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Abstract

We address the problem of finding large-scale functional and struc-
tural relationships between genes, given a time series of gene expression
data, namely mRNA concentration values measured from genetically en-
gineered rat fibroblasts cell lines responding to conditional cMyc proto-
oncogene activation. We show how it is possible to retrieve suitable in-
formation about molecular mechanisms governing the cell response to
conditional perturbations. This task is complex because typical high-
throughput genomics experiments are performed with high number of
probesets (103 − 104 genes) and a limited number of observations (< 102

time points). In this paper we develop a deepest analysis of our previ-
ous work [Remondini et al., 2005] in which we characterized some of the
main features of a gene-gene interaction network reconstructed from tem-
poral correlation of gene expression time series. One first advancement
is based on the comparison of the reconstructed network with networks
obtained from randomly generated data, in order to characterize which
features retrieve real biological information, and which are instead due to
the characteristics of the network reconstruction method. The second and
perhaps more relevant advancement is the characterization of the global
change in co-expression pattern following cMyc activation as compared to
a basal unperturbed state. We propose an analogy with a physical system
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in a critical state close to a phase transition (e.g. Potts ferromagnet),
since the cell responds to the stimulus with high susceptibility, such that
a single gene activation propagates to almost the entire genome. Our re-
sult is relative to temporal properties of gene network dynamics, and there
are experimental evidence that this can be related to spatial properties re-
garding the global organization of chromatine structure [Knoepfler et al.,
2006].

1 Introduction

Complex network theory has been used to characterize topological features
of many biological systems such as metabolic pathways, protein-protein in-
teractions, and neural networks [Jeong et al., 2000; Maslov & Sneppen, 2002;
Barabasi & Oltvai, 2004; Boccaletti et al., 2006]. The application of network
theory to gene expression data has been not fully investigated, particularly re-
garding the relationships between genes occurring while their expression level
changes in time. Gene expression measurements have allowed an unbiased search
at the genome level but the large amount of experimental data that they gener-
ate (e.g. 105 probesets for human microarrays), as well as their complexity, has
slowed down reliable modelling. An emerging and powerful approach to tackle
the complexity in functional genomics experiments, is the so called perturbation
method, that consists in perturbing the system with external tunable stimuli and
following the changes in the gene interaction-network properties as a function of
time and perturbation magnitude [Remondini et al., 2005; Ideker et al., 2001].
An experimental example of this strategy is the dataset obtained from measure-
ments in which a single, but very important gene was conditionally switched
on or off. To do this, two cell lines were genetically engineered so that one has
served as a negative control (the gene was absent) and the other was provided
of a reconstituted c-Myc that allowed the conditional activation by tamoxifen
[O’Connell et al., 2003]. In this experiments, the expression level (mRNA con-
centration) of about 9000 genes was observed at different times, generating two
time series (the basal-control and the activated-perturbed) of 5 points with 3
replicates each.

One of the key points for the application of network methodologies to ge-
nomics data is the definition of the links between elements (nodes), namely,
the gene interactions from which all network properties are obtained. Several
methods for links assessment have been proposed for gene expression data, such
as Linear Markov Model-based methods [Holter et al., 2001; Dewey & Galas,
2001] or correlation-based methods [Butte et al., 2000; Eisen et al., 1998]. We
define links on the basis of the time correlation properties of gene expression
measurements, as described in [Remondini et al., 2005].

We analyze the distributions of the most typical network parameters, like
connectivity degree, clustering coefficient, betweenness centrality, and the degree-
degree correlation feature. The features that characterize a specific network are
those that significantly differ from a ”reference”, unstructured network model:
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typically the Erdös-Renyi (ER) random network is considered for such scope
[Newman, 2003]. In our case, the step of calculating the correlation matrix is a
processing that introduces some structures not found in the ER ”null” hypoth-
esis, thus we will consider as a reference the network which is obtained from the
correlation matrix of randomly generated vectors of the same size than the real
dataset.

We also show that correlation properties of gene expression time series mea-
surements reflect very broad changes in genomic activity. The network features
observed with real data can be explained by a model in which correlation prop-
agates into a large portion of the genome, as should be expected in proximity
of a phase transition when referring to the ”correlation length” of fluctuations.

