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Synchronization in networks of slightly nonidentical elements
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We study synchronization processes in networks of slightly non identical chaotic systems, for which
a complete invariant synchronization manifold does not rigorously exist. We show and quantify how
a slightly dispersed distribution in parameters can be properly modelled by a noise term affecting the
stability of the synchronous invariant solution emerging for identical systems when the parameter
is set at the mean value of the original distribution.
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Complex networks are the prominent candidates to de-
scribe sophisticated collaborative dynamics in many ar-
eas [1]. Recently, the dynamics of complex networks has
been extensively investigated with regard to collective
(synchronized) behaviors [2], with special emphasis on
the interplay between complexity in the overall topology
and local dynamical properties of the coupled units. The
usual case considered so far is that of networks of iden-
tical dynamical systems coupled by means of a complex
wiring of connections. In this framework, several studies
have shown how to enhance synchronization properties,
by properly weighting the strengths of the connection
wiring [3–5].

In this paper, we extend the study of synchronization
phenomena in complex networks to the case of slightly
non identical coupled dynamical systems, i.e. networks
whose nodes are represented by dynamical systems each
one of them evolving with the same functional form, but
with a different, node dependent, value of the control pa-
rameters. This is motivated by the fact that such a rep-
resentation seems a more adequate description of many
relevant phenomena occurring in natural systems, where
the hypothesis that the evolution in different nodes be
identical is very often a too restrictive assumption.

Let us then consider a network of N coupled dynami-
cal systems with slightly mismatched control parameters
described by the equations

ẋi = F(xi,gi)− σ

N
∑

j=1

GijH[xj ], i = 1, . . . , N, (1)

where xi are the state vectors in each network node, F
defines the vector field of the considered systems, gi are
the control parameter vectors, H[·] is an output function,
and σ is the coupling strength. G is the Laplacian matrix
of the network. As so, it is a symmetric zero row sum ma-
trix, it has a real spectrum of eigenvalues λ1 ≤ · · · ≤ λN ,
Gij (i 6= j) is equal to 1 whenever node i is connected
with node j and 0 otherwise, and Gii = −

∑

j 6=i Gij .

When the considered network consists of identical ele-
ments (i.e., gi = g, ∀i) the stability of the synchronous
state [xi(t) = xs(t), ∀i] is known to be determined by
the diagonalized linear stability equation [6], yielding N
blocks of the form

ζ̇i = [JF(xs,g)− σλiJH(xs)] ζi, (2)

where J is the Jacobian operator. The blocks (2) differ
from each other only by the eigenvalues λ1 ≤ · · · ≤ λN

of the coupling matrix G. Replacing σλi by ν in equa-
tion (2), the behavior of the largest (conditional) Lya-
punov exponent Λ vs ν [also called master stability func-
tion [6]] completely accounts for linear stability of the
synchronized manifold. Indeed, the synchronized state
associated with λ1 = 0 is stable when all the remain-
ing blocks related with the other eigenvalues λi (i =
2, . . . , N) of coupling matrix G are characterized by the
negative Lyapunov exponents. So, to analyze the sta-
bility of the synchronized state xs(t) in the network (1)
only one parametric variational equation

ζ̇ = [JF(xs,g)− νJH(xs)] ζ (3)

should be considered to obtain the dependence of the
master stability function Λ on the parameter ν. Fur-
thermore, the vector state xs(t) may be obtained as a
solution of the uncoupled equation

ẋs(t) = F(xs(t),g). (4)

