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Abstract

In recent years, a growing number of cryptosystems based on chaos have

been proposed. But most of them encountered many problems such as small

key space and weak security. In the present paper, a new kind of chaotic cryp-

tosystem based on Composition of Trigonometric Chaotic Maps is proposed.

These maps which are defined as ratios of polynomials of degree N, have

interesting properties such as invariant measure, ergodicity, variable chaotic

region with respect to the control parameters and ability to construct com-

position form of maps. We have used a composition of chaotic map to shuffle

the position of image pixels. Another composition of chaotic map is used
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in diffusion process. According to the performed analysis, the introduced

algorithm can satisfy the required performances such as high level security,

large key space and the acceptable encryption speed.

1 Introduction

Chaos theory is established since 1970s from many different research areas such

as physics, mathematics, biology, engineering and chemistry, etc. [Hao, 1993].

Chaotic systems have a number of interesting properties such as ergodicity, the

extreme sensitive dependence on initial conditions, system parameters, mixing, etc.

Most properties are related to Shannon requirements of confusion and diffusion for

constructing the cryptosystems[Shannon, 1949]. Due to tight relationship between

chaos and cryptography [Brown and Chua, 1996; kocarev et al., 1998; Alvarez et

al., 1998; Fridrich, 1998], there has been a great interest in developing secure com-

munication schemes utilizing chaos which protect confidential information against

eavesdropping and illegal access. There exist two main approaches of designing

chaos-based cryptosystems: analog mode and digital mode. From 1989, along with

the use of analog chaotic systems in the design of secure communication systems

[Alvarez, 1999; Zhou and Ling, 1997; Lai et al., 1999; Memon, 2003; Parlitz et al.,

1992; Chen et al., 2003], applications of computerized (also called digital) chaotic

systems in cryptography have attracted more and more attention [Baptista, 1998;

Hong and Xieting, 1997; Jakimoski and Kocarev, 2001; Masuda and Aihara, 2002;



Cryptography based on Composed Maps 3

Matthews, 1989; Papadimitriou, 2001; Guan et al., 2005; Xiao et al., 2005; Tang et

al., 2005; Huang and Guan, 2005]. This paper chiefly focuses on the digital chaotic

ciphers. In the digital world nowadays, the security of digital images becomes more

important since the communications of digital products over network occur more

and more frequently. Thus, to protect the content of digital images, some specific

encryption systems are needed. Due to some intrinsic features of images, such as

bulk data capacity and high correlation among pixels, traditional encryption algo-

rithms such as DES, IDEA and RSA are not suitable for practical image encryption,

especially under the scenario of on-line communications. The main obstacle in de-

signing image encryption algorithms is that it is rather difficult to swiftly permute

and diffuse data by traditional means of cryptology. In this respect, chaos-based

algorithms have shown their superior performance. By considering the advantages

of high-level efficiency and simplicity of one-dimensional chaotic systems [Elnashaie

and Abasha, 1995]. Different discrete-time chaotic systems such as Logistic map

used in image encryption algorithms. Where there has been obvious drawbacks

such as small key space and weak security in introduced one-dimensional chaotic

cryptosystems [Kocarev, 2001; Ponomarenko and Prokhorov, 2002].

To eliminate these drawbacks. This paper aims to introduce a new chaotic al-

gorithm which has the advantages of high-level security, large key space and the

acceptable encryption speed. Since digital images are usually represented as two-

dimensional arrays, we present algorithm based on Trigonometric Chaotic Maps and
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their Composition [Jafarizadeh et al., 2001]. A diffusion process is performed to con-

fuse the relationship between cipher-image and plain-image. By taking advantage

of the exceptionally good properties of Composition of Trigonometric Chaotic Maps

(CTCMs) such as mixing, sensitivity to initial conditions and system parameters

it was shown the proposed scheme incorporates CTCMs and alternatively uses

permutation and diffusion to transform the image totally unrecognizable.

