n vertices, an edge is

created with probability p independently. Graphs generated from this model

are typically very balanced, with similar vertex degrees, little clustering, and

relatively short distances.

Small Worlds. Watts and Strogatz [1998] introduces a model in which a ring

of n vertices, in which every vertex is connected to its 2r nearest neighbors, is

modified by rewiring each edge, randomly and independently, with probability

0 < p < 1. Despite its sparsity, the initial structure exhibits high local cluster-

ing, which is maintained while the average distance is reduced by rewiring.
1Note that this model is frequently named after Erdős and Rényi [1959], who introduced

a model with essentially equal asymptotic characteristics in which a fixed number of edges is

drawn uniformly at random from all pairs of vertices.
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Preferential Attachment. A model for generating graphs with heavy-tailed

degree distributions is described by Barabási and Albert [1999] and made rigor-

ous by Bollobás et al. [2001]. The n vertices of a graph are added one at a time,

and for each of them a fixed number of edges connecting to previously created

vertices with probability proportional to their degree.

Efficient algorithms for generating graphs from these models are presented in

Batagelj and Brandes [2005]. As for observed data, we selected the following

three examples for their varying size, structure, and origin.

place Figure 1 about here

Protein Interaction. This data is taken from Jeong et al. [2001] and consists

of proteins found in the yeast Saccharomyces cerevisiae. The edges represent

protein-protein interactions, and it can be seen in Fig. 1 that the network has a

sparse core with many dangling trees. Note that the centrality that the authors

argue to be an indicator of lethality is degree centrality, i.e. simply the number

of edges incident to a vertex.

place Figure 2 about here

Needle Exchange. Valente et al. [1998] study a network of intravenous drug

users participating in a needle exchange program. Edges indicate that one

person obtained a needle that another one returned. Even though the data

gives rise to a weighted multigraph, we only use its simple undirected version.

Except for a significant number of degree-one vertices, this network has much

fewer biconnected components than the protein interaction network. Hence,

there is a qualitative difference in distances and path numbers.

place Figure 9 about here
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Ticker News. Reuters ticker news following the terrorist attacks of Septem-

ber 11, 2001, have been transformed into a network text representation pro-

posed by Corman et al. [2002]. Vertices represent words appearing in noun

phrases, and edges are introduced between pairs of vertices that appear in the

same noun phrase, or consecutively within a sentence. By construction, these

networks have very few dangling tree structures, and many locally dense sub-

graphs (see Fig. 9). This is the only graph for which multiple edges are used in

the betweenness computations; they have no relevance for closeness.

5.2 Method

Since the speed-up obtained is directly proportional to the number of pivots,

implementation details and actual running times are irrelevant for its assess-

ment.

For each combination of six graphs and six strategies we carried out twenty

repetitions of the following experiment. The vertices of the graph are ordered

according to the pivot strategy, and divided in twenty intervals to produce

increasingly large sets of pivots. For each of these sets, the centrality estimates

are computed. In the experiments on generated graphs, a new one is generated

for each run.

Since one is mostly interested in the centrality ranking of a network, the

results of each experiment are scaled to sum to one. This way, we do not have to

worry about systematic under- or overestimation, sample sizes, or normalization

of centralities.

The normalized centrality indices obtained for the different strategies are

compared to the exact centrality index using their Euclidean and also the in-

version distance. The Euclidean distance is to assess the overall deviation in

relative scores, and the inversion distance, i.e. the number of pairs that are in

wrong rank order, is to assess the usefulness of the estimates in ordering the
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vertices according to their centrality. Though the numerical values may be far

off, it could be that the ranking is already accurate, and vice versa.

5.3 Results

The results of the above experiments are presented in Figs. 3–8.

For random graphs (Fig. 3), the results are mostly as expected or even

hoped for. All strategies yield accurate estimates already with few pivots. So

most of the computation in exact algorithms is spent on minor improvements.

Moreover, the deterministic strategies choosing peripheral vertices outperform

random selection, if only slightly. It is no surprise that Random and RanDeg

perform similarly, since the degree variance is small in random graphs.

