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This paper reports intermediate-scale instability in a single-stage power-factor-correction (PFC)
power supply that employs a cascade configuration of a boost stage operating in discontinuous
conduction mode (DCM) and a forward stage operating in continuous conduction mode (CCM).
The two stages combine into a single stage by sharing one main switch and one control loop to
achieve input PFC and tight output regulation. The main results are given by “exact” cycle-by-
cycle circuit simulations. The effect of the intermediate-scale instability on the attainable power
factor is illustrated in terms of total harmonic distortion (THD) which is found by taking the
Fast Fourier Transform (FFT) of the input current. The intermediate-scale instability usually
manifests itself as local oscillations within a line cycle. Based on the stability analysis of a buck
converter operating in CCM, the underlying mechanism of such instability can be attributed
to the Hopf bifurcation that occurred in CCM forward stage. Finally, experimental results are
presented for verification purposes.

Keywords : Power factor correction (PFC); single-stage PFC power supply; intermediate-scale
instability; Hopf bifurcation.

1. Introduction

Nowadays, power factor correction (PFC) tech-
niques have been widely used in switching power
supplies to meet the increasingly stringent demand
for very low line current harmonics [Dixon, 1990;
Redl, 1994]. A typical configuration of power sup-
ply with PFC is the so-called two-stage PFC power
supply which consists of a preregulator for PFC cas-
cading with a dc/dc converter for output regulation.
Here, “two-stage” means that both the preregulator

and the dc/dc converter are separate systems. For
low power applications (below 200 W), however, a
“single-stage” configuration is more preferred than
the “two-stage” one. A typical example is the single-
stage isolated power-factor-correction power supply
(SSIPP), which was first proposed by Redl et al.
[1994]. This circuit consists of a PFC preregulator
stage cascaded with an output stage for output
voltage regulation. The preregulator stage is usu-
ally the boost converter, whereas the output stage
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can be any dc/dc converter, e.g. flyback converter
or forward converter. Moreover, the SSIPP shares
one active switch and mandatorily operates the
boost preregulator stage in discontinuous conduc-
tion mode (DCM) to achieve automatic PFC func-
tion. This means that the preregulator stage and the
output stage do not work separately and must be
taken as a whole system. Thanks to the special con-
trol strategy, the SSIPP has some obvious advan-
tages (see [Redl et al., 1994]) over the two-stage
PFC power supply, especially for low-to-medium
power applications. In the past decade [Chow et al.,
1998; Chow et al., 2000; Siu et al., 1997], much
attention has been devoted to the steady-state
design and control aspects of the SSIPP. However,
the detailed dynamical behavior as well as its poten-
tial influence on the system’s performance have sel-
dom been investigated.

Recently, studies of nonlinear dynamics of
switching power converter circuits have identified
various kinds of bifurcation behaviors in a number
of simple dc-dc converters under some typical con-
trol configurations (see [Banerjee & Verghese, 2000;
Tse, 2003; Tse & Di Bernardo, 2002], and references
therein). Such studies have also been extended to
the PFC converters, which are actually ac-dc con-
verters with a near unity input power factor. For
the boost PFC preregulators operating in CCM,
it has been found that both fast-scale and slow-
scale instabilities can occur in some selected param-
eter regions [Dranga et al., 2003; Iu et al., 2003;
Orabi & Ninomiya, 2003; Wong et al., 2006]. For
the SSIPP operating with DCM boost stage and
DCM (or CCM) forward stage, it has also been
reported that fast-scale instability may occur if
the system parameters are chosen inappropriately
[Wu et al., 2006a; Wu et al., 2006b]. It has also
been shown previously that the slow-scale instabil-
ity problem may worsen the harmonic distortion of
the input current, whereas the fast-scale instability
problem may impose higher current stresses on the
switching devices. Thus, the study of instability in
PFC converters will be useful for practical design
considerations.

