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Abstract
We examine a strange chaotic attractor and its unstable periodic orbits
in case of one degree of freedom nonlinear oscillator with non symmetric
potential. We propose an efficient method of chaos control stabilizing these
orbits by a pulsive feedback technique. Discrete set of pulses enable us to
transfer the system from one periodic state to another.
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A chaotic motion appearing in specific physical systems may show various positive and
negative effects [Thomsen 2003] depending on applications. Opportunity of its control
triggered a new filed of nonlinear research [Fradkov & Evans 2005]. Starting with a strange
chaotic attractor to system control is a comfort situation because of infinite number of
unstable periodic orbits included in it. This novel idea of using unstable periodic orbits
to chaos control has been invented by Ott, Geborgi and Yorke [1990] (OGY method) and
applied to many physical systems [Fradkov & Evans 2005]. Namely, Ott et al. [1990]
have shown that one can convert a chaotic attractor to any of a large number of possible
attracting time-periodic motions by making only small time-dependent perturbations of
available system parameters. In other words one can stabilize any unstable periodic
orbit included in a strange chaotic attractor. The next important step was the self-
controlling feedback method introduced by Pyragas [1992], where the small perturbations
were continuous in time.
Impulsive methods for dynamical systems’ control and synchronization are some known

approaches in the field of chaos [Yang et al. 1997, Osipov et al. 1998a, Osipov et al.

1998b, Sun & Zhang 2004, Sun et al. 2004, Khadra et al. 2005]. It was used successfully
for controlling Rössler system [Yang et al. 1997] and the Duffing oscillator [Osipov et

al. 1998a] to periodic motions. More recent paper about impulsive control was more
successful in establishing more conservative and sufficient conditions for the stabilization
and synchronization of Lorenz systems via impulsive control. In their recent work, Sun &
Zhang [2004], presented some new theorems on the stability of impulsive control systems,
which was applied successfully to the Chua’s oscillator. Based on stability theory of
impulsive differential equation and new comparison theory, the authors of [Sun et al.

2004] studied the chaos impulsive synchronization of two coupled chaotic systems using the
unidirectional linear error feedback scheme. Moreover, in the most recent work [Khadra
et al. 2005], this approach was used with non-linear partial differential equations. The
authors determined a criterion for the solutions of these partial differential equations to be
equi-attractive in the large and estimated the basin of attraction in terms of the impulse
durations and the magnitude of the impulses. In our paper, we apply the same impulsive
method with a linear feedback strategy based on the knowledge of unstable periodic orbit
embedded within the chaotic attractor of the original system.
We start from a single degree of freedom system subjected to an external excitation

with a non-symmetric stiffness given by the following equation:

ẍ+ αẋ+ δx+ γx2 = µ cosωt (1)

where x is a displacement, αẋ is linear damping, µ cosωt is an external excitation, while
δx and γx2 are linear and quadratic force terms.
The above equation has been extensively studied by Thompson & Hunt [1989], who

found chaotic behavior there and examined transitions to chaos through a a global homo-
clinic bifurcation and a cascade of period doubling bifurcations just before escape from the
potential well. Such systems (Eq. 2) have been also a subject of studies for many other
researchers, inspired by possible applications in description of mostly mechanical systems
[Szabelski & Samodulski 1985, Szemplinska-Stupnicka & Rudowski 1993, Szemplinska-
Stupnicka 1995, Rega et al. 1995, Rand 2003, Litak et al. 2005, Litak et al. 2006] and the
catastrophe theory [Poston 1978]. They were also linked to possible meta-stable states of
atoms and they appeared in problems within the elastic theory [Thompson 1989,Thomp-
son & Hunt 1984].
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The above equation is equivalent to the following autonomous system of three first-order
differential equations:

ẋ = y

ẏ = −αy − δx− γx2 + µ cos(ωz) (2)

ż = 1,

where z = t, therefore, whenever one attempts to integrate the system (Eq. 2), one must
pay attention to the fact that the initial conditions must be such that z0 = t0. From the
recent paper by Litak et al. [2006] it is clear that the system given by Eq. 1 exhibits
a chaotic motion and a strange attractor for the parameters’ values α = 1.0, δ = 1.0,
ω = 0.85, γ = 1.089 and µ = 0.608. For practical reasons of system control in relatively
large values of variables we have rescaled the variables by acquiring the following variables’
changes:

x →
x

100
,

y →
y

100
. (3)

After the above transformation the system (Eq. 2) remains the same while the parameters’
values of γ and µ would become 0.01089 and 60.8, respectively. The strange attractor of
a chaotic motion of this system has been shown in Fig. 1. We can start examining the
system Eq. 2 looking for an unstable periodic orbit:

X∗(t) = [x∗(t), y∗(t), z∗(t)] (4)

embedded within its chaotic attractor of period 2π/ω. This orbit has been obtained
numerically by a method of recurrence and has been shown in Fig. 2. The basic idea of
recurrence is to wait two successive iterations of the designed Poincare map of sections
to fall in a sufficiently small neighborhood. In our case, for the sake of more accuracy,
we have used the same concept but with a little modification. Given the dimension of
the phase space and the range of the variables, we where able to determine a rectangle in
the phase space where points of the unstable periodic orbit are suspected to be within it.
Using Mathematica, we were able to develop a code that can detect a smaller rectangle
within the previous one in which points of the unstable periodic orbit are lying within
it. This was done by dividing the previous rectangle over a net of 10000 smaller and
identical rectangles then integrating the given flow starting with each mesh on the net and
finding the mesh at which the smallest recurrence occurs. Repeating the same procedure
successively finitely many times, we were able to determine a point (mesh) at which an
arbitrarily small recurrence occurs. Integrating and plotting the orbit initialized at this
mesh over the same period of the Poincare map, would give us the best approximation of
the required unstable periodic orbit of the given period.
Using a feedback technique, we have been able to stabilize the unstable period-1 orbit

of this system which was embedded within its chaotic attractor (Fig. 2). This has been
done by adding a small perturbation:

