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In this paper we quantify our limited information horizory measuring the information necessary to locate
specific nodes in a network. To investigate different wayswercome this horizon, and the interplay between
communication and topology in social networks, we let ag@ommunicate in a model society. Thereby they
build a perception of the network that they can use to cretgegic links to improve their standing in the
network. We observe a narrow distribution of links when tbenmunication is low and a network with a broad
distribution of links when the communication is high.

I. INTRODUCTION when the communication is high.

Communication is a fundamental element in maintaining
the overall cooperation between different parts of a comple !l NAVIGATION IN NETWORKS
system. Because a complex system consists of many different ) ) )
parts, it matters where signals are transmitted. Thus kigna 1he simplest walker is the random walker, which has
ing and traffic is in princip]e Specificy with each message gobe-en used to characterize tOpOIOglcaI featur_es of .netV\{Ol'kS
ing from an unique sender to a specific target. Networks aréBilke & Peterson,| 20011_Monasson. 1999], including first
therefore a powerful way to represent this constrained comPassage times [Noh & Rieger. 2004], large scale modular fea-
munication of the real world [Rosvall & Sneppén, 2003]. tures [Erikseret all, [2003], and search using topological fea-

We start by using walks in networks with specific targets totures [Adamicet al, 2001]. Here we instead take the opposite

. . : S approach and consider a direct walker. In particular we guan
guantify the information necessary to locate specific naales . : ) o )
T : . tify the information necessary to locate specific nodes @& th
the networki[Sneppeet all, [2005], and also to investigate the : ! . , .
: A . . network [Sneppeet all,[2005], and investigate the constraints
constraints limited information sets on the navigabiliTthe

process consists of extracting information at the node$ien t limited information sets on the navigability [Rosvallal,
20054].
walk between a source and a target. The subsequent quées-

tion is therefore the availability of this information. Weetre- e'?‘wvéaelﬁ ff?enr?]IStsT?]feSf;glpklr]:rgol;og] ggjfcteo r?;?g v;at;hre gtnks
fore let agents in a model society use local communicatiorEOdet mav be rﬁore or less directed depending on the v?/alkers
to self-organize distant communication-pathways. In\way y P 9

we demonstrate that simple local rules allow agents to lauild ability to choose exit links that lead it closer to the targee

perception of a dynamic system. This perception guides a taF'g'm(C'd»' We first quantify the information cost in numbe

geted signal across the network beyond the information horimc bits1 (S —1) = 3 jepatrsy It it takes to navigate Fhe shor'gest
>on [Eredkih [1983[ Trusnat all. PO0G [Valverde & Solé path from nodeto nodet, as the sum of the local information

2004]. Further we in this minimalistic model find that mes- ljt on every nodg on a walk_ patitst)” leading to target.

. . That is,Ij; is the number of bits one needs on ngde select
sages are most effectively forwarded in the presence of hub(;sne exit that leads t6. If no deqenerate paths exist. as in
with funneling [Jeffrey & Milgrarm, 19€9], like in scale-fee ' 9 P '

networks, while transmission in hub-free networks is more r l'i:r']?(gg)’ntoh d?“;ﬂfg%ﬁé : t\ZZIf ::ktjo 'ié?:csgg;eﬁng‘;mggr of
bust against misinformation and failures. ) 19

_ _ _ When there are two or more degenerate paths fraot,
With the locally generated global information of the net- e required information depends on the relative probisli

work, we can take the model society one step further and lehat one wants to choose each shortest path withijaatiove
the agents use the information to create strategic linkgisn generalizes to

way we are able to model the self-organization between com-
munication and topology in social networks, with a feedback 1it =logy(kj) + ZQJit log, gijit, 1)
between different communication habits and the topology. W |
observe a narrow distribution of links when the communica- ) N ) _
tion is low and a system with a broad distribution of links Wheregji is the probability to choose a link to noddrom
nodej on a walk to node (5;gjit = 1). g;i = O if the link
is not on the shortest path betwepandt. We will choose
the probability to leave a node along a link on a shortest path
*Electronic addres$: fosvall@tp.umul.se betweers andt to minimize the total information co$ts —
TURL: [http://cmol. nbi.dk t). Thus, if there are many degenerate paths, the probability
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FIG. 2 Information horizon in three real-world networks. \&&m-