Slow-scale and fast-scale instabilities have
been used to describe low-frequency oscillation
and period-doubling bifurcation a voltage-mode
buck converter operating in CCM, respectively
[Mazumder et al., 2001]. For dc/dc converters, there
is only one type of time scale, i.e. the time scale
with respect to switching frequency. In PFC con-
verters, however, it is slightly different since there

exist two types of time scale, i.e. the time scales
of line frequency and switching frequency. Partic-
ularly, the line frequency is much lower than the
switching frequency in practical applications. Thus,
in PFC converters, fast-scale instability usually
means period-doubling bifurcation of the time scale
related to switching frequency [Dranga et al., 2003;
Iu et al., 2003; Wu et al., 2006a; Wu et al., 2006b].
Intuitively, it is natural to regard period-doubling
bifurcation with respect to input line frequency
as slow-scale instability [Orabi & Ninomiya, 2003;
Wong et al., 2006]. In this paper, we report a totally
different type of instability observed in the complete
single-stage PFC power supply, in which the PFC
boost preregulator and the forward output regula-
tor are originally designed to operate in DCM and
CCM, respectively. The instability reported in this
paper usually manifests itself as a local oscillation
within a line cycle. Hence, the observed instabil-
ity seems to be “faster” than line-frequency insta-
bility, but “slower” than fast-scale instability. To
avoid confusion from the instabilities observed in
other time scales, we comply with the convention on
time scale given in the previous studies, and name
the instability observed here as intermediate-scale
instability.

We will present our main findings as follows.
First, through “exact” cycle-by-cycle simulations,
we will show that power factor can be drasti-
cally degraded when intermediate-scale instability
occurs. This is very important in practice because
it will seriously affect the performance of the cir-
cuit. We will then investigate the underlying mecha-
nism of the degradation of power factor along with
the occurrence of intermediate-scale instability. We
find that the intermediate-scale instability is essen-
tially caused by Hopf bifurcation of the forward out-
put regulator. From the analysis, we can derive the
boundary of normal operation in any suitably cho-
sen parameter space. Finally, we will show some
experimental results to verify our findings from
simulations.

2. System Description

The simplified schematic of the SSIPP under study
is shown in its original form in Fig. 1 [Redl et al.,
1994]. The front-end boost converter serves as a
PFC converter whose output is connected across the
storage capacitor C1, which in turn serves as the
input to a standard forward converter. Moreover,
the boost PFC converter and the forward converter
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Fig. 1. Single-stage isolated PFC power supply (SSIPP). This circuit consists of a boost front-end PFC converter and a
forward converter. Transformer isolation allows sharing of active switch by the two cascading stages. For the sake of simplicity,
the core reset arrangement is not shown in this figure.

share the same active switch S, as shown in Fig. 1.
Thus, this circuit can be modeled as a cascade con-
nection of a boost converter and a buck converter,
which are driven synchronously under one switching
pulse-width-modulation (PWM) signal, as shown
in Fig. 2. The control of the circuit takes on the
voltage feedback control, in which a control voltage
vcon is compared with a ramp signal to generate a
PWM signal to drive the switch. The ramp signal
is given by

Vramp = VL + (VU − VL)
(

t

T
mod 1

)
(1)

where VL and VU are the lower and upper thresh-
olds of the ramp, and T is the switching period.

The output of the comparator is “high” when vcon >
Vramp, and is “low” otherwise. Different from the
proportional control used in [Wu et al., 2006a] and
[Wu et al., 2006b], the control voltage vcon here is
derived from a proportional-integral (PI) feedback
control loop, which is more typical in industrial
applications.

When the boost stage operates in DCM and the
buck stage operates in CCM, three switch states are
possible during a switching cycle:

State A: S1 and S2 are on, D1 and D′
2 are off;

State B: S1 and S2 are off, D1 and D′
2 are on;

State C: S1 and S2 are off, D1 is off and D′
2

is on.
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Fig. 2. Equivalent circuit model of the SSIPP under PI control.
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Fig. 3. Typical current waveforms of the SSIPP. The boost
stage operates in DCM and the buck stage operates in CCM.
The corresponding equivalent circuit presents a sequence of
switch states as “ABC” in a switching cycle.