We show that it is possible, using appropriate experimental condition, the
detection, as well as the modelling of global changes in selected group of genes,
such as temporal synchronization of gene expression dynamics.

A mechanism that is emerging as a possible explanation for such synchroniza-
tion is a global change in chromatin structure elicited by transcription factors
activity whose targets are responsible for histon modification (acetylation and
methylation state) [Knoepfler et al., 2006].

2 Network Construction

Our network approach [Remondini et al., 2005] aims at characterizing the re-
lations among the elements of a complex system (the genome and its mutual
interactions). We consider the genes as the nodes of the network and, given
the expression profile of gene i in time −→g i = gi(tk), k = 1, ..., N , a link exists
between genes i and j if the absolute value of the correlation coefficient Cij

Cij =
(−→g i − 〈−→g i〉) · (

−→g j − 〈−→g j〉)

‖−→g i − 〈−→g i〉‖ · ‖
−→g j − 〈−→g j〉‖

(1)

exceeds a defined threshold. Only high values of correlation are considered,
in order to reduce spurious correlations due to noise. We considered |Cij | >
0.97, because this is, in absolute value, higher than those requested for the
statistical significance of the correlation coefficients (p < 0.05). We remark that
similar results are obtained for values in the range [0.95:0.98]. The result is
an undirected topological network specified by its adjacency matrix Aij , from
which the self links are removed (self-correlation is not relevant).

Three datasets are considered for network reconstruction: the expression
time series of the genes that significantly responded to cMyc activation, referred
to as the T dataset (1191 genes observed at 5 time points); the expression time
series of the same genes in ”nonperturbed” state (N dataset, same size as T);
a matrix of numbers sampled from the Standardized Normal Distribution (0
mean, unit variance) of the same size (R dataset). This allows to compare the
perturbed state to a basal cellular state, but also to discriminate between fea-
tures specific to real biological data and other due to the network construction
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procedure. Another way to remove network structure is achieved through ran-
dom rewiring of the links, in a way to preserve single node connectivity degree
(both incoming and outgoing) but removing the specificity of the connections
(referred to as MS rewiring [Maslov & Sneppen, 2002]). For some analyses we
will consider also an ER network of the same size (1191x1191), with an average
connectivity degree that produces a giant component, as observed in N and T
datasets.

3 Modeling the Phase Transition

In response to c-Myc perturbation, gene expression profile exhibits a strong
degree of temporal correlation. The time correlation matrix can be put into
analogy with the correlation matrix of spin states in a disordered Potts ferro-
magnet [Wu, 1982; Domany, 1999]. In the basal state (N dataset), the spins are
poorly aligned: in terms of gene expression, gene activity is organized in small
modules and a global synchronization is not present. In the T case, spin align-
ment increases dramatically: gene activities tend to correlate (or anticorrelate)
in response to a perturbation, represented in our case by artificially induced
activation of a single gene.

In order to quantify the perturbation extent, we generate a randomly dis-
tributed dataset of the same size of the original cMyc dataset (2976 5-dimensional
random vectors sampled from a Standardized Gaussian Distribution with 0
mean and unit variance). Global correlation is introduced to various degrees
by multiplying different portions of the dataset (from 0% to 100%) by the ma-
trix of the singular values extracted from the T dataset (we define this procedure
as rescaling).

A distribution of the correlation coefficients, very similar to that observed
for the T dataset, is obtained when at least 90% of the data are rescaled (see
Fig. 1). No such distribution for the correlation coefficients is obtained if rescal-
ing is applied up to 50-60% of the data. Thus the cell perturbation induced by
c-Myc activation produces a synchronization of gene activity that spans a large
portion of the genome at various degrees. Moreover, we emphasize the fact that
such a large-scale response of the genome is obtained through the perturbation
(activation) of a single element (cMyc gene). This resembles the high suscepti-
bility of a spin system when it is in a critical state close to a phase transition, in
which the correlation length is of the order of magnitude of the whole system.
In our case the analogy is with a paramagnetic or antiferromagnetic system,
since the ”average alignment” is very close to zero, due to an identical amount
of correlated and anticorrelated gene expression profiles (see Fig 1C, or figures
in [Remondini et al., 2005])

4



4 Network Properties

As shown in [Remondini et al., 2005], connectivity degree distribution p(k) strong-
ly reflects global changes in genome activity. Since this feature was shown to
depend on the exact time series sequence, being disrupted by time shuffling, we
argued that it was retrieving information embedded in real data.

