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Abstract. Complex vibrations of cylindrical shells embedded in a temperature field are studied, and the Bubnov-Galerkin method
in higher approximations and in the Fourier representation is applied. Both lack and influence of temperature field on the shell
dynamics are analyzed.
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1. Formulation of the problem

Problems related to the investigation of chaotic vibrations of flexible plates and shells attract attention of many
engineers and applied mathematicians [1–10]. This is mainly motivated by an observation that harmful vibrations
of plates and shells occur in various industry branches including space and aircraft factories.

In the frame of the nonlinear classical theory of shallow shells a closed cylindrical shell with circled cross section
of finite length with both constant stiffness and density subjected to sign changeable loading and embedded into
the temperature field is studied. Results of temperature field action are exhibited by shell buckling, which differs
essentially from shell buckling yielded by mechanical load action. Thermal stresses occur owing to thermal extension
of shell elements. Note that compression of the shell elements yields heat occurrence, whereas during shell elements
extension a heat is absorbed. However, the frequently applied technical theory of shells does not introduce any
differences between stresses produced directly by either temperature field or mechanical external loads.

The obtained solutions to the investigated problem may have an important impact for both rocket design industry
or harmful effects occurred during transported cylinder-types containers fulfilled with fluids. In the first case,
depending on the atmosphere conditions as well as on a moving rocket height, the external load acting on the rocket
changes in time and may also change depending on the rocket surface. In the second case a loading of a moving
container modeled by the cylindrical shell depends strongly on the movement parameters because sloshing of fluids
occurs. Therefore, we study the classical problem but with inclusion of the shell loading depending both on time
and coordinatesq = q(x, y, t). In addition, in a case of a moving rocket a key role plays a temperature field, what is
taken into account of the investigated model.

The system of coordinates withx axis coinciding with longitudinal coordinate,y axis coinciding with a circle
coordinate, as well asz axis directed along a normal to the mean surface is introduced (Fig. 1). The cylindrical
shell as a 3D objectΩ is defined in the following way in the given system of coordinates:Ω = {x, y, z|(x, y) ∈
[0;L]× [0; 2π],− � z � h}.
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Fig. 1. Computation scheme.

The system of equations governing shell dynamics is presented in the following non-dimensional form [11]:{
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whereL andR = Ry are the shell length and radius, respectively,t denotes time,ε is the damping coefficient of a
medium where the shell is embedded,F is the stress (Airy’s) function,w denotes deflection,h is the shell thickness,
ν is Poisson’s coefficient,E0 is the Young modulus,q(x, y, t) is the transversal load,ky is the shell curvature
regardingy. In addition,
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is the temperature-induced moment,Q(x, y, z) = T − T0 is the temperature increment, whereasT0 is the initial
temperature. For brevity of our considerations, bars over the non-dimensional quantities in Eq. (1) are omitted.

The system of Eq. (1) is supplemented by boundary and initial conditions, which are formulated below. The
temperature fieldT is given in the following form:T (x, y) = C sin(πx) sin(πy).

Let us consider the dissipative system (ε �= 0) subjected to transversal loading distributed in zone0 � ϕ � ϕ 0,
0 � x � 1 and being changed harmonicallyq(t) = q0 sin(ωpt), whereq0 andωp are the amplitude and frequency of
the exciting force, respectively.

2. The Bubnov-Galerkin method and Fourier representation

The boundary value problem regarding space coordinates is solved by the Bubnov-Galerkin method in higher
approximations. Functionsw andF being solutions to Eq. (1) are approximated by an expression consisting of the
product of functions depending on time and coordinates of the following form
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In order to find approximated values of functionsw andF we take the coordinate systems of functions of the form
{ϕij(x, y), ψij(x, y)} (i, j = 0, 1, 2 . . .) in Eq. (2), which satisfy the following requirements:

1. ϕij(x, y) ∈ HA, ψij(x, y) ∈ HA, whereHA is the Hilbert space, which is further referred to as the energy
space.

2. ∀i, j functionsϕij(x, y) andψij(x, y) are linearly independent, continuous together with their up to the fourth
order derivatives in spaceΩ.

3. ϕij(x, y) andψij(x, y) satisfy rigorously main boundary conditions (and initial conditions if any).
4. ϕij(x, y) andψij(x, y) satisfy completeness property inHA.
5. ϕij(x, y) andψij(x, y) should representN first elements of a complete system of functions.