Typical current waveforms of the circuit operating
with the above switching sequence are illustrated
in Fig. 3.

Now, we can give the exact state equation cor-
responding to each switch state as follows:

ẋ =




A1x + B1 for state A
A2x + B2 for state B
A3x + B3 for state C

(2)

where x is the state vector defined as

x = [i1 vC i2 vo vcon]T (3)

and the system matrices As and Bs are given as

A1 =



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


(4)

A2 =


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(5)

A3 =


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(6)

B1 = B2 =



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L1

0
0
0
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τF

(
1 +
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R2

)


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(7)
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0
0
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0
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1 +
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)
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(8)

where vin is the time-varying input voltage, K =
RF /R1 is the DC gain of the PI controller, τF =
RF CF is the time constant of the PI controller, and
the other component symbols are as defined in the
circuit diagram shown in Fig. 2.

3. Intermediate-Scale Instability
from Circuit Simulations

In this section, we will present the observations
of intermediate-scale instability of the SSIPP.
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Table 1. Circuit parameters used in simulations.

Circuit Component Values

Input Voltage vin 110 V (Vin, rms), 50 Hz
Inductance L1, ESR r1 300 µH, 0.01 Ω
Inductance L2, ESR r2 3 mH, 0.01 Ω
Capacitance C1 470 µF
Capacitance C2 47 µF
Load Resistance R 15 Ω–90 Ω
Reference Voltage Vref 1.5 V
R1, R2 19 kΩ, 1 kΩ
DC Gain of Controller K 0.04
Time Constant of Controller τF 1.5 T0 (T0 =

√
L2C2)

Ramp signal 3 V–8V, 20 kHZ

Our simulation is based on the exact piecewise
switched model described in the foregoing section.
Since practicing engineers are usually interested in
the performance of SSIPP as the output power
varies, we will accordingly observe the dynamical
behaviors as the output power is changed. In our
study, we will only change the load R and keep
other circuit parameters fixed.1 The circuit param-
eters used in our simulations are shown in Table 1.

3.1. Stable operation

When the output power is high, e.g. 60 W, the
SSIPP can work in stable operation. Figure 4(a)

shows the time-domain waveforms of i1 and vcon.
In order to see the change in dynamical behavior
clearly, we collected the sampled peak values for
i1 and the corresponding values for vC during each
switching period in the steady state. Figure 4(b)
shows the peak values of i1 and Fig. 4(c) shows
the phase portrait of the peak values of i1 and vC .
Since the power factor is of practical importance in
the SSIPP, we also calculate the total harmonic dis-
tortion (THD) using Fast Fourier Transform (FFT)
[Brigham, 1988].2 Figure 4(d) shows the FFT spec-
trum of i1. The power factor is 0.9681, which is
adequate for most practical applications.

3.2. “Deep” intermediate-scale
instability

We now gradually increase the load resistance to
obtain a lower output power. When the output
power is adjusted below 48.1 W, we can clearly
observe the occurrence of the intermediate-scale
instability. Figures 5(a)–5(c) show the correspond-
ing waveforms and phase portraits at 45 W, from
which the local oscillations of i1 and vcon with about
7 period within one half line cycle can be readily
recognized. As a result, the power factor abruptly
falls to 0.8633, which is much lower than that in the
stable operation. Figure 5(d) shows the correspond-
ing FFT spectrum of i1, in which the fundamental
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Fig. 4. Simulations at 60 W power. (a) Waveforms of i1 and vcon; (b) peak values of i1; (c) phase portrait of peak values of
i1 and vC ; (d) FFT of i1.

1The output power equals V 2
o/R, where Vo = Vref(1 + R1/R2) is the expected regulated output voltage in the steady state.