The remaining of the paper is organized as follows. A brief description of CTCMs

is presented in section 2. Section 3 presents the encryption algorithm based on

CTCMs. Some experimental results for verification are devoted in section 4. In

Section 5, security of the chaotic encryption algorithm is perposed. Finally, Section

6 concludes the paper.

2 Composition of Trigonometric Chaotic Maps

We first review the one parameter families of trigonometric chaotic maps which

are used to construct the CTCMs. One-parameter families of chaotic maps of the

interval [0, 1] with an invariant measure can be defined as the ratio of polynomials

of degree N [Jafarizadeh et al., 2001]:

Φ
(1,2)
N (x, α) =

α2F

1 + (α2 − 1)F
, (1)

Where F substitute with chebyshev polynomial of type one TN (x) for Φ
(1)
N (x, α) and

chebyshev polynomial of type two UN(x) for Φ
(2)
N (x, α). We used their conjugate
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or isomorphic maps. Conjugacy means that the invertible map h(x) = 1−x
x
, maps

I = [0, 1] into [0,∞) and transform maps ΦN (x, α) into Φ̃N(x, α) defined as:

Φ̃
(1)
N (x, α) =

1

α2
tan2(N arctan

√
x), (2)

Φ̃
(2)
N (x, α) =

1

α2
cot2(N arctan

1√
x
). (3)

The map Φ
(2)
2 (x, α) is reduced to logistic one with α = 1. One can show that these

maps have two interesting properties. The first one is that Φ
(1)
2 (α, x) and Φ

(1)
4 (x, α)

maps have only one fixed point attractor x = 1 provided that their parameter

depend on interval (2,∞) and (4,∞). The second one is that at α ≥ 2 and α ≥ 4

bifurcate to chaotic regime without having any period doubling or period-n-tupling

scenario and remain chaotic for all α ∈ (0, 2) and α ∈ (0, 4) respectively. The map

Φ
(1,2)
3 (x, α) also has only one fixed point attractor x = 0 for α ∈ (1

3
, 3). It bifurcates

to chaotic regime at α ≥ 1
3
, and remains chaotic for α ∈ (0, 1

3
). Finally it bifurcates

at α = 3. When control parameter belong to α ∈ (1
3
,∞), then x = 1 would be its

corresponding fix point(see Fig. 1). From now on, depending on the situation, we

will consider these maps Eqs. (2)-(3).

We have already derived analytically invariant measure for One-parameter families

of chaotic maps Eq. (1) by using arbitrary values of the control parameter α and

for each integer values of N .

µ
Φ

(1,2)
N

(x,α)
(x, β) =

1

π

√
β

√

x(1− x)(β + (1− β)x)
, β > 0 (4)
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With β > 0 is the invariant measure of the maps Φ̃
(i)
N (x, α) provided that, we choose

the parameter α in the following forms:

α =

∑[N−1
2

]

k=0 CN
2k+1β

−k

∑[N
2
]

k=0C
N
2kβ

−k

(5)

in maps Φ
(i)
N (x, α), N represents the odd values and if N take even values, we would

have the following equation:

α =
β
∑[N

2
]

k=0C
N
2kβ

−k

∑[N−1
2

]

k=0 CN
2k+1β

−k

(6)

The symbol [ ] shows the greatest integer part [Jafarizadeh et al., 2001 ].

Using the above hierarchy of family of one-parameter chaotic maps we can generate

a new hierarchy of families of many-parameter chaotic maps with an invariant

measure simply from the composition of these maps. By the composition of maps

Eqs. (2)-(3), we can generate one-dimensional many-parameter chaotic maps, which

can be written in the following way:

Φ̃α1,.,αn

N1,.,Nn
(x) =

1

α2
1

tan2




N1 arctan

√
√
√
√

1

α2
2

tan2(N2 arctan

√

..
1

α2
n

tan2(Nn arctan
√
x)..)