ǫ(X(t)−X∗(t)) (5)
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to the considered system (Eq. 2). The stabilized period-1 orbit of the given system is
shown in Fig. 3. Starting with the same initial conditions as in unperturbed system (Fig.
1) we have easily obtained periodic motion of the system. In this case control parameter
was assumed to be ǫ = −0.5. For smaller |ǫ| the same final aim have been obtained but
in relatively longer time. In fact the resulting behavior of the system does not change
qualitatively while changing a value of ǫ.
An alternative method is to apply the same feedback technique to the given system

but on a discrete scale as pulses (pulsive feedback technique). For instance, one does not
need to keep watching and observe the dynamics of the system all the time in order to
supply the system with necessary perturbations continuously, instead this task is done at
predetermined discrete and equal time intervals proportional to the period of the unstable
periodic orbit that we wish to stabilize. In the example given below, each pulse is set to
last for a time equal to the pre-assigned integration step and several pulses are provided to
the system per period. This would eliminate all waste of unnecessary energy required in
the original continuous feedback technique and make it an optimal technique as the cost
of control is minimized. For the integration, we used a Runge-Kutte method of second
order with a step size equal to 2π/(1000ω) i.e. one cycle of period τ = 2π/ω was divided
into 1000 equal time intervals for the integration purpose.
Applying the pulsive feedback technique to the examined system (Eqs 2-3) in case of

the time interval between two successive pulses was π/(3ω) produced interesting results.
Beside the fact that we have been able to stabilize the same unstable period-1 orbit

of this system, we have also been able to transfer the system from one periodic state to
another by varying the pulses strength ǫ. Figures 4a-c show stabilized period-1 (2π/ω),
period-2 and period-4 orbits of the system (Eq. 2) using the pulsive feedback technique
with ǫ = −0.05 , ǫ = −0.03 and ǫ = −0.009, respectively. In fact, we have found that
the system (Eq. 2) with pulsive feedback undergoes a period doubling bifurcation as the
pulses strength ǫ increases in the interval [−0.05, 0]. A bifurcation diagram of our system
with pulsive feedback control is shown in Fig. 4c with ǫ ∈ [−0.05, 0]. This is the principal
result of our present investigations. We would like to stress that it is very promising for
engineering practice and real life experiments as it enables switching between one state
and another of the same system by simple controlling the pulses’ strength provided for
the system.
Here using the same predetermined unstable periodic orbit of period embedded within

the chaotic attractor, we have not only been able to stabilize this orbit but also a variety
of other unstable periodic orbits, as shown in the bifurcation diagram (Fig4d). The period
and nature of the stabilized orbit depend entirely on the perturbation’s coefficient (which
is supposed to be small). Different stabilized orbits are shown in Figs 4a-c In order to
stabilize an unstable periodic orbit of a dynamical system, knowledge of the same orbit
is not necessary, instead, one may make use of any other unstable periodic orbit of lower
period available of the same system.
The above result may be also considered as an advantage of the pulsive feedback tech-

nique over the well known feedback technique [Pyragas 1992, Fradkov & Evans 2005]
which does not enable such switching from one state a dynamical system to another with-
out re-engineering the whole method in order to suit a particular state. In this paper
we have applied this technique to a system with single non-symmetric well [Thompson &
Hunt 1989] potential. However we claim that it should work successfully for any system
with a period doubling bifurcation cascade. Note also, our approach to system control
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differs from so called impulsive control methods [Yang et al. 1997, Osipov et al. 1998a,
Osipov et al. 1998b] where the main issue was suppressing chaotic motion. In their cases
the system is stabilized by adequately strong impulsive signal which drive it to periodic
motion of various properties. These periodic orbits, in contrast to the present consid-
eration, were not related to unstable periodic orbits of a strange attractor. In our case
the pulsive control method is based on unstable periodic orbit and it is making use of
a feedback control in discrete way and the stabilized orbits are strongly related to other
unstable orbits of a strange attractor with multiple period.
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Figure 1: The chaotic strange attractor of the system (Eq. 2) for the parameters values
α = 1.0, δ = 1.0, ω = 0.85, γ = 0.01089 and µ = 60.8.

Figure 2: An unstable period-1 orbit of the strange attractor Fig. 1.
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Figure 3: Stabilized period-1 orbit of system (Eqs. 2) using the feedback technique with
ǫ = −0.5.
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Figure 4: Stabilized period-1 (Fig 4a), period-2 (Fig 4b) and period-4 (Fig 4c) orbits
of system (Eq. 2) using pulsive feedback technique with ǫ = −0.05, -0.03 and -0.009,
respectively. A bifurcation diagram with pulsive feedback versus ǫ ∈ [−0.05, 1].
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(d)

Fig. 4 continuation.
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