The situation is entirely different for small worlds and preferential attach-

ment graphs (Figs. 4 and 5). While MaxMin yields the most accurate results

for small numbers of pivots in small worlds, it becomes one of the worst strate-

gies when the number of pivots is increased. For preferential attachment graphs

it is outperformed almost immediately. Random strategies, on the other hand,

are surprisingly consistent on both classes of graphs. They exhibit essentially

the same behavior as on random graphs. The most striking observation, how-

ever, is the performance of MinSum for betweenness on preferential attachment

graphs, where the worst numerical estimates yield the best rankings. We have

no convincing explanation so far.

Supporting the motivation behind those models, the results on observed data

do not resemble those on random graphs. In particular, Random appears to

be the most reliable choice. The protein-protein interaction network causes the

deterministic strategies to rank with irregular quality, most likely because of its

many dangling trees. See Fig. 6 and also Fig. 1, which confirms that the initial

pivots are placed in leaves of such trees, causing overestimation for vertices on

the path to the center, and underestimation for those in the center. Figure 8
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also shows that the variance over different runs is small for all strategies (recall

that the first pivot is selected at random).

Again, we see that MinSum performs well in terms of inversion distance for

betweenness. Given that all three observed networks have a noteworthy number

of high-degree nodes, this is at least consistent with the observation for preferen-

tial attachment graphs. The reason for the counter-intuitive quality reduction

for larger numbers of pivots on the ticker news text network is illustrated in

Fig. 9. Observe that after filling the center with the first 1,000 pivots, MinSum

continues to grow the connected set of pivots, but this extension is forced to fill

a region of the graph that yields unbalanced contributions to all vertices.

place Figures from Fig. 3 about here

6 Conclusion

We have conducted a series of experiments to assess the practicality of heuristic

methods for centrality computation.

Our experiments suggest that selecting pivots uniformly at random is su-

perior to more sophisticated selection strategies, because structural imbalance

present in most networks cause deterministic strategies to run into traps, even

to the point that the estimates become worse when adding more pivots.

It is also important to note that, experimentally, the accuracy of random

pivot selection is largely monotonic in the number of pivots used, and that the

variance in quality over different runs is very small.

An alternative strategy to improve over our estimates is to use more so-

phisticated techniques than our simple random sampling estimators [Thompson

2002]. While we have not performed a thorough study, it seems, though, that

reasonable and efficient estimators are difficult to design and subject to the same

problems exhibited by skewed pivot selection strategies.
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Since we can compute the exact closeness centrality of any particular vertex

by solving one SSSP, a reasonable strategy to determine the k most central ver-

tices is to estimate closeness using a sufficiently large number of pivots, followed

by exact computations for those vertices ranked among the top k′, k′ > k,

to determine their correct order. Note that this approach does not apply to

betweenness centrality.
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strategy rule

Random uniformly at random

RanDeg random proportional to degree

MaxMin non-pivot maximizing minimum distance to previous pivots

MaxSum non-pivot maximizing sum of distances to previous pivots

MinSum non-pivot minimizing sum of distances to previous pivots

Mixed alternatingly MaxMin, MaxSum, and Random

Table 1: Pivot-selection strategies (first pivot selected at random)



network n m source

random graphs 1,000 ≈10,000 Gilbert [1959]

small worlds 1,000 10,000 Watts and Strogatz [1998]

preferential attachment 1,000 20,000 Barabási and Albert [1999]

protein interaction 2,114 4,480 Jeong et al. [2001]

needle exchange 4,259 61,693 courtesy of R. Foreman and T. Valente

ticker news 13,332 148,039 courtesy of S. Corman

Table 2: Networks used in the experiments



Figure 1: Protein interaction network. Node dimensions indicate exact (width)

and estimated (height) closeness centrality using MaxMin for pivot (blue) se-

lection. Other colors emphasize under- (red) and overestimation (green)



Figure 2: Needle exchange network (the apparent clustering is caused by two

established and one recently opened exchange location)
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Random

MinSum

Figure 9: MinSum fails to utilize larger number of pivots on ticker news network

(white – non-pivots, blue – first 1,000 pivots, red – next 1,000 pivots)


	Text108: First publ. in: International Journal of Bifurcation and Chaos 17 (2007), 7, pp. 2303-2318
	Text5: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-72074URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7207/
	Text6: 
	Text1: 


