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Synchronization of networks with variable local properties
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We study the synchronization transition of Kuramoto oatilis in scale-free networks that are characterized
by tunable local properties. Specifically, we perform a itledefinite size scaling analysis and inspect how the
critical properties of the dynamics change when the clusjeroefficient and the average shortest path length
are varied. The results show that the onset of synchronizatbes depend on these properties, though the
dependence is smooth. On the contrary, the appearance pfatersynchronization is radically affected by the
structure of the networks. Our study highlights the needkpfaging the whole phase diagram and not only the
stability of the fully synchronized state, where most stgdiave been done up to now.

PACS numbers: 05.45.Xt, 89.75.Fb

INTRODUCTION It turns out that many real networks are well described
by the so-called scale-free (SF) networks. Their main fea-

Emergent collective phenomena have been studied sindgre is that the probability that a given node tiasonnec-
long time ago. These phenomena arise in many fields of scfions to other nodes follows Hower—laﬂk ~ k77, with
ence, ranging from natural to social and artificial systems2 < 7 < 3 In most cased [11.113]. The study of processes
They are characterized, among other features, by the eolleé@king place on top of these networks has led to reconsider
tive behavior of many interacting units that show a patterrf-lassical results obtained for regular lattices or randoaplgs
hard to predict from the individual behavior of the systemdue to the radical changes of the system’s dynamics when
constituents. Several seminal models of statistical isysi the hetero&gﬁy of complex networks can not be neglected
and non-linear dynamics have been scrutinized as paradignﬂls_ill’IHJIIB ﬂﬂ?].
of self-organization, emergence and cooperation betwsen t It is then natural to investigate how synchronization phe-
units forming the system. In particular, synchronizatillep nomena in real systems are affected by the complex topologi-
nomena constitute one of the most striking examples because@l patterns of interaction. This is not an easy task, as ase h
of the many systems showing synchronization patterns in theto deal with two sources of complexity, the nonlinear char-
behaviorl[-_|l|:|2[|3]. acter of the dynamics and highly non trivial complex struc-

One of the most celebrated synchronization models is dutiires. In recentyears, scientists have addressed theepraif
to Kuramoto m:l,[b], who analyzed a model of phase oscil-synchronization capitalizing on the Master Stability Fimrc
lators coupled through a function (sine) of their phase dif-(MSF) formalism [18] which allows to study the stability of
ferences. This model owes most of its success to the plentjiefully synchronized statfid,[20 [211[ 20 3, 24]. while the
of analytical insights that one can get through the mead-fiel MSF approach is useful to get a first insight into what is going
approximation originally proposed by Kuramoto. In this ap-0n in the system as far as the stability of the synchronizsd st
proach (KM), the nodes of an all to all, i.e. globally, couple is concerned, it tells nothing about how synchronizaticatis
network, are considered to be oscillators with an intrifie  tained and whether or not the system under study exhibits a
guency and their phases evolve in time in such a way that ieritical point similar to the original KM. To this end, one stu
the coupling between them is larger than a critical threshol rely on numerical calculations and explore thetire phase
the whole system gets locked in phase and attains completiagram Surprisingly, there are only a few works that have
synchronization. dealt with the study of the Whole%nchronization dynamics i

However, it has been recently discovered that real sysspecific scenarioi_xﬂzﬂbaﬂﬂ 29| 30] as compared with
tems do not show a homogeneous pattern of interconnectiori8ose where the MSF is used, given that the onset of synchro-
among their parts. Thatis, the underlying structure is pot<  hization is reacher in its behavioral repertoire than taeesbf
patible with the original assumption of the KM. It is not even complete synchronization.
well described by random patterns of interconnectionsén th  In this paper, we take a further step in the detailed charac-
vast majority of systems. Therefore, the mean-field apgroacterization of the phase diagram and specifically, in theriigsc
requires of several constraints that are not usually fetfilh  tion of the dynamical behavior at the onset of synchronizati
real systems. Natural, social and technological systeimw sh in SF networks. By performing a standard finite size scaling
complex patterns of connectivity that characterize segiyin analysis, we show that the local topology affects the ailtic
diverse sociaﬂ6], biologica[[ﬂ 8] and technologicalt®res  properties of the dynamics, though it is less pronounceal tha
[E, |ﬁ]. They exhibit common features that can be captureavhat one may expect a priori. We capitalize on a network
using the tools of graph theory or in more recent terms, netmodel that keeps the power-law exponent fixed while varying
work modeling EthhS]. the clustering coefficient and the average path length. latwh
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follows, we describe the topological and dynamical moddl an
discuss the results from a global perspective. Finallyha t
last section, we state our conclusions.
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NETWORK MODEL AND DYNAMICS
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We implement a network model in which the graph is
grown at each time step by linking preferentially new nodes t 1t . . . .
already existing nodes in the same way as in the Barabasi and 1.75 } i

Albert (BA) model E]. The only difference is that the nodes
are assumed to have a fitness that characterizes theiriaffinit <| > 15}
[@]. In this way, by tuning a single paramejerone can go m
from the BA limit down to a network in which several net- 125 F
work properties vary as a function pf On the other hand, as
the linking mechanism is still the BA preferential attachmne Ir
rule, the exponent of the power-law degree distribution is L L L L
the same (i.e; = 3) regardless of the value gf. Roughly 0 62 04 06 08 1
speaking, the model mimics the situation in which new nodes H

are attached to an existing core or network but without fiavin

knowledge of the whole topology.