(7)

and

Φ̃α1,.,αn

N1,.,Nn
(x) =

1

α2
1

cot2









N1 arctan
1

√
1
α2
2
cot2(N2 arctan

1√

.. 1

α2
n

cot2(Nn arctan 1√
x
..)
)









(8)

One can show that the chaotic regions are:
∏n

k=1
1
Nk

<
∏n

k=1 αk <
∏n

k=1Nk for

odd integer values of N1, N2, . . . , Nn. If one of the integers happens to become even,
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then the chaotic region in the parameter space can be defined by αk > 0, for k =

1, 2, . . . , n and
∏n

k=1 αk <
∏n

k=1Nk. Out of these regions, they have only period one

stable fixed points. The introduced maps Eqs. (7)-(8) follows the same measure

Eq. (4). The relation between the control parameters of composed maps and β is

presented in our previous paper [Jafarizadeh and Behnia, 2002].

2.1 Ergodicity

It has been noticed that there exists an interesting relationship between chaos and

cryptography: many properties of chaotic systems have their corresponding coun-

terparts in traditional cryptosystems, such as: Ergodicity and Confusion, Sensitiv-

ity to initial conditions/Control parameter and Diffusion. In cryptographic terms,

ergodicity claims that it is very hard to predict the actual position of a point from

its initial position. Moreover, after experiencing enough iterations, every position

within the whole block is equally likely to be the actual position for almost every

starting point (confusion).

A transformation T is ergodic, if it has the probability that for almost every ω, the

orbit {ω, Tω, T 2ω, ...} of ω is a sort of replica of Ω itself. Formally, we shall say

that T is ergodic if each invariant set A, i.e.; a set such that T−1(A)=A, is trivial in

the sense that it has measure either zero or one. T−1(A)=A ⇒µ(A)=0 or µ(A)=1.

In a non-ergodic system for counter image set of A⊂ [0,1] we have:

T−1(A) = {x ∈ [0, 1]|y = T (x), y ∈ A}



Cryptography based on Composed Maps 8

and the map is non-ergodic if 0 < µ(A) < 1, i.e., the invariant measure which is not

equal to zero or one, appears to be characteristic of non-ergodic behavior [Medio,

1999]. Therefore, the study, based on invariant measure analysis, can be useful for

confirming the ergodicity behavior of a map.

2.2 Lyapunov characteristic exponent

The Lyapunov exponent λ provides the simplest information about chaoticty. It

can be computed by considering the separation of two nearby trajectories evolving

in the same realization of the random process as follow [Dorfman, 1999]:

λ(x0) = limn→∞
1

n

n−1∑

k=0

ln | dΦ̃(x, α)
dx

|,

where xk =
︷ ︸︸ ︷

Φ̃N ◦ Φ̃N ◦ .... ◦ Φ̃k
N (x0). It is obvious that its negative values, show that

the system is under influence of fix point (attractor) and its positive values show

that the system follows repeller [Dorfman, 1999]. Also, the lyapunov number is

independet of initial point, provided that the motion inside the invariant manifold

is ergodic. Thus λ(x0) characterizes the invariant manifold of chaotic maps as a

whole. In chaotic region, chaotic maps are ergodic as Birkhof ergodic theorem pre-

dicts [keller, 1998]. In non-chaotic region of the parameter, lyapunov characteristic

exponent is negative definite, since in this region, we have only single period fixed

points without bifurcation. Now for composition of chaotic maps Eqs. (7)-(8):

λα1,···,αn

N1,···,Nn
(x0) = lim

n→∞

1

n

n−1∑

k=0

ln | dΦ̃
α1,···,αn

N1,···,Nn
(xk, α)

dx
|, (9)
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where xk =
︷ ︸︸ ︷

Φ̃α1,···,αn

N1,···,Nn
◦ .... ◦ Φ̃α1,···,αn

N1,···,Nn
. Thus λα1,···,αn

N1,···,Nn
(x0) characterizes the invariant

manifold of Φ̃α1,,···,αn

N1,···,Nn
as a whole. Therefore, these maps are ergodic in certain region

of their parameters space as explained above. In the complementary region of the

parameters space they have only a single period one attractive fixed point. Also in

contrary to the most of usual one-dimensional one-parameter or many-parameters

family of maps they have only a bifurcation from a period one attractive fixed point

to chaotic state or vice-versa.