CoefficientsAij(t) andBij(t) are the functions of time being sought. For convenience, the left hand sides of
equations (1) given in brackets are denoted byΦ 1 andΦ2, respectively, and therefore Eq. (1) takes the following
form:
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Applying the Bubnov-Galerkin procedure to Eq. (3) one gets
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Symbol
∑

kl [∗] before every equation of system Eq. (5) means that each of these equations is understood as the
system ofkl equations of these types, and the associated Bubnov-Galerkin integrals have the following form
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Integrals Eq. (6), except ofQkl corresponding only to the part of the shell area, are computed regarding the whole
shell surface. After application of the Bubnov-Galerkin procedure the obtained system of ordinary differential
equations with respect to functionsAij(t) andBij(t) has the following matrix form

G(Ä+ εȦ) + SA+ C1B + D1AB = Qq(t) + H1,
(7)

C2A+ PB + D2AA = H2,

where:G = [Gijkl ], S = [Sijrskl ], C1 = [C1ijkl ], C2 = [C2ijkl ], D1 = [D1ijrskl ],D2 = [D2ijrskl],P = [Pijkl ] –
square matrices of dimension2 ·N1 ·N2 × 2 ·N1 ·N2, andA = [Aij ], B = [Bij ], Q = [Qij ] are the matrices of
dimension2 ·N1 ·N2 × 1.

Further, the second equation of system Eq. (7) is solved regarding matrixB, and then it is solved by the method
of inversed matrix on each time step:

B = [−P−1D2A − P−1C2]A + P−1H2C2A+ PB + D2AA = H2. (8)

Multiplying the first equation of Eq. (8) byG−1 and introducing notation
.

A = R the following Cauchy problem
regarding nonlinear first order ODEs is formulated{

Ṙ = −ε̄R + G−1D1AB − G−1SA+ q(t̄)G−1Q + G−1H1,

Ȧ = R .
, (9)

The introduced transformation is allowed since the inverse matricesG−1 andP−1 exist if the coordinate functions
are linearly independent.

Equations (9) are supplemented by boundary and initial conditions and the obtained Cauchy problem is solved
by the fourth-order Runge-Kutta method. A step in time is chosen via the Runge rule. Results given by various
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computational methods are compared in reference [12], where it is shown that integration by the fourth Runge-Kutta
method is sufficient and the application of higher order Runge-Kutta approaches are time consuming and they do
not yield improvement of the results.

3. A numerical example

In this section we study vibrations of a ball-type supported cylindrical shell along its edges and having the
homogeneous boundary conditions [13]
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∂2F
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= 0 for x = 0; 1, , (10)

and the following initial conditions
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In this caseϕij , ψij in Eq. (2) are approximated by the product of two functions, where each depends only on one
argument which satisfies boundary conditions Eq. (10):
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Aij(t) sin(iπx) cos(jy),F =
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The Bubnov-Galerkin algorithm described briefly so far allows a wide class of problems, both static and dynamic,
to be solved. A solution to static problems is obtained via the set-up method first applied by Feodos’ev (the so called
“set up method”) [14], and widely applied for instance in monograph [5]. In order to solve static problems of plates
and shells, various approximate methods have been applied allowing the partial differential equations to be reduced
to the system of nonlinear algebraic equations, which is usually further linearized. In the set-up method a solution
to PDEs is reduced to that of the Cauchy problem of ODEs. Results of static solutions to PDEs are reported and
illustrated in reference [15].

Using the example of a closed cylinder type shell with parametersky = 112.5 andλ = 2, embedded in the
temperature field and subjected to the following transversal loadq(t) = q 0 sin(ωpt) distributed on the whole
shell surface0 � ϕ � 2π, 0 � x � 1, for fixed loading amplitudeq0 = 0.1 we are going to study how the
character of vibrations changes owing to the change of temperature intensity coefficientC in relationT (x, y) =
C sin(πx) sin(πy).

The fundamental characteristics such as signalw(t), phase portraitw(w ′), power spectrumS(ωp) depending on
the boundary conditions are shown in Table 1. The values ofC are called threshold ones, since between the reported
values ofC a picture is almost unchanged. Observe the following particularities of the shell behavior.

1. If C = 0, then it means that there is no temperature field. The first row of the table exhibits harmonic shell
vibrations. A phase portrait has the form of a circle and vibrations appear on the fundamental frequency:
ωp = ω0 = 26.1256, whereωp is the excitation frequency, which is clearly manifested in the frequency
spectrum.

2. For0 < C � 24.2 the temperature intensity increases, but the signal shape is not changed qualitatively, and
vibrations are harmonic. The phase portrait exhibits a set of one rotated cycle.

3. Increasing the temperature field intensity by 0.04, i.e. forC= 24.4, the vibration character is changed, and the
system transfers into chaos associated with an increase of deflection. The phase portrait is irregular, and power
spectrum exhibits chaotic vibrations associated with both fundamental and its half frequencies.

4. In interval24.4 < C � 29 changes appear in the vibration character, and from the broad band power spectrum
“chaotic frequency part” is going to vanish.

5. ForC = 30 the signal is stabilized, and the phase plot exhibits a strange attractor. Power frequency spectrum
consists of a linear combination of independent frequencies and bifurcations. A detailed analysis of the system
behavior associated with the value ofC is given below.
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Table 1
Temperature amplitudes signals, phase portraits and power spectra of the cylindrical shell

0

24.2

24.4

29

30

31
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Table 2
Influence of variations in parameter{q0} for fixed C = 30

0.052

0.0522 

0.09

0.1

0.15
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6. An increase of parameterC intensity yields also the beam chaotic dynamics, however with different structure
than that forC = 24.4 since chaotic zones are mainly produced by period doubling bifurcations in this case.