Average Path Lengh

L N (i : FIG. 1: (color online) Top: Values of the clustering coefiai rela-
The recipe is then as fO”OWHSZ]") Initially, there is a tives to those of the BA model against the paramgteBottom: The

small, fully connected, core ofiy nodes. Assign to each of average cluster length for the network generated relativéise BA

thesem, nodes a random affinity; taken from a probability  yajue as a function gi. All the networks are made up & = 1000
distribution. In this work, we have used for simplicity a uni and have an average degrge = 6.

form distribution betweer(0, 1). ii) At each time step, a new
nodej with a random affinityz; is introduced andn links are

established with nodes already present in the networkviello The dynamic ingredient of the model is given by the collec-

ing the rule tive behavior that arises when the nodes are considered to be
ke phase oscillators that follow the Kuramoto model. In this fo
H(k;) = ﬁv (1) malism, the population oV interconnected units are coupled
ser s phase oscillators where the phase of#tk unit, denoted by

where the sel’ contains all nodes that verify the condition i (t), evolves in time according to

a;, —p < a; < a; +p, beingp € (0,1) a parameter that

controls the affinity tolerance of the nodes. Finally, repeat dag; A wnla. P .

step (i) t times such that the final size of the network/ise= at T Z Aigdigsin(0y =0:) i =1,... N (2)
J

mo + €.

In the above model, when is close enough to 1, the BA ) [@ .
model is recovered. When itis decreased frigrine values of ~WNerew: stands for its natural frequency;; = A [34] is the
some magnitudes such as the clustering coefficigf} and ~ COUPIing strength between units arid; is the connectivity
the average path lengthiZ{)) grows with respect to the BA matr!x (A - 1 if 7 is linked toj and0 othe_rW|s¢). Not_e
limit [B2]. In Fig. [ we have represented how these propertiethat in the original Kuramoto model mean-field interactions
vary as a function of the parameferNote that the larger vari- Vere assumed which leadsAg; = K/NVi, j, for the all-to-
ations correspond to the clustering coefficient (a facteatgr gll architecture. On the other hand, the model can be solved
than 4 as compared to a factor close to 2 }) and that it in terms of an order parameterthat measures the extent of
is the first property that deviates from the BA limit. Thisten synchronization in a system of oscillators as:
dency holds up to very small values@fwhere(L) raises at a

higher rate tharc) (not shown in Fig[ll). More important for v 1 N "
our purposes is the region 6f4 < x < 1. For these values re’” = N Z e 3
of 1 one observes thdf) remains constant whilg:) starts to j=1

grow as soon as it moves away from the BA limitE 1). This

allows to decouple the effects of both magnitudes on what wevhereW¥ represents an average phase of the system. The pa-
are going to study. As we shall latter see, the structura-clu rameterr takes value$ < r < 1, beingr = 0 the value of
tering plays a major role in the synchronization of Kuramotothe incoherent solution and= 1 the value for total synchro-
oscillators, as does in other dynamical proceﬁs [33]. nization.
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At this point, one may ask whether the effects are only due
to the influence ofc) or to the increase of the average path
length E!S] (note that the model implementedm [27] does not
explore this possibility). Unfortunately, the two factase
generally linked together so they can not be considered sep-
arately. However, as stated previously, a closer look at Fig
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- 03 [ reveals that there is a region of the paramgterhere the
0.2 clustering coefficient grows while the average shortesh pat
length remains almost constant. This corresponds to the in-
0.1 terval 0.4 < p < 1.0 approximately. Going back to Fifl 2,
o b the behavior of in this interval ofu. reveals that synchroniza-
tion is almost unaffected. In fact, th¢.) curves lie slightly
0 002 004 006 008 01 0.12 above that corresponding to the BA limit. Therefore, though

A the above comparison is not conclusive, it seems that the de-
layed transition to complete synchronization is mainly tue

FIG. 2: (color online) Order parameteras a function of\ for dif- the effect of the increase ifL) at smaller values of:. rather

ferent values of: as indicated. The network parameters are those ofhan to the increase ifr). This conclusion is further sup-
Fig.0l. ported by a direct comparison of the results in Eh. 2 with