It is worth noticing that the master stability function
Λ(ν) may be negative for a finite interval of ν-parameter
values Ist = (ν1; ν2) [6] or for an infinite one (ν2 = ∞),
depending on the specific choice of the functions F and
H. The stability condition is satisfied if the whole set
of eigenvalues λi (i = 2, . . . , N) multiplied by the same
σ falls into the stability interval Ist, i.e., when condi-
tions σλ2 > ν1 and σλN < ν2 take place simultaneously.
The vector functions F(·) and H[·] are determining the
boundaries ν1 and ν2 of the stability interval Ist, while
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FIG. 1: (Color online) The fragments of master stability func-
tion corresponding to those ν ranges for which Λ(ν) crosses
the horizontal axis. In both plots a) and b), the dashed line
refers to ΛD(ν) calculated for the network of Rössler oscilla-
tors with slightly different parameters ωi at D = 3.5 (see text
for details), whereas the solid line depicts Λ(ν) calculated for
the network of identical Rössler oscillators with ωi ≡ ω̄ = 1.

the eigenvalue distribution is solely ruled by the topology
of the imposed wiring of connections.

Natural systems, however, are modelled by networks
that generally consist of elements for which parameters
might differ. Therefore, equation (3) cannot be seen as a
suitable representation of this case. As soon as the vector
gi depends on i, an invariant synchronization manifold
xi(t) = xs(t), ∀i no longer exists, and therefore the argu-
ments of the master stability function do not rigorously
apply. However, it has been numerically verified in Ref.
[3] that, when the difference in the parameters is limited
to a slight mismatch, the synchronization behavior keeps
on holding in the synchronization region predicted by the
master stability function of the system corresponding to
the parameter vector g = 〈gi〉, where 〈.〉 stays for the
ensemble average on the network nodes.

In the following, we will give ground to such a numeri-
cal evidence, and show that, unless a rigorous treatment
of the complete synchronization state is prevented, an
approximate treatment of these synchronization phenom-
ena is possible under the assumption of a smallness in the
parameter mismatch. Without lack of generality, we will
develop our points with respect to a subclass of chaotic
systems, namely the class of functions F describing self
sustained chaotic oscillators.

The core idea that justifies our approximation comes
from the well known property [7] of a pair of coupled
identical chaotic oscillators, where there are two impor-
tant values σ1 < σ2 of the coupling strength σ determin-
ing the transition to complete synchronization. Precisely,
σ1 determines the blowout bifurcation [8–10], when the
largest tangential Lyapunov exponent crosses zero. The
second one, σ2 corresponds to the loss of the stability
in the tangential direction of the unstable periodic or-
bits with the lowest period embedded into the synchro-
nized chaotic manifold. When the coupling parameter
value is in the interval σ1 < σ < σ2 the bubbling phe-
nomenon [11, 12] may be observed. If one considers two
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FIG. 2: The dependence of the length L
D

st of the stability
interval IDst on the noise intensity D for the network of Rössler
oscillators with slightly detuned parameter ωi. The value L

D

st

is normalized on the length Lst of the stability interval Ist for
the network consisting of the identical Rössler oscillators

coupled identical oscillators the synchronous regime is
detected (after expiration of the transient) for coupling
strength values σ > σ1. Alternatively, if the control pa-
rameters of the coupled oscillators differ slightly from
each other, the synchronous behavior may be detected
for the coupling strength values exceeding the threshold
σ2. The same effect takes place if two identical oscilla-
tors in the presence of noise are considered [7]. In both
cases the onset of synchronization is shifted towards the
larger values of coupling strength σ and determined by
the σ2-value.

The idea here is that the property for synchroniza-
tion of the network consisting of elements with slightly
mismatched control parameters gi may be estimated by
means of the consideration of the network of identical el-
ements with the control parameter g = 〈gi〉 in the pres-
ence of noise. In practice, this assumption means that
one can still evaluate the conditional Lyapunov expo-
nents by means of equation (3) at g = 〈gi〉, but the evo-
lution of the state xs(t) around which the conditional
exponents are evaluated has to be taken as a solution
of a stochastic differential equation, i.e. the evolution
equation (4) has to be replaced by

ẋs(t) = F(xs(t)) +Dξ(t), (5)

where Dξ(t) is a noise term with zero mean value.