3 Encryption Algorithm

A possible way to describe the key space might be in terms of positive Lya-

punov exponents. By considering the Lyaponuv exponent of one-dimensional many-

parameter chaotic maps Eq. (9), we choose a chaotic region of CTCMs (see Figs.

2 (a)-(b)). In order to show the capability of introduced model, we have used

two simple models of one dimensional two-parameter chaotic maps for generating

cryptosystem. By choosing (N1=3, N2=5) in Eq. (7):

Φα1,α2
N1,N2

=
1

α2
2
tan2



N2 arctan





√

tan2 (N1 arctan (
√
x))

α1
2







 CTCM I (10)

and by considering (N1=4, N2=8) in Eq. (8), we have:

Φ
α
′
1,α

′
2

N1,N2
=

1

α
′

2
2 cot

2






N2 arctan







α
′

1
√

cot2
(

N1 arctan
(

1√
x

))













CTCM II (11)

In order to encrypt the image, we have to go through both permutation and XOR-

ing processes. To permute the image, the points are rearranged in the following
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way:

Permutation :







m : x0, α1x, α2x,

n : y0, α1y, α2y,

,

XOR-ing is done in two stages. The first stage includes:

XOR-ing Stage I

{

m× n : x0, α1, α2,

and the next step:

XOR-ing Stage II :

{

m× n : x0, α
′

1, α
′

2

By choosing image Mm×n withm×n pixels, the encryption process can be explained

with the block diagram (Fig. 3). The image encryption can be done through the

following steps:

• Step 1 : According to the following relations, with the help of CTCM I, image

Mm×n can be permuted by swapping the pixels:

xp = ⌊φN1 × 1014⌋ mod 256 (12)

yp = ⌊φN2 × 1014⌋ mod 256 (13)

• Step 2 : To diffuse the image with using XOR possess, we use CTCM II in

the permuted image. The generated result is stored in Cm×n:

Xk = ⌊x× 1014⌋ mod 256 (14)

Cij = Xk XOR {(Mij +Xk) mode 256} XOR Cp (15)

where Cp is the modified previous pixel.
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• Step 3 : This step requires another XOR possess in the results of step 2 by

using CTCM I , Eq. (15) and the output encrypted image is known as a

ciphertext.

Eij = [ (xij × 1014) mod 256] XOR Cij (16)

For decryption the encrypted image one needs to receive encryption keys and follow

the introduced steps in reverse order. In decryption process, we use the inverse of

Eq. (15) which is introduced as follows:

Mij = {Xk XOR Cp XOR Cij + 256−Xk} mod 256 (17)

4 Experimental Results

First take the encryption key, then we implement the introduced model of encryp-

tion on sample image (’Boat’ of size 256×256) as our plain-image Fig. 4(a). The

encrypted image is presented in Fig. 4(b). Where we have used Visual C++ run-

ning program in a personal computer with 2.4 GHz Pentium IV, 256 Mb memory

and 80 Gb hard-disk capacity. The average time used for encryption/decryption

on 256 grey-scale images of size 256×256 is shorter than 0.4s. In order to encrypt

the image, permutation and XOR-ing process are done in the following way:

Permutation:







x :

{

α1 = 2.10155, α2 = 3.569221, x0 = 25.687,

y :

{

α1 = 1.8874, α2 = 4.23562, y0 = 574.461,
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XOR-ing Stage I:

{

m× n : α1 = 2.8912, α2 = 3.89954, x0 = 814.217217,

XOR-ing Stage II:

{

m× n : α
′

1 = 61.522, α
′

2 = 257.26223, x0 = 79.82,

As shown by Figs. 4(c)-(d), the decryption process with wrong keys

(x0=2.10155400000001 in permutation and α
′

1=61.52200000000005 in XOR-ing)

generates an image with a random behavior. The sensitivity to initial conditions,

which is the main characterization of chaos, guarantees the security of our scheme.