] pare information associated to navigation between nodéist@nce
bits/search I, with the navigation in randomized counterparts (keefiegdegree

I.I|.III.IIII.I_ sequence) for=co, 2 and 1. The Internet (hardwired Internet of au-

tonomous systembs [URL], b]) is more sensitive to limited infation
2 4 6 8 than the similarly sized CEO (Chief Executive Officers cartad by
links if they sit at the same board [Davis & Greve, 1997]). Tity

FIG. 1 Navigation in networks. (a) Itis possible to ask yesgnes-  network is the Swedish city Malmé with streets mapped to s@uel
tions and successively eliminate groups of wrong exits éf lthks intersections mapped to links [Rosvatlall, 2005b].

are ordered. Every yes-no question optimally reduces timebeu
of possible links with 12 and the cost is logk to find the correct

exit link. (b) The outcome of the elimination process is utae if oo o yarious degrees are connected to each other. Here
the information that can be received is limited, and thera fmite

probability to make mistakesjf; in the directioni at this nodej on we focu_s on comparing a given real—worl_d_ net\_/vork with its
the way to target nodd). The color of the nodes and links in the @ndomized counterparts, created by rewiring links sueh th
lower pane] represent the average number of questionsmyqs all nodes conserve their degree, and such that the network
navigate to the node. (c) With in total 13 bits it is possitieind ~ remains globally connected [Maslov & Sneppen, 2002]. In
the shortest path between the marked source and target.ifujn&  Fig.[d we resolvé, into I,(I) and examine the average infor-
information limited to 1 bit/node the navigation becomeeetsteps  mation associated to walking to a specific node a distdnce
longer (total cost is 8 bits). away in the real and in the randomizd¢®{9°™1)) network
[Trusinaet all, 12005].
The pattern that the real networks demand less information
than their randomized counterparts on short distahee3,
Qjet = pjef. , where pj = z |_| 1 2) suggr?sts(;hat many reﬁl-world r}etworks fayor communi_nati_o
i Pjt odfFit) 1cpathjit) ki on short distance at the cost of constraining communication
beyond this horizon. Furthermore, this feature is moreawid
is the probability to walk the shortest pathttisom nodej via  with limited than with complete information.
the link to node in an unbiased walk. All results until now are based on the assumption that in-
We now turn to the limited information perspective, andformation is available at every node, although the infoiorat
assume that the amount of information at a node is limited t@an be limited. To address the question of how this informa-
I bits (see Figll1(b) and Java applet [URL, a]). The walk cantion can be assembled, we in the next section turn to a social
now be substantially longer than the actual shortest path. Igame and let agents in a model society use local communica-

Fig.[(d)1 = 1 and the walk is about 3 steps longer than intion to build a global perception of the network.
Fig.[(c) with unlimited information. To limitj to 1 we blur

the g-values of nodg in Eq. (@) by agj € [0,], through

to exit to node= from nodej on the shortest path tas

S _
gjit — djic (€jt) = (ijsf: with gj: determined by Ill. SELF-ASSEMBLY OF INFORMATION IN NETWORKS
it =10z (kj) + 3 it 10gx jir < 1. 3) To visualize our basic approach we illustrate in Elg. 3 a net-
|

work composed of individual agents, each of them connected
The navigability of a network is determined by its topol- to one or more acquaintances. Each individual communicates
ogy, hence it depends on both the degree distribution and howith its immediate neighbors to exchange information about
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 Select a random link and let the two agents that it con-
nects communicate about a random third agent. The
two agents also update their information about each
other.