The new stability interval IDst = (νD1 , νD2 ) for the se-
lected intensity D of noise may be found in the same way
as it has been described above by means of calculating
the master stability function ΛD(ν). We will show that,
under such an assumption, the increase of the noise in-
tensity D leads the boundaries νD1 and νD2 of the stability
interval IDst to converge to asymptotic values ν∗1 and ν∗2 ,
respectively. These points ν∗1,2 are analogous to the cou-
pling strength value σ2 in the case of two coupled chaotic
oscillators and determine the stability interval I∗st for the
considered network of slightly non identical elements.
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To illustrate the proposed approach let us consider
a network of coupled Rössler systems. The dynam-
ics of such network is described by equation (1) with
xi = (xi, yi, zi), gi = (ωi), F(xi,gi) = F(xi, ωi) =
[−ωiyi − zi, ωixi + 0.165yi, 0.2 + zi(xi − 10)], H[x] = x:

ẋi = −ωiyi − zi − σ
∑N

j=1
Gijxj ,

ẏi = ωixi + 0.165yi,
żi = 0.2 + zi(xi − 10).

(6)

The mismatch in the parameters here corresponds to
a detuning in the natural frequencies ωi of the oscilla-
tors, that are supposed to be distributed randomly with
a mean value ω̄ = 〈ωi〉 = 1 and a small dispersion
∆ω ∼= 0.1.
For the case of identical Rössler oscillators (i.e. as-

suming all oscillators to have the same natural frequency
ω̄ = 1), it exists a finite range of values for the parameter
ν (that we will call the stability interval Ist) for which
the master stability function is negative [6].
To take into account the small difference in the fre-

quencies of the coupled oscillators, equations (3) and (5)
are instead used to calculate the stability interval IDst as
discussed above. To calculate the master stability func-
tion ΛD(ν) characterizing the property for synchroniza-
tion of the network with slightly detuned elements, we
made use of a random process ξ(t) distributed uniformly
over the interval (−1.0; 1.0). To integrate equation (5)
the one-step method has been applied [13] with the time
step ∆t = 10−6.
The fragments of the dependence ΛD(ν) around the

boundary points ν1,2 are shown in Fig. 1. One can see
that the influence of noise in (5) results in the shift of the
boundary points νD1,2 and in the consequent reduction of
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FIG. 3: (Color online) 〈E〉 (see text for definition) vs σ for
the network of Rössler oscillators with identical parameters
ωi ≡ ω = 1 (black solid line) and for the network of Rössler
oscillators with slightly detuned parameters ∆ωi = 0.07 (red
dashed line with black circles). The arrows labelled with “1”
delimit the interval of coupling parameter σ for which the
error goes to zero in the case of identical oscillators, while the
arrows labelled with “2” delimit the interval of σ for which the
error goes to zero when the oscillators have slightly detuned
parameters.
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FIG. 4: The length L
∆

st of the stability interval I∆st vs. the
maximum deviation of the control parameter value ∆ω for
the network of Rössler oscillators with slightly detuned pa-
rameters. The value L

∆
st is normalized to that of the length

(Lst) of the stability interval Ist for the network consisting of
the identical Rössler oscillators.

the stability interval IDst . Therefore, the range of the cou-
pling strength value σ corresponding to the synchronous
dynamics of the network of elements with slightly differ-
ent values of parameters is less in comparison with the
analogous network consisting of the identical elements.
The dependence of the normalized length LD

st/Lst

(where LD
st = νD2 − νD1 and Lst = ν2 − ν1, respectively)

of the stability interval IDst on the intensity of noise D is
shown in Fig. 2. One can see that, under the increase of
the noise intensity D, the length of the stability interval
LD
st converges to the value LD∗

