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Internet data packet transport: from global topology to local queueing dynamics
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We study structural feature and evolution of the Internet at the autonomous systems level. Ex-
tracting relevant parameters for the growth dynamics of the Internet topology, we construct a toy
model for the Internet evolution, which includes the ingredients of multiplicative stochastic evolution
of nodes and edges and adaptive rewiring of edges. The model reproduces successfully structural
features of the Internet at a fundamental level. We also introduce a quantity called the load as
the capacity of node needed for handling the communication traffic and study its time-dependent
behavior at the hubs across years. The load at hub increases with network size N as ∼ N1.8. Finally,
we study data packet traffic in the microscopic scale. The average delay time of data packets in
a queueing system is calculated, in particular, when the number of arrival channels is scale-free.
We show that when the number of arriving data packets follows a power law distribution, ∼ n−λ,
the queue length distribution decays as n1−λ and the average delay time at the hub diverges as
∼ N (3−λ)/(γ−1) in the N → ∞ limit when 2 < λ < 3, γ being the network degree exponent.

PACS numbers: 89.75.Hc, 89.70.+c, 89.75.Da

In recent years, the Internet has become one of the
most influential media in our daily life, going beyond
in its role as the basic infrastructure in this technologi-
cal world. Explosive growth in the number of users and
hence the amount of traffic poses a number of problems
which are not only important in practice for, e.g., main-
taining it free from any undesired congestion and mal-
functioning, but also of theoretical interests as an inter-
disciplinary topic [1]. Such interests, also stimulated by
other disciplines like biology, sociology, and statistical
physics, have blossomed into a broader framework of net-
work science [2, 3, 4, 5]. In this Letter, we first review
briefly previous studies of Internet topology and the data
packet transport on global scale, and next study the de-
livery process in queueing system of each node embedded
in the Internet.
The Internet is a primary example of complex net-

works. It consists of a large number of very heteroge-
neous units interconnected with various connection band-
widths, however, it is neither regular nor completely ran-
dom. In their landmark paper, Faloutsos et al. [6] showed
that the Internet at the autonomous systems (ASes) level
is a scale-free (SF) network [7], meaning that degree k,
the number of connections a node has, follows a power-
law distribution,

Pd(k) ∼ k−γ . (1)

The degree exponent γ is subsequently measured and
confirmed in a number of studies to be γ ≈ 2.1(1). The
power-law degree distribution implies the presence of a
few nodes having a large number of connections, called
hubs, while most other nodes have a few number of con-

nections.
It is known that the degrees of the two nodes located at

each end of a link are correlated each other. As the first
step, the degree-degree correlation can be quantified in
terms of the mean degree of the neighbors of a given node
with degree k as a function of k, denoted by 〈knn〉(k) [8],
which behaves in another power law as

〈knn〉(k) ∼ k−ν . (2)

For the Internet, it decays with ν ≈ 0.5 measured from
the real-world Internet data [9, 10].
The Internet has modules within it. Such modular

structures arise due to regional control systems, and of-
ten form in a hierarchical way [11]. Recently, it was ar-
gued that such modular and hierarchical structures can
be described in terms of the clustering coefficient. Let
Ci be the local clustering coefficient of a node i, defined
as Ci = 2ei/ki(ki − 1), where ei is the number of links
present among the neighbors of node i, out of its maxi-
mum possible number ki(ki−1)/2. The clustering coeffi-
cient of a network, C, is the average of Ci over all nodes.
C(k) means the clustering function of a node with degree
k, i.e., Ci averaged over nodes with degree k. When a
network is modular and hierarchical, the clustering func-
tion follows a power law, C(k) ∼ k−β for large k, and
C is independent of system size N [12, 13]. For the In-
ternet, it was measured that the clustering coefficient is
CAS ≈ 0.25 and the exponent β ≈ 0.75 [14].
There are many known models to mimic the Internet

topology. Here we introduce our stochastic model evolv-
ing through the following four rules. This model is based
on the model proposed by Huberman and Adamic [15],
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FIG. 1: Shown is the adaptive rewiring rule. A node (white)
detaches one of its links from a node (green or gray) in (a),
and attaches it to one of the nodes (green or gray) with degree
3, larger than 2 of the detached node, in (b).