Below, we will study the system behavior for fixed value ofC = 30 and for different values of external excitation
amplitudeq0. The same characteristics as previously are applied as reported in Table 2.

The results presented in Table 2 are briefly summarized below.

1. Forq0 = 0.052 the beam exhibits periodic dynamics with the fundamental frequencyω 0, and the Poincaré
section clearly exhibits one point.

2. A slight variation ofq0 by the amount of 0.002 (q0 = 0.0522) changes qualitatively the system behavior.
Namely, subharmonic vibrations appear with the fundamental frequencyω p1 = ωp/2 = 13.0628, and a first
independent frequency appearsω1 = 2.8471 producing the following linear combinationω 2 = ωp1 − ω1 =
10.2157, i.e. quasi-periodic vibrations appear with two frequenciesω p1 andω1. Dobled-torus is also manifested
in the phase projection.

3. Forq0 = 0.09 a period doubling bifurcation occursω p2 = ωp1/2 = 6.5314. In the Poincaré map four points
appear, whereas the broadband structure of the phase portrait indicates occurrence of quasi-periodic vibrations.

4. A further increase ofq0 is associated with many period doubling bifurcations, and forq 0 > 0.1 the beam
exhibits chaotic dynamics.

In other words, the described system behavior mainly concerns a transition from periodic and quasi-periodic
dynamics to chaotic one.

4. Concluding remarks

Complex vibrations of the mechanical system represented by a closed cylindrical shell with a circled cross section
and of finite length are studied in this work. The investigations are carried out using the Bubnov-Galerkin method
with Fourier representation and with higher approximation regarding spatial coordinates.

The novel scenario of the studied shell transition from periodic to chaotic vibrations via the collapse of quasi-
periodic vibrations with one independent frequency and period doubling bifurcation is illustrated and discussed.
Analysis of the system behavior with the change of parameterC (temperature intensity) in the formulaT (x, y) =
C sin(πx) sin(πy) and for the fixed value ofq0 = 0.1 (Table 1) as well as for fixed value ofC = 30 (Table 2) has
been carried out. Additionally, it is shown (Table 2) how for various intensities of the temperature field, including
its lack, an increase of the loading induces qualitative changes in the investigated shell dynamics, and how chaotic
zones are transmitted into harmonic ones and vice versa.
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of Bifurcation and Chaos 12(7) (2002), 1465–1513.
[4] J. Awrejcewicz and A.V. Krysko, Analysis of complex parametric vibrations of plates and shells using Bubnov-Galerkin approach,Archive

of Applied Mechanics 73 (2003), 495–504.
[5] J. Awrejcewicz and V.A. Krysko,Nonclassic Thermoelastic Problem in Nonlinear Dynamics of Shells, Springer-Verlag, Berlin, 2003.
[6] J. Awrejcewicz, V.A. Krysko and A.F. Vakakis,Nonlinear Dynamics of Continuous Elastic Systems, Springer-Verlag, Berlin, 2004.
[7] V.M. Bakulin, I.F. Obraztsov and V.A. Potopakhin,Dynamical Problems of Theory of Composite Shells, Influence of Thermo-Dynamic

Loads and Concentrated Energy Flows, Moscow, FizMatLit, 1998, in Russian.
[8] V.A. Krysko, J. Awrejcewicz and T.V. Shchekaturova, Chaotic vibrations of spherical and conical axially-symmetric shells,Archive of

Applied Mechanics 74(5–6) (2005), 338–358.
[9] V.A. Krysko and I.V. Kravtsova,Control of Chaotic Vibrations of Flexible Spherical Shells, Izvestia RAS, Mekhanika Tverdogo Tela, 1,

2005, pp. 140–150, in Russian.
[10] J. Awrejcewicz, V.A. Krysko and A.V. Krysko,Thermo-Dynamics of Plates and Shells, Springer-Verlag, Berlin, 2007.
[11] A.S. Volmir, Stability of Elastic Systems, Moscow, Fizmatgiz, 1963, in Russian.



A.V. Krysko et al. / Chaotic vibrations of closed cylindrical shells in a temperature field 343

[12] V.A. Krysko and G.G. Narkaytis,Comparison of Various Computational Methods using Example of Vibration Modelling of Flexible Infinite
Plates Subjected to Sign Changeable Loads, Proceedings of XXI International Conference on Plate and Shell Theories, Saratov, 2005,
pp. 281–288.

[13] M.S. Kornishin,Nonlinear Problems of Plates and Shallow Shells and Methods of Their Solution, Moscow, Science, 1964, in Russian.
[14] V.I. Feodos’ev, On the method of solution of stability of deformable systems,Prikladnaya Matematika i Mekhanika 27(2) (1963), 265–275,

in Russian.
[15] V.A. Krysko, N.E. Saveleva and K.F. Shagivaleev, Statics and dynamics of closed cylindrical shells subjected to non-uniform transversal

loading,Izvestia VUZ, Mashinostroyeniye 1 (2005), 3–14, in Russian.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