In the present work we show that some features, on the contrary, seem
to be introduced by the processing for network construction. For example, the
clustering coefficient C calculated for the N and T networks is much higher than
compared to a random network of the same size (CN = 0.4726, CT = 0.4975,
whereas CER ≃ 10−3) but the R network also has CR = 0.4733. Another
feature that is shared among the N, T, and R datasets is the assortative property
(see Fig. 2), which means that nodes are likely to be directly connected with
nodes of similar degree. Therefore also this feature is not reflecting properties
of real data, but seems related to the thresholding procedure. We give the
following interpretation for these observations. The high correlation relationship
(‖C‖ > 0.97) can be seen as very close to an identity relationship, and a sort of
transitive property is verified: if gene A is highly correlated to gene B, and B to
C, very likely A will be highly correlated to C. This leads to a high density of
triangles in the network (fully connected 3-node subgraphs), that justifies the
unusually high clustering coefficient. Another effect of this transitive property
is the stratification of connectivity leading to assortativity: if a node is highly
correlated to many nodes (and thus has a high connectivity degree k), very likely
these nodes will all be correlated to each other (thus they will all have similar
connectivity degree). This feature is completely absent for a ER network (data
not shown) and also for MS rewiring of N and T networks.

Nodes can be characterized not only by the numbers of links they have, but
also by more complex features, like betweenness centrality b, that characterizes
the relevance for communication between nodes in the network. Betweenness
centrality distribution for the T network is much more skewed as compared to
the N and R networks (data not shown). The joint distribution of b vs. k
(Fig. 3) for the T network appears very different from the R and N cases. In
particular, a group of genes presents a high level of b and low k.

We can argue that the expression profile of these genes is thus quite different
from the others (implied by the low connectivity degree), but a lot of genes are
related each other through them (high betweenness): an hypothesis is that these
are genes that respond early to the perturbation (and thus their profile in time
is relatively unique) and guide the following gene activation cascade (thus many
genes show combinations of their time profile). In the highest ranking genes
(reported in Tab. 1) with respect to b/k ratio we find genes involved in early
gene transcription events and known direct (early) targets of c-Myc also involved
in tumorigenesis.
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5 Conclusions

A contemporary challenge is to extract as much information as possible from
high-throughput genomic and proteomic data. These data are usually very
noisy, due to experimental techniques and the high variability intrinsic to bio-
logical organisms. Moreover, this problem is very often ill-posed, in the sense
that the relationships about a very high number of elements (103 − 104 genes)
must be retrieved from a very small number of samples (< 100 experiments). It
is very important thus to consider methods able to reliably recover informations
from this kind of data.

We shown previously that it is possible to extract information about gene-
gene interaction network from a time series of gene expression measurements,
both on a global scale and with respect to single gene roles and functions. In
this paper we better characterized the most relevant features of the networks
obtained with such method. Some features, like high clustering coefficient or
the assortativity property, appear to be dependent on the network construction
procedure (namely calculating the correlation matrix from the data), indepen-
dently of the real data characteristics. We also show that there are relationships
between network parameters (e.g. considering betweenness centrality and con-
nectivity degree joint distribution) that are not found in ”null” network models.
These relationships are significantly different also when a real dataset is con-
sidered, comparing a ”basal” and a highly ”perturbed” cell state. Considering
the ratio between betweenness centrality and connectivity degree of each gene
b/k, we obtain a ranking of the genes that seems to reflect early response to
the perturbation, and thus characterizes the initiation of the gene activation
cascade observed experimentally.

If the correlation matrix of gene expressions is seen as the correlation of spin
states of a paramagnetic/antiferromegnetic system, the perturbation induced
by a single element in the genome (in our case cMyc proto-oncogene activation)
propagates through almost the whole system. Continuing with the analogy, such
high ”susceptibility” may suggest that the genome is behaving as in the prox-
imity of a critical state, in which the correlation length is of a size comparable
to the entire system.