which is a generic model to reproduce a uncorrelated
SF network and we modify it by adding the adaptation
rule [16], which results in generating the degree-degree
correlations. The rules are as follows: (i) Geometrical

growth: At time step t, geometrically increased number
of new nodes, αN(t − 1), are introduced in the system
with the empirical value of α = 0.029. Then following
the empirical fact 〈knew〉t ≈ 1.34, each of newly added
nodes connects to one or two existing nodes according to
the preferential attachment (PA) rule [17]. (ii) Acceler-

ated growth: Each existing node increases its degree by
the factor empirical value of ≈ 0.035. These new inter-
nal links are also connected following the PA rule. (iii)
Fluctuations: Each node disconnects existing links ran-
domly or connects new links following the PA rule with
equal probability. The variance of this noise is given as
σ2 ≈ (0.14)2 measured from empirical data. (iv) Adapta-
tion: When connecting in step (iii), the PA rule is applied
only within the subset of the existing nodes consisting of
those having larger degree than the one previously dis-
connected. This last constraint accounts for the adapta-
tion process. The adaptive rewiring rule is depicted in
Fig. 1.

Through this adaptation model, we can reproduce
generic features of the Internet topologies successfully
which are as follows: First, the degree exponent is mea-
sured to be γmodel ≈ 2.2, close to the empirical result
γAS ≈ 2.1(1). Second, the clustering coefficient is mea-
sured to be Cmodel ≈ 0.15(7), comparable to the em-
pirical value CAS ≈ 0.25. Note that without the adap-
tation rule, we only get C ≈ 0.01(1). The clustering
function C(k) also behaves similarly to that of the real-
world Internet, specifically, decaying in a power law with
β ≈ 1.1(3) roughly for large k [18], but the overall curve
shifts upward and the constant behavior for small k ap-
pears. Third, the mean degree function 〈knn〉(k) also
behaves similarly to that of the real-world Internet net-
work, but it also shifts upward overall. In short, the
behaviors of C(k) and 〈knn〉(k) of the adaptation model
are close to those of the real Internet AS map, but with
some discrepancies described above. On the other hand,
recently another toy model [19] has been introduced to
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FIG. 2: The load at each node due to a unit packet transfer
from the node s to the node t, ℓs→t

i . In this diagram, only
the nodes along the shortest paths between (s, t) are shown.
The quantity in parentheses is the corresponding value of the
load due to the packet from t to s, ℓt→s

i .

represent the evolution of the Internet topology. The
model is similar to our model in the perspective of in-
cluding the multiplicative stochastic evolution of nodes
and edges as well as adaptive rewiring of edges. However,
the rewiring dynamics is carried out with the incorpora-
tion of user population instead of degree of node we used
here.
Next, we study the transport of data packet on the

Internet. Data packets are sent and received over it con-
stantly, causing momentary local congestion from time
to time. To avoid such undesired congestion, the capac-
ity, or the bandwidth, of the routers should be as large
as it can handle the traffic. First we introduce a rough
measure of such capacity, called the load and denoted
as ℓ [20]. One assumes that every node sends a unit
packet to everyone else in unit time and the packets are
transferred from the source to the target only along the
shortest paths between them, and divided evenly upon
encountering any branching point. To be precise, let ℓs→t

i

be the amount of packet sent from s (source) to t (tar-
get) that passes through the node i (see Fig. 2). Then
the load of a node i, ℓi, is the accumulated sum of ℓs→t

i

for all s and t, ℓi =
∑

s6=t ℓ
s→t
i . In other words, the load

of a node i gives us the information how much the capac-
ity of the node should be in order to maintain the whole
network in a free-flow state. However, due to local fluc-
tuation effect of the concentration of data packets, the
traffic could be congested even for the capacity of each
node being taken as its load. The distribution of the load
reflects the high level of heterogeneity of the Internet: It
also follows a power law,