2In the calculation of THD, we ignore those frequency components higher than 10 kHz as a filter is always present to remove
the switching ripples of the input current.
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Fig. 4. (Continued)
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Fig. 5. Simulations at 45 W power. (a) Waveforms of i1 and vcon; (b) peak values of i1; (c) phase portrait of peak values of
i1 and vC ; (d) FFT of i1.
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component of the local oscillations (about 700 Hz)
and its harmonics can be clearly observed.

3.3. “Weak” intermediate-scale
instability

On further decreasing the output power, the
intermediate-scale instability can still be observed,
but with “weak” oscillations of i1 and vcon.
Figures 6(a)–6(c) show the corresponding wave-
forms and phase portraits at 20 W. The explicit
oscillations of i1 and vcon indicate the exis-
tence of intermediate-scale instability. The power
factor, however, can still maintain as high as

0.951. Figure 6(d) shows the FFT spectrum of i1,
which, compared with the “deep” case shown in
Fig. 5(d), includes relatively “weak” fundamental
component and its harmonics corresponding to the
local oscillations caused by the intermediate-scale
instability.

Remarks. “Weak” intermediate-scale instability
may have little effect on power factor. But, it still
deserves specific attentions for practical consider-
ation because the oscillation of i1 will change the
original power distribution along the line cycle cor-
responding to the stable operation, resulting in
larger current stresses on the switching devices.
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Fig. 6. Simulations at 20 W power. (a) Waveforms of i1 and vcon; (b) peak values of i1; (c) phase portrait of peak values of
i1 and vC ; (d) FFT of i1.
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Fig. 7. Power factor of the SSIPP as the output power
varies. The arrow indicates where intermediate-scale insta-
bility occurs.

4. Effect of Intermediate-Scale
Instability on Power Factor

In this section, we will look more closely at the
effects of intermediate-scale instability on the power
factor. Figure 7 shows the variation of the power
factor as the output power decreases. It is readily
observed that the SSIPP has a near unity power
factor at high output power. When the output
power is decreased below 48.1 W, the power fac-
tor is abruptly degraded to a low level, about 0.86
here. As indicated in Fig. 7, the intermediate-scale

instability begins to occur at this output power level
and below. In the region where intermediate-scale
exists, the power factor then gradually rises as the
output power further decreases. This phenomenon
can be explained as follows. When the output power
decreases, the local oscillation of the input cur-
rent will be attenuated, as shown in Figs. 5(a) and
6(a). As a result, the frequency component of the
local oscillation will also reduce, as indicated in
Figs. 5(d) and 6(d). Thus, the power factor in the
intermediate-scale instability region increases as the
output power decreases.

Clearly, it may not be suitable to operate the
system with the parameters used in the forego-
ing section because the critical output power when
intermediate-scale instability occurs is relatively
close to the nominal power, leaving rather small
headroom for a stable operation. Thus, it is of prac-
tical importance to move the instability boundary
further away from the nominal point by appropri-
ately designing the parameters. Figure 8 shows the
results for different Vin and C2, from which we can
see how these circuit parameters will affect the loca-
tion of the instability boundary.

5. Hopf Bifurcation: The Cause of
Intermediate-Scale Instability

As shown in Figs. 5 and 6, the intermediate-scale
instability usually manifests itself as local oscilla-
tions within a line cycle. Moreover, we can see that
it is the oscillation of vcon that gives rise to the

10 20 30 40 50 60
0.8

0.85

0.9

0.95

1

10 20 30 40 50 60
0.8

0.85

0.9

0.95

1

(a) (b)

Fig. 8. Power factor of the SSIPP as the output power varies (a) for different Vin; (b) for different C2.
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distortion in i1. Thus, it is natural to pay specific
attention to the underlying mechanism for the oscil-
lation of vcon. In this section, we will give some
analytical results and study the relationship of the
intermediate-scale instability with Hopf bifurcation.