Acknowledgments

D.R. and G.C. thank Italian MURST FIRB Grant, INFN FB11 Grant. and RFO
(ex 60%) Grant. J.M.S. acknowledges NIH grant R01 GM41690 for support of
this project

6



References

Barabasi, A.L. & Oltvai, Z.N. [2004], “Network biology: understanding the cell’s
functional organization”, Nat. Rev. Genet. 5, 101-113.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U. [2006], “Com-
plex networks: Structure and dynamics”, Phys. Rep. 424(4), 175-308.

Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., Kohane, I.S. [2000], “Discov-
ering functional relationships between RNA expression and chemotherapeutic
susceptibility using relevance networks”, PNAS 97(22), 12182-12186.

Dewey, T.G. & Galas, D.J. [2001], “Dynamic models of gene expression and
classification”, Funct. Integr. Genomics 1, 269-278.

Domany, E. [1999], “Superparamagnetic Clustering of Data”, Physica A 263,
158-169.

Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D. [1998], “Cluster analysis
and display of genome-wide expression patterns” PNAS 95, 14863-14868.

Holter, N. S., Maritan, A., Cieplak, M., Fedoroff, N.V., Banavar, J. R. [2001],
“Dynamic modeling of gene expression data”, PNAS 98(4), 1693-1698.

Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K.,
Bumgarner, R., Goodlett, D.R., Aebersold, R., Hood, L. [2001], “Integrated
genomic and proteomic analyses of a systematically perturbed metabolic net-
work”, Science 292(5518), 929-34.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L. [2000], “The
large-scale organization of metabolic networks”, Nature —bf 407, 651-654.

Knoepfler, P.S., Zhang, X.Y., Cheng, P.F., Gafken, P.R., McMahon, S.B., Eisen-
man, R.N. [2006], “Myc influences global chromatin structure”, EMBO J.
25(12), 2723-2734.

Maslov, S., Sneppen, K. [2002], “Specificity and stability in topology of protein
networks”, Science 296, 910-913.

Newman, M.E.J. [2003], “The structure and function of complex networks”,
SIREV 45(2), 167-256.

O’Connell, B., Cheung, A.F., Simkevich, C.P., Tam, W., Ren, X., Mateyak,
M.K., Sedivy, J.M. [2003], “A Large Scale Genetic Analysis of c-Myc-
regulated Gene Expression Patterns”, J. Biol. Chem. 278(14), 12563-12573.

Remondini, D., O’Connell, B., Intrator, N., Sedivy, J.M., Neretti, N., Castellani,
G.C., Cooper, L.N. [2005], “Targeting c-Myc-activated genes with a correla-
tion method: Detection of global changes in large gene expression network
dynamics”, PNAS 102(19), 6902-6906.

Wu, F.Y. [1982], “The Potts model”, Rev. Mod. Phys 54(1), 235-268.

7



Figure 1: Histograms of the correlation coefficient distributions, obtained from
real datasets and from random datasets with different degrees of correlation. A:
N dataset. B: randomly generated dataset, 50% correlated data, 50% uncorre-
lated data. C: T dataset. D: randomly generated dataset, 90% correlated data,
10% uncorrelated data.

Table 1: Top 10 genes ranked by b/k.
B/K Gene Description
0.88 Mxd3 Max dimerization protein 3
0.70 MGC72561 Similar to mannosidase 2, α B1
0.63 Top2a Topoisomerase (DNA) 2 α
0.47 Lgals7 Galectin-7
0.39 Cdc25b Cell division cycle 25B
0.37 Nr5a2 Nuclear receptor subf. 5 gr. A, m. 2
0.33 RT1-Ba RT1 class II, locus Ba
0.29 Btnl2 butyrophilin-like 2 (MHC class II associated)
0.19 Prkag1 Protein kinase, AMP-activated, γ 1 non-catalytic subunit
0.11 Ctsd Cathepsin D
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Figure 2: Degree-degree scatter plot. Logarithmic scale is used on both axes.
X axis: connectivity degree k ; Y axis: connectivity degree averaged over the
nearest neighbours for each node 〈k〉NN . A: N network. B: R network. C: T
network. D: MS rewired T network.
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Figure 3: Plots of betweenness centrality b vs. connectivity degree k for different
realizations of the network. X axis: k/max(k); Y axis: b/max(b). A: N network.
B: R network. C: T network; squares: selected genes with high b/k ratio. D:
MS rewired T network.
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