Pl(ℓ) ∼ ℓ−δ, (3)

with the load exponent δ ≈ 2.0 for the Internet. For
comparison, the quantity “load” is different from the
“betweenness centrality” [21] in its definition. In load,
when a unit packet encounters a branching point along
the shortest pathways, it is divided evenly with the local
information of branching number, while in betweenness
centrality, it can be divided unevenly with the global in-
formation of the total number of shortest pathways be-
tween a given source and target [22]. Despite such a
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FIG. 3: Time evolution of the load versus N(t) at the ASes
of degree-rank 1(◦), 2 (�), 3 (♦), 4 (△), and 5 (×). The
dashed line for larger N has slope 1.8, drawn for the eye.

difference, we find no appreciable difference in practice
for the numerical values of the load and the betweenness
centrality for a given network.

The load of a node is highly correlated with its degree.
This suggests a scaling relation between the load and the
degree of a node as ℓ ∼ kη and the scaling exponent
η is estimated as η = 1.06 ± 0.03 for January 2000 AS
map [14, 18]. In fact, if one assumes that the ranks of
each node for the degree and the load are the same, then
one can show that the exponent η depends on γ and δ as
η = (γ−1)/(δ−1) with γ ≈ 2.1 and δ ≈ 2.0, and we have
η ≈ 1.1, which is consistent with the direct measurement.

The time evolution of the load at each AS is also of
interest. Practically, how the load scales with the total
number of ASes (the size of the AS map) is an impor-
tant information for the network management. In Fig. 3,
we show ℓi(t) versus N(t) for 5 ASes with the highest
rank in degree, i.e., 5 ASes that have largest degrees at
t = 0. The data of {ℓi(t)} shows large fluctuations in
time. Interestingly, the fluctuation is moderate for the
hub, implying that the connections of the hub is rather
stable. The load at the hub is found to scale with N(t)
as ℓh(t) ∼ N(t)µ, but the scaling shows a crossover from
µ ≈ 2.4 to µ ≈ 1.8 around t ≈ 14.

Internet traffic along the shortest pathways yields in-
convenient queue congestions at hubs in SF networks.
Many alternative routing strategies have been introduced
to reduce the load at hub and improve the critical density
of the number of packets displaying the transition from
free-flow to congested state [23, 24, 25, 26, 27, 28, 29, 30].

Transport of data packets also relies on queueing pro-
cess of an individual AS. Here we extend existing queue-
ing theory [31] to the case where arrival channels are
multiple, in particular, when their number distribution
follows a power law, aiming at understanding the trans-
port in SF networks. For simplicity, we assume that the
arrival and processing rates of an individual channel are
the same, and they are independent of degree of a given
AS. Time is discretized and unit time is given as the in-
verse of the rate.
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FIG. 4: (a) Snapshot inside buffer with arriving packets. Each
row represents a communication channel, and circles therein
are the sequence of incoming packets. The integers on the
horizontal axis indicate arriving time-steps of each packet.
Open circles stand for packets not delayed. Packets delayed
are represented by three kinds of filled circles according to
their own delaying mechanism. See text for details. The
consequent delivery sequence is shown in (b) with processing
time-step.

Delay of packet delivery in our queueing process orig-
inates from two sources. For the one, owing to multiple
arriving channels, multiple packets can arrive at a given
queueing system in a unit time interval, and are accumu-
lated in the buffer. For example, grey circles in Fig. 4
represent such a case. This type of delay is referred to as
the delay type 1 (DT1) below. For the other, the delay
is caused by preceding packets in the buffer, which can
happen under the first-in-first-out rule. The hatched cir-
cles in Fig. 4 demonstrate this case. This case is referred
to as the delay type 2 (DT2). Then any delay can be
decomposed into the two types. The black circle in Fig.4
is such a packet, delayed by both DT1 and DT2. We cal-
culate the average delay time for each type, separately,
and combine them next.
To proceed, we first define pn as the probability that

n packets arrive at a given queueing system at the same
time. For the DT1 case, if qm denotes the probability
that a packet is delayed m time steps, we find

qm = p0δ0,m +
∞
∑

n=m+1

pn
n
, (4)

where δi,j is the Kronecker delta function. Then, the
average of delay time steps through the DT1 process is
obtained as