In our study, the forward output regulator is
designed to operate in CCM. From the equivalent
circuit given in Fig. 2, the input of the forward
output regulator is the output of the boost PFC
preregulator, i.e. the voltage vC across the storage
capacitor C1. Usually, vC is only crudely regulated
by the boost PFC preregulator, and thus can be
considered as a DC voltage VC superposed by a
small ripple. If the capacitance of C1 is sufficiently
large, the ripple is negligible and vC at steady state
is approximately the DC voltage VC . In [Redl et al.,
1994], it has been pointed out that VC is depen-
dent on the load variation for SSIPP operating with
CCM regulating stage. An equation for VC , which
can be solved numerically, was given in [Redl et al.,
1994] for the case of DCM regulating stage. For the
system considered in our study, a similar equation
can be obtained and is given by (see Appendix A
for detailed derivation)

∫ TL/2

0

v2
in

VC − vin
dt =

L1TLVC

RT
(9)

where TL is the line period.3

Moreover, as shown in Fig. 9, we can get an
equivalent model of the regulating stage. For sim-
plicity of analysis, we will neglect r2, i.e. the ESR of
L2. Then, this model is essentially a voltage-mode
controlled buck converter operating in CCM with
input voltage VC which can be obtained by numer-
ically solving (9). Now, suppose that intermediate-
instability takes place in the overall SSIPP system.
In this case, the corresponding buck model must
also lose its stability, and the control voltage vcon

will exhibit the similar oscillating waveforms shown
in Figs. 5(a) and 6(a).4 Thus, we can conclude
that the critical condition for intermediate-scale
instability of the overall SSIPP system is equiva-
lent to that for Hopf bifurcation for the equiva-
lent buck converter model of the regulating stage
model shown in Fig. 9. Obviously, this conclu-
sion reduces our study model from the complicated
“SSIPP” form to a more simple “buck” form, which

CV
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Fig. 9. Equivalent model of regulating stage.

greatly simplifies the analysis process. With respect
to the study of bifurcation in the buck converter,
previous work, however, has mainly focused on pro-
portional feedback control, in which the typical
period-doubling bifurcation can usually be observed
[Di Bernardo et al., 1998; Fossas & Oliver, 1996;
Hamill et al., 1992]. Little work has been done on
the bifurcation type for the case of PI control con-
sidered here. To study the “low-frequency” Hopf
bifurcation in the PI voltage-mode controlled buck
converter, we can utilize the averaged model of the
corresponding circuit. This method has been suc-
cessfully used to analyze Hopf bifurcation in Ćuk
converter and parallel-connected boost converters
[Tse et al., 2000; Iu & Tse, 2003]. With this method,
the critical condition to judge Hopf bifurcation in
the PI voltage-mode controlled buck converter oper-
ating in CCM can be derived and given by (see
Appendix B for detailed derivation)

KC =
τF (VU − VL)
VC(τ − τF )

(10)

where τ = RC2. The buck converter will lose its
stability via Hopf bifurcation when K > KC .

Remarks. It should be noted that Appendix B does
not give a formal condition for the occurrence
of Hopf bifurcation. Actually, it provides infor-
mation about when the equilibrium point of the

3The SSIPP in [Redl et al., 1994] actually uses a flyback stage operating in DCM as the regulating stage, whereas a forward
stage operating in CCM is used in our study here.
4Here, “the corresponding buck model” means that all parameters including VC of the buck model are the same as those of
the SSIPP system.
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averaged equations loses its stability via a specific,
but unknown, type of bifurcation. Hence, a further
numerical check of the eigenvalues is required in
order to confirm the occurrence of Hopf bifurcation.
In our study, however, the analysis is based on the
averaged model which will exclude any fast-scale
bifurcation, e.g. period-doubling bifurcation. There-
fore, we can assert that Hopf bifurcation occurs
as the system loses stability, which will also be
confirmed experimentally. On the other hand, it is
worth pointing out that the critical condition is only
valid when no other bifurcation has occurred prior
to this predicted Hopf bifurcation.