For example, when an acquaintance of adeint Fig.[3 ob-
tains information abou#, it sets its pointer t&, and the infor-
mation starts aging. With successive communication eyents
the information spreads from agent to agent and gets older an
older (we increase the age of all information when all links
on average have participated in one communication event).
When two agents compare the validity of their pointers to a
target agent, likel and6 to 5 in Fig.[d, they validate the
newest information as the most correct one. The agent with
the oldest information changes its associated pointes tacit
guaintance in the communication event, and updates thk.cloc
By letting the agents memorize the acquaintances that pro-
vided the newest information about other agents togethr wi
the age of this information, they will point in the directioh

the fastest communication path from a target. Moreover, the
fastest communication paths are typically close to thetskbr

FIG. 3 Modeling self-assembly of information in networksgetts ~ Pathsl[Rosvall & Sneppzn, 2006b].
at nodes, connected by links, communicate with their coteleac-
quaintances about any third target agent in the networkeatichate
the quality of the information by its age (clocks over headse
spond to, from left to right, the age of the information abagéentl,
2,...7). The pointers are, for every agent, the acquaintance timat ¢
nects most efficiently to each of the other agents in the syéitere
only indicated for agent, 2, 5, and6, dashed pointers are outdated).

agents in other parts of the system. In this way every individ
ual gradually builds up a global perception by knowing peopl
through people. [Friedkin, 1982]. In our minimalistic model
we allow each agent to have the information about which of
its neighbors that connects most efficiently to each of therot
agents in the system. Thus, a perfectly informed agent knows
in which direction to send a message to any other agent in
the system. If all agents were perfectly informed, any mes-
sage would be reliably forwarded from sender to recipient,
using the information of the subsequent agents along itsspat

[Ueffrey & Milgram,|1968]. Age of information
The key question is how different communication rules of |||||||||||||—
the agents influence their possibility to obtain a reliakege-p young old

ception that is robust to dynamical changes of the networ

waously, the agepts neeq some index of quality that lenthe color of the nodes reflect the age of the information the weti-c
judge whom of their acquaintaces that has the best knowledgg, o agent in the middle has of other agents. The widtheof th
of a particular agent. We have found that the age of the infinys reflects the relative amount of information they tfenso this
formation about an agent gives a very good estimate of thggent, and the color the average quality (age) of this indtion. The
quality [Rosvall & Sneppen, 2006b]. That is, therception  agents make use of the hubs to create short communicattba:-pa
consists of, for every agent about any other agent:

lﬁ:IG. 4 Self-assembly of information in networks. The sizd #me

« The age of the information about the other agent Figure[d shows the perception around the central node in a
(clocks in Fig[B). model n_etW(_)rk (see also Java a_pp\et [URL, c]). Clez_slrly the
information is most up to date in the immediate neighbor-
« From whom the information came hood of the agent, but that distant communication-pathways
(pointers in Fig[B). extend the whole network. In a more detailed investiga-
tion, we found that messages are most effectively forwarded
This defines the model together with tltemmunication in the presence of hubs with funneling [Jeffrey & Milgiam,
event: 1969], like in scale-free networks, while transmission ibh



free networks is more robust against misinformation anld fai 1P y—ggz===r; ‘ EEEERSREEg
ures. This is in overall accordance with Stanley Milgram’s s @ ®e, = (b)
famous experiment, where letters were transmitted by se- 101! e " '-. " ]
guences of acquaintance-acquaintance contacts across USA, Links,  Pointerg ®e =
[Ueffrey & Milgram,[196B] Milgrarn, 1967]. The choice ofac- T 1g-2| 11 e " |
guaintances was based on the participants’ network percep- * o« =
tion, including also geographic closeness of the acquadeta 10-3 cC=10* . C=1072 ° .
to the target (first steps) and similarity of occupationgftat & ‘ o ‘
steps) to forward messagés [Killworth & Berdard, 1978]. Of LS © '°=' ()
course, these are two of many layers that could be added to the /_\_710’1 3 '0.- 1F L