〈m〉q =

∞
∑

n=2

pn
n

n−1
∑

m=1

m =
〈n〉p − 1 + p0

2
, (5)

where 〈· · · 〉q (〈· · · 〉p) is the average with respect to the
probability qm (pn).
For the DT2 case, we introduce rb(t) as the probability

that a packet arrived at time t is delayed b time steps by
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preceding delayed packets. In the steady state, we obtain
that

rb′ =

b′+1
∑

b=0

pb′−b+1rb + p0r0δ0,b′ . (6)

By using the generating functions R(z) ≡
∑∞

b=0 rbz
b and

P(z) ≡
∑∞

n=0 pnz
n, we obtain that

R(z) [z − P(z)] = p0r0(z − 1) , (7)

with p0r0 = 1− 〈n〉p.
The next step is to combine the two types of delays.

To this end, we define wτ as the probability that a unit
packet is delayed by τ . Then wτ =

∑τ
m=0 qmrτ−m since

DT1 and DT2 are statistically independent. From this,
the average delay time is obtained as

〈τ〉w ≡
∞
∑

τ=0

τwτ =
〈n〉p − 1 + p0

2
+

〈n2〉p − 〈n〉p
2 (1− 〈n〉p)

. (8)

Thus, a critical congestion occurs when 〈n〉p = 1, at
which the delay time diverges. The singular behavior
in the form of (1 − 〈n〉p)

−1 was observed numerically in
the study of directed traffic flow in Euclidean space [32].
We now consider the case where the number of arriving

data packets follows a power law, pn ∼ n−λ. In fact,
non-uniformity of the number of data packets arriving
at a given node gives rise to self-similar patterns as is
well known in computer science [33]. Precise value of the
exponent λ has not been reported yet. Moreover, it is
not known if the exponent is universal, independent of
bandwidths or degrees in the SF network. The relation
of λ to the load exponent δ, if there is any, is not known
either.
If λ < 3, 〈n2〉p diverges. For such a power-law distri-

bution, its generating function P(z) develops a singular
part and takes the form, when 2 < λ < 3,

P(z) = 1−〈n〉p(1−z)+a(1−z)λ−1+O
(

(1− z)2
)

, (9)

where a is a constant. By using the relation between
P(z) and R(z) from Eq. (7), we obtain that

R(z) = 1−
a

1− 〈n〉p
(1− z)λ−2 +O (1− z) . (10)

Therefore, the probability rb in the delay of the DT2
behaves as rb ∼ b1−λ for large b. In other words, the DT2
delay distribution decays slower than that of incoming
packets, pn, and 〈τ〉w ∼ 〈b〉r becomes infinite even when
〈n〉p < 1.
On the other hand, in real finite scale-free networks

such as the Internet with the degree exponent γ, pn at
the hub has a natural cut-off at n ∼ kmax ∼ N1/(γ−1), in
which case we have 〈n2〉p ∼ k3−λ

max . Thus from Eq. (8) the
average delay time at the hub scales as

〈τ〉w ∼ k3−λ
max ∼ N (3−λ)/(γ−1) (11)

for 2 < λ < 3.
In the real-world Internet, the bandwidth of each AS

is not uniform. Nodes with high bandwidth locate at the
core of the network, forming a rich club [34, 35], how-
ever, their degrees are small. Whereas, nodes with large
degree locate at the periphery of the network with low
bandwidth [36]. Therefore, our analysis of the average
delay time has to be generalized incorporating the inho-
mogeneous bandwidths and arrival rates [37].

In summary, in the first part of this Letter, we have
reviewed the previous studies of topological properties
of the Internet and introduced a minimal model, the
adaptation model to reproduce the topological proper-
ties. Next we studied transport phenomena of data pack-
ets travelling along the shortest pathways from source to
destination nodes in terms of the load. In the second
part, we studied the delivery process of data packets in
the queueing system, in particular, when arrival chan-
nels are diverse following the scale-freeness in the degree
distribution.
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[24] B. Tadić and G.J. Rodgers, Adv. Complex Syst. 5, 445

(2002).
[25] P. Holme, Adv. Complex Syst. 6, 163 (2003).
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