By using (9) and (10), we can qualitatively
explain the behavior observed in the foregoing sec-
tion as follows. When the load R is relatively small,
the KC obtained from (10) is larger than K. Hopf
bifurcation does not occur. As the load R increases,
VC will gradually increase from (9). At the same
time, τ will also increase. Thus, from (10), the
KC will decrease as the load R increases. When
the load R increases to the critical value, KC will
equal K. Then, Hopf bifurcation take places. Fur-
thermore, we can also utilize (9) and (10) to obtain
the operation boundary within which intermediate-
scale instability does not occur. Figure 10 shows
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Fig. 10. Stability boundary in the parameter space of (a) K versus τF ; (b) output power versus K; (c) output power versus
Vin; (d) output power versus C2. The stable region is located below the boundary curve for (a) and above the boundary curve
for (b)–(d). The simulation results are indicated with ∗ and the analytical results are plotted with solid curves.
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such a stability boundary in the parameter space of
K versus τF , output power versus K, Vin and C2,
respectively. For the purpose of comparison, we also
present the stability boundary from circuit simula-
tions, which clearly verifies the validity of (9) and
(10) in locating the normal operating region.

6. Experimental Verifications

To verify the observed intermediate-scale instabil-
ity, an experimental circuit prototype of the SSIPP
under study has been built. Figure 11 shows the full

schematic diagram of the experimental circuit with
detailed specifications indicated. It should be noted
that our emphasis here is the qualitative behav-
ior of the intermediate-scale instability. Thus, the
absolute verification of the specific set of simula-
tion results given in the foregoing section is not
mandatory. As a result, the parameters used in the
experiment are different from those in simulations.
Nonetheless, the experimental results clearly verify
the phenomena observed from simulations.

Figure 12 shows the measured waveforms for
R = 15.7Ω, where the system works in stable

Fig. 11. Full schematic diagram of experimental circuit.

(a) (b)

Fig. 12. Measured waveforms for R = 15.7 Ω with current probe (10mV/A). (a) Upper trace: control voltage (1V/div), lower
trace: current of L1 (100 mV/div), time scale: 5ms/div; (b) mains input voltage (50 V/div) and input current (50mV/div),
time scale: 10 ms/div.
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(a) (b)

Fig. 13. Measured waveforms for R = 30.3 Ω with current probe (10mV/A). (a) Upper trace: control voltage (1V/div), lower
trace: current of L1 (50 mV/div), time scale: 5ms/div; (b) mains input voltage (50V/div) and input current (50mV/div),
time scale: 10 ms/div.

(a) (b)

Fig. 14. Measured waveforms for R = 57.9 Ω with current probe (10mV/A). (a) Upper trace: control voltage (1V/div), lower
trace: current of L1 (50 mV/div), time scale: 5ms/div; (b) mains input voltage (50V/div) and input current (50mV/div),
time scale: 10 ms/div.

operation. Figure 12(a) shows the control voltage
and the current of L1. It can be clearly observed
that the control voltage is approximately constant.
Figure 12(b) shows the input current and voltage.

Figure 13 presents the measured waveforms for
R = 30.3Ω. In this case, the intermediate-scale
instability can be observed from the seriously oscil-
lating waveforms of the control voltage and the
current of L1, as shown in Fig. 13(a). Moreover,
the input current and voltage are both shown in
Fig. 13(b), from which we can observe a serious dis-
tortion of the input current.

Figure 14 shows the measured waveforms for
R = 57.9Ω. As predicted, the intermediate-scale

instability will become “weak” for lower output
power. Figure 14(a) shows the control voltage and
the current of L1. Compared with those shown in
Fig. 13(a), the amplitudes of the control voltage
and the current of L1 are attenuated. Nonetheless,
the intermediate-scale instability can be readily
observed. The input current and voltage are further
presented in Fig. 14(b), which shows a weakened
distortion of the input current.