The preformed experiments results show that the new algorithm validly solves prob-

lem of encryption failure caused by the small key space and weak security.

Statistical analysis, performed on the proposed image encryption algorithm, demon-

strates superior confusion and diffusion properties of the algorithm. So, strongly

resists statistical attacks. One typical example is shown in Figs. 5(a)-(b). Fig.

5(b), shows the histogram of the ciphered image where it is fairly uniform and

significantly different with respect to the histogram of the original image.

5 Security Analysis

A good encryption scheme should resist all kinds of known attacks, such as

known-plain-text attack, cipher-text only attack, statistical attack, differential at-

tack, and various brute-force attacks. Some security analysis have been performed

on the proposed image encryption scheme, including the most important ones like
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key space analysis, information entropy and statistical analysis which have demon-

strated the satisfactory security of the new scheme.

5.1 Key space analysis

Key space size is the total number of different keys that can be used in the encryp-

tion system. As mentioned above, the key of the cryptosystem in the introduced

algoritem is composed of three parts: permutation parameters, XOR-ing stage I

and XOR-ing stage II parameters. Key space size in our introduced example Eqs.

(10)-(11) consists of 8 control parameter and 4 initial conditions. As it was shows in

Figs. 4(c)-(d) cryptosystem is completely sensitive to secret keys. If the precision

will be 10−14, the key space size for just initial conditions is 1014×4 = 1056 ≈ 2186. It

is nessesery to remmember that the general model Eqs. (7)-(8) allows us to increase

the key space size with respect to level of security. Therefore, the key space is very

large and can resist all kinds of brute-force attacks.

5.2 Information entropy

Information theory is a mathematical theory of data communication and storage

founded in 1949 by Claude E. Shannon. To calculate the entropy H(s) of a source

s, we have:

H(s) =
2N−1∑

i=0

P (si) log2
1

P (si)
, (18)
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where P (si) represents the probability of symbol si. Actually, given that a real

information source seldom transmits random messages, in general, the entropy value

of the source is smaller than the ideal one. However, when these messages are

encrypted, their entropy should ideally be 8. If the output of such a cipher emits

symbols with an entropy of less than 8, then there exists a predictability which

threatens its security. We have calculated the infomation entropy for encrypted

image Fig. 4(b):

H(s) =
255∑

i=0

P (si) log2
1

P (si)
= 7.997

The obtained value is very close to the theoretical value 8. Apparently, comparing

it with the other existing algorithms, such as [Xiang, 2006], the proposed algorithm

is much more closer to the ideal situation. This means that information leakage in

the encryption process is negligible, and so the encryption system is secure upon

the entropy attack.

5.3 Correlation of two adjacent pixels

To test the correlation between two adjacent pixels in plain-image and ciphered

image, the following procedure was carried out. We randomly selected 1000 pairs

of two adjacent (in vertical, horizontal, and diagonal direction) pixels from plain-

image and ciphered image. Then we calculated the correlation coefficients [Chen,

2004], respectively (see Table 1 and Figs. 6(a)-(b) by using the following two
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formulas:

cov(x, y) =
1

N

N∑

i=1

(xi −E(x))(yi − E(y)), rxy =
cov(x, y)

√

D(x)
√

D(y)
, (19)

where

E(x) =
1

N

N∑

i=1

xi, D(x) =
1

N

N∑

i=1

(xi − E(x))2.

E(x) is the estimation of mathematical expectations of x, D(x) is the estimation of

variance of x and cov(x, y) is the estimation of covariance between x and y. where

x and y are grey-scale values of two adjacent pixels in the image.