those reported irﬂ?], where the authors explored a region
with higher values ofc) (up to 0.7) and the profile of(\) is
RESULTS almost the same as ours.
The second region of interest is the onset of synchroniza-
In order to inspect how the dynamics of theoscillators ~ tion. From Fig[2, it is difficult to elucidate how the critica
depends on the underlying topology, we have performed expoint for the BA limit compares with those at valuegok 1.
tensive numerical simulations of the model. Starting fromAt first glance, it seems that.(u) shifts rightward as the pa-
A = 0, we increase at small intervals its value. The naturarametery is decreased below 1. However, a more detailed
frequencies and the initial values 6f are randomly drawn analysis shows that it is indeed the contrary. To this end, we
from a uniform distribution in the interval—1/2,1/2) and  have performed a finite size scaling analysis that allowsto d
(—m, ), respectively. Then, we integrate the equations oftermine the critical pointa..(x). We assume a scaling relation
motion Eq. [®) using a'* order Runge-Kutta method over of the form
a sufficiently large period of time to ensure that the system
reaches the stationary state, where the order parameser
computed. The procedure is repeated gradually increasing where f(z) is a universal scaling function boundedas—
The results for- are shown in Fid2 against the control pa- +-c0 anda andj3 are critical exponents to be determined. The
rameter\ for several networks characterized by different  estimation of\. can then be done by plotting“r as a func-
For all values of:, when the coupling is increased from small tion of A and tuninga for several system size¥ until the
values, the incoherent solution prevails and macroscgpic s curves cross at a single point, the critical one.
chronization is not attained. This behavior persists @antir- The results of the FSS analysis are shown in Eg. 3 for
tain critical valueA.(x) is crossed. At this point some ele- different values ofu (from top to bottom and from left to
ments lock their relative phase and synchronized nodes fornmight ;. = 0.05,0.15,0.50,0.60). The insets show a blow-
This constitutes the onset of synchronization. Beyond thisip around the critical points.(u). Although the differences
value, the population of oscillators splits into a paryi@yn-  in the critical points at different values pfare small, they are
chronized state contributing toand a group of nodes whose certainly distinguishable. In fact, the higher the valug aghe
natural frequencies are too spread as to be part of the coherigher the critical point. That is, when the clustering ¢ieef
ent pack. Finally, after further increasing the value\pinore  cient and the average path length grow with respect to the BA
and more nodes get entrained around the mean phase and thetwork, the onset of synchronization is anticipated. More
system settles in a completely synchronized state wheré over, taking into account that the increasein is likely to
(not shown). inhibit synchronization, one may hypothesize that theat$fe
A comparison between the results for different values ofof the clustering coefficient prevail in this region of the pa
u (and thus differentc) and (L) values) indicate several in- rameter\. To check this hypothesis, we have also included
teresting features of the synchronization process. Firi, in Fig.[d the analysis performed for = 0.50 and . = 0.60.
remarkably that when the clustering coefficient increatbes, As pointed out before, for these values, the differences can
system reachesomplete synchronizatioat higher values of only arise from the variations of the clustering coefficiaat
the coupling. This result agrees with the results reponted ithe average path length remains constant in this regioneof th
[ﬂ], where a different network model able to generate topol parametey:.. The critical points, although very close to each
gies with a tunable clustering coefficient was implemented. other, are clearly different. Therefore, the main contiiu

r=N"F(N?(A = Ao)), (4)
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FIG. 3: (color online) Finite size scaling analysis for saealues ofu. From top to bottom and from left to right the valuesoére: 0.05,
0.15, 0.50 and 0.60. In each panel, it is represented thalessorder parameter against the control paramet@ihe insets are a zoom to the
regions around the critical points.(1). The data are averaged over at least 100 realizations forwedge of\. The sizes of the networks,
the critical points\.(u) at which the onset of synchronization takes place, as wéli@salues of the critical exponenisare those indicated
in the plots. See the main text for more details.

to the onset of synchronization at low values\afomes from
the raising of the clustering coefficient.

DISCUSSIONSAND CONCLUSIONS

ing distinct structural properties is relative to the regid the
phase diagram in which the system operﬁs@g, 30].

In summary, we have shown that synchronizability of com-
plex networks is dependent on the effective couplraamong
oscillators, and on the properties of the underlying nekwor
For small values ok, the incoherent solution= 0 first desta-

Rounding off, our results point to a nontrivial dependencebilizes as the clustering coefficient is higher, while thben

between the clustering coefficient and the average pathHeng €Nt solution = 1 is promoted when both the structural clus-
and the synchronization patters of phase oscillators. -Sep4fing and the average path length are small. Finally, wetpoi
rately, the onset of synchronization seems to be mainly deout that our results are also consistent if a different locdér

termined by(c), promoting synchronization at low values of parameter is considereld [30]. Moreover, though theseteesul

the coupling strength with respect to networks not showind1a"e been obtained for p.hase oscﬂlatprs, we think that they
high levels of structural clustering. On the other hand, mvhe Should hold for other nonlinear dynamical systems as well. |
the coupling is increased beyond the critical point, theeff would be interesting to check this later hypothesis in feitur
of (L) dominates and the phase diagram is smoothed out (4°KS-

sort of stretching), delaying the appearance of the fully-sy =~ We thank A. Arenas for helpful comments and discus-
chronized state. These results confirm and complement thoséons on the subject. J.G.G. and Y.M. are supported by MEC
anticipated in E?] and show that general statements abouhrough a FPU grant and the Ramoén y Cajal Program, respec-
synchronizability using the MSF are misleading. Whether ottively. This work has been partially supported by the Span-
not a system is more or less synchronizable than others shovwsh DGICYT Projects FIS2004-05073-C04-01 and FIS2005-
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