model. However, the minimalistic model demonstrates that A '33' 'I,
simple local rules allow agents to build a perception of the &10-2| W |l s
system, which is enough to overcome the information horizon . ’
[Eriedkin,|1988] set by immediate acquaintances. In thig wa 10-3 €=t ‘ €= 10? ‘

the “small world” is really small{[Kocher, 1989, Milgram, 1 10 10 1 10 100

1967], and it makes sense to talk about navigation or search
g\rgsévsv;)rks and to quantify the information associated is th FIG. 5 lllustration of the feedback from communication ore th

. , . - . topology of both the communication network and the perosptiet-
Given the agents’ perception of the networkiit is tempting towork at four different levels of communicati@ C = 1 corresponds

take this social game one step further, and in the next sectiog o average 1 communication event per link and rewiringieve

we give the agents a social mobility. The agents can therebyhe system size il = 1000 agents connected by= 2500 links.
get new acquaintances to meet different interests.

IV. SELF-ORGANIZATION OF NETWORKS
. . imperfect picture the agents have of their surrounding s o

Social '_“Ob"'ty may be Seen as th_e response to the queata?ed poinriers cause d?verging communication and p?emepti

for better information access in a social system. We lett&sgen networks.

communicate to build a perception of a network as in the pre-

vious section, and further allow the agents to use this mésr We started with random Eés-Rényi networks

tion to create strategic links. In this way we are able to #ave [Erd6s & Rényi, [1959] (the results are independent of

tigate the feedback between different communication Babit. -

and the topoloay. while the agents self-organize the soeial initial conditions) and let the system evolve at differeobtc
work pology, 9 9 munication level$C. The system size wad = 1000 agents

The core of the model is the same as in the previous secqndl‘ = 2500 links. C-L is the number of communication

tion. To this we add the possibility to rewire the networkgan évents per rewiring event in the network, and the degre

. . a node is its number of links. At low communication level,
the model can be formulated in the two independent even . ;
i < 1, the perception network has many more links than the
[Rosvall & Snepperl, 2006a]:

communication network, reflecting the failure of agents to
» Communication:Select a random link and let the two perceive connectiqns that are lost recently._mapproaches
agents that it connects communicate about a randorﬁ ~1 th? perception network prunes its '"’!"S whereas the
third agent. The two agents also update their informaCOMmunication network develops_ nodes with high degrees
tion about each other. (the distribution can bg approximated by a power law
P(k) O k=22). At even higher values df the two networks

« Rewiring: Select a random agent and let it use the lo-converge toward the same broad degree-distribution—local

cal information to ask an acquaintance about whom tg"0mmunication gives rise to global organization.
establish a link to, to shorten its distance to a randomly
chosen other agent (the answer is the agent that the ac- The presented model describes a social game where the
guaintance points to). Subsequently a random agerdtim is to be central, and a winner is an agent with many
loses one of its links. connections that provide short and reliable communicdtion
other agents. The fact that we observe agents with a wide
The communication event is typically repeated of the order orange of degrees reflects the diversity of the possible out-
number of links in the system for each rewiring event. comes of the game, and raises the questions about whether
We quantify the self-organization between communicationthere are some particular strategies with which agentsman i
the network, and the perception of this network, in Elg. ®(se prove their standing in the network? In a more detailed in-
also Java applel [URL, d]). The perception network is de-vestigation, we found that individual increase of commanic
fined by nodes as agents, and links between all pairs of nod¢i®n gives both a local gain for the agents that adopt the com-
where at least one of the corresponding agents has a pointerunication strategy, and a global gain for the whole system
to the other agent. Hence the perception network reflects thiRasvall & Sneppen, 2006a].
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