5.4 Differential attack

To test the influence of one-pixel change on the whole encrypted image by the pro-

posed algorithm, two common measures were used: NPCR and UACI [Chen and

Ueta, 1999]. The number of pixels change rate (NPCR) have been measured to see

the influence of changing a single pixel in the original image on the encrypted im-

age. The unified average changing intensity (UACI) measures the average intensity

of differences between the plain-image and ciphered image. We take two encrypted

images, C1 and C2, whose corresponding original images have only one-pixel dif-

ference. We label the grey scale values of the pixels at grid (i,j) of C1 and C2 by

C1(i,j) and C2(i,j), and C1 and C2 have the same size. Then, D(i,j) is determined by

C1(i,j) and C2(i,j), that is, if C1(i,j)= C2(i,j), then , D(i,j)=1 ; otherwise, D(i,j)=O.
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NPCR and UCAl are defined by the following formulas:

NPCR =

∑

i,j D(i, j)

W ×H
× 100% (20)

UACI =
1

W ×H




∑

i,j

|C1(i, j)− C2(i, j)|
255



× 100% (21)

Where, W and H are the width and length of the image. We obtained NPCR=0.41751%

and UCAI=0.3314%. With regard to obtained results, it seems that the proposed

algorithm has a good ability to resist differential attack.

6 Summery and Conclusion

In this paper, we propose a new scheme based on the hierarchy of one dimensional

chaotic maps of interval[0,∞). The chaotic properties such as mixing and sensi-

tive dependence on initial conditions and control parameters are suitably utilized

while the limitation and weaknesses of the chaotic encryption system are effectively

overcome. We have used composition form of chaotic maps in order to increase

both the number of keys (control parameters) and complexities involved in the al-

gorithm. By using the composition of chaotic maps, we can increases the confusion

in the encryption process. It should be mentioned that increasing the confusion

in encryption results in increasing security in cryptosystem. Furthermore, the in-

troduced cryptosystem is very robust to attacks whether it is based on statistical

or reasoning analysis. As it was shown by differential attack on encrypted image,

the system is also very sensitive with respect to the small changes in the plaintext.
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According to the performed analysis, the algorithm can satisfy most of the perfor-

mances required such as high level of security, large key space and the acceptable

encryption speed. Our presented cryptosystem is of practicality and reliable value

having to be adopted for Internet image encryption, transmission applications, se-

cure commination and other information security fields.
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Figures Captions:

Fig1: (a) Bifurcation diagram of Φ
(2)
2 (x, α), for α ∈ (0.5,∞), it is ergodic and

for α ∈ (0, .5), it has stable fixed point at x = 0

Fig1: (b) Bifurcation diagram of Φ
(1)
3 (x, α), where for α ∈ (1/3, 3), it is ergodic

and for α ∈ (0, 1/3), it has stable fixed point at x = 0, while for α ∈ (3,∞), it has

stable fixed point x = 1.

Fig2: (a) Solid surface shows the variation of Lyapunov characteristic exponent

Φα1,α2
3,5 (x), in terms of the parameters α1 and α2.

Fig2: (b) Solid surface shows the variation of Lyapunov characteristic exponent

Φα1,α2
4,8 (x), in terms of the parameters α

′

1 and α
′

2.

Fig3: Block Diagram

Fig4: (a) Plain-image, (b) Ciphered image,(c) and (d) Encryption with wrong

keys.

Fig5: (a) Histogram of plain-image,(b) Histogram of ciphered-image.

Fig6: Correlations of two horizontally adjacent pixels in the plain-image and in

the cipher-image: (a) Correlation analysis of plain- image,(b) Correlation analysis

of cipher-image.
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Table 1: Correlation coefficients of two adjacent pixels in two images

Plain image Ciphered image

Horizontal 0.9525 0.0023

vertical 0.9443 0.0026

Diagonal 0.9066 0.0013
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