st which does not depend
practically on D-value. At the same time, the bound-
aries νD1 and νD2 of the stability interval IDst converge to
the points ν∗1 and ν∗2 , respectively. Therefore, the ob-
tained interval I∗st is the region of parameter ν-values
corresponding the stable synchronized behavior of the
considered network consisting of elements with slightly
different parameter values. It is important to note, that
the stability interval I∗st is found when the noise intensity
D is increased step-by-step. At the same time, if the D-
value used in (5) is too large (e.g., the noise intensity is
comparable to the amplitude of oscillations), the dynam-
ics of oscillator may be destroyed completely by noise,
and, as a result, the boundary points of the stability re-
gion I∗st will not be detected correctly. In other words,
there is a range of the reasonable values of the noise in-
tensity D corresponding to the behavior of the network
with slightly detuned elements.
In order to show that the approximate solution of the

master stability formalism is valid already for networks
of relatively small size, a direct numerical simulation of
Eq. (6) has been carried out for various different val-
ues of the control parameters. This calculation allows
to find the boundary of the stability of the synchronous
regime directly and to compare them with the analogous
ones obtained before (based on Equations (3), (5)). We
consider here a network of N = 5 non identical Rössler
systems with ∆ωi = 0.07. The coupling matrix G is
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FIG. 5: The noise intensity D vs. the control parameter
deviation ∆ω.

selected as












−2 0 0 1 1
0 −3 1 1 1
0 1 −3 1 1
1 0 0 −1 0
1 1 1 0 −3













, (7)

having as eigenvalues λ1 = 0.0; λ2 ≈ −1.6; λ3 ≈ −2.0;
λ4 ≈ −4.0; λ5 ≈ −4.4.
In the simulations, the appearance of a synchronous

state can be monitored by looking at the vanishing of the
time average (over a window T) synchronization error

〈E〉 =
1

T (N − 1)

∑

j>1

∫ t+T

t

‖xj − x1‖dt
′. (8)

In the present case, we adopt as vector norm ‖x‖ = |x|+
|y|+ |z|. Fig. 3 reports the synchronization error versus σ
for a given network topology. The Figure comparatively
reports the case of identical Rössler oscillators all with
frequency ω = 1, and the case of slightly non identical
oscillators with frequencies distributed around the same
mean ω̄ = 1 and with ∆ω = 0.07. One can see that
the interval of σ for which the error goes to zero reduces
in this case, in accordance with the arguments extracted
from the Master Stability Function description.
A relevant issue concerns the possibility of establishing

a quantitative correspondence between the noise inten-
sity D in equation (5) and the dispersion of the control
parameter values in (6). To clarify this point, we consider
the ratio LD

st/Lst between the length of the stability in-
terval for non identical elements in the presence of noise
and the same length for the case of identical systems.
For the network of elements with the slightly noniden-
tical control parameters (6), the stability interval I∆st
may be defined as the coupling strength range where the
synchronization error (8) vanishes.
The dependence of the normalized length L∆

st/Lst of
the stability interval I∆st with the value of the maximal
deviation ∆ω is shown in Fig. 4. By comparison with
Fig. 2, it is apparent how the curve in Fig. 4 is in

excellent agreement with its analogue depicting the de-
pendence of the normalized length LD

st/Lst on the noise
intensity D. Notice that, as the the nonidentity of the
network elements (∆ω) increases, the length L∆

st strives
for its asymptotic value L∆∗

st , which now does not de-
pend on the specific ∆ω-value. Moreover, this limit value
L∆∗
st is in the good concordance with LD∗

st . Finally, in
Fig. 5 the relationship between the noise intensity D and
the control parameter deviation ∆ω is reported, showing
that the network of non-identical oscillators can be suit-
ably modelled by a noise addition to the synchronization
manifold characterizing the evolution of the correspond-
ing network of identical units.

In conclusion, we have estimated the property for syn-
chronization of networks consisting of equal elements
with slightly different control parameter values. This
study may be considered as the extension of the already
known method of analysis of the behavior of the networks
of identical elements.
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