7. Conclusion

Power factor correction has become a primary
design requirement for switching power supplies.
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For low power applications, the SSIPP is a cost
effective solution which is widely used in practice.
Although the steady-state design and control of
the SSIPP have been thoroughly studied for many
years, the detailed dynamics of this system, so far,
has not been completely explored or well under-
stood. In this paper, the intermediate-scale insta-
bility of an SSIPP operating DCM boost stage and
CCM forward stage has been reported. We have
reported the results from “exact” cycle-by-cycle cir-
cuit simulations, and have discussed the adverse
effects of the intermediate-scale instability on power
factor. Furthermore, it has been found that such
instability is essentially caused by Hopf bifurcation
of the regulating stage. Analytical expressions that
define the normal operation boundary have been
derived. Finally, an experimental circuit prototype
has been built to verify the observations made from
simulations. Since the intermediate-scale instability
can greatly affect power factor and harmonic dis-
tortion, the results obtained here will be useful to
the design of sing-stage PFC power supplies.
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Appendix A

Calculation of Storage Capacitor
Voltage Stress

In the steady state, the voltage VC across the stor-
age capacitor can be determined by equating the
energy absorbed from the ac line during a half line
cycle with the energy delivered to the load during
the same half line cycle. Thus, the energy equality
can be written as

∫ TL/2

0
viniindt =

1
2
VoIoTL (A.1)

where iin is the input current from the ac line and
Io is the output current upon the load at steady
state. Since iin = i1, the above equation can be
rewritten as

∫ TL/2

0
vini1dt =

1
2
VoIoTL. (A.2)

As indicated in Fig. 3, we denote the on-time
of switch S and diode D1by D1T and D2T , respec-
tively. By inspection of the waveforms shown in
Fig. 3, D2 can be represented by D1 as follows:

D2 =
vin

VC − vin
D1. (A.3)

Furthermore, the averaged i1 over the switching
cycle is given by

i1 =
T

2L1
D1(D1 + D2)vin (A.4)

=
TD2

1

2L1

vinVC

VC − vin
. (A.5)

Since T �TL for most practical applications, we
have

∫ TL/2

0
vini1dt ≈

∫ TL/2

0
vini1dt (A.6)

=
VCTD2

1

2L1

∫ TL/2

0

v2
in

VC − vin
dt. (A.7)

For the forward output regulator operating in CCM,
we can easily get

VoIo =
D2

1V
2
C

R
. (A.8)

Hence, substituting both (A.6) and (A.8) into (A.2)
yields ∫ TL/2

0

v2
in

VC − vin
dt =

L1TLVC

RT
(A.9)

from which VC can be numerically obtained.

Appendix B

Stability Condition for the Load-Side
Buck Converter

For the buck converter shown in Fig. 9, the averaged
model can be represented by the averaged equations

di

dt
= − v

L2
+

dVC

L2
(A.10)

dv

dt
=

i

C2
− v

τ
(A.11)

dvcon

dt
= −Ki

C2
+

(
1
τ
− 1

τF

)
Kv

+
KVref

τF

(
1 +

R1

R2

)
(A.12)

where d is the duty cycle and can be easily given by

d =
vcon − VL

VU − VL
. (A.13)

It is worth pointing out here that the averaged equa-
tions are valid only when 0 < d < 1. Such a condi-
tion is satisfied when the system is operating in the
stable equilibrium state.

The equilibrium point of the averaged equa-
tions can be calculated by setting all time-
derivatives of (A.10)–(A.12) to zero and solving for
i, v and vcon. This gives the equilibrium point X0

to be 


D0VC

R

D0VC

VL + D0(VU − VL)




(A.14)

where

D0 =
Vref

VC

(
1 +

R1

R2

)
. (A.15)

It is well known that the stability of this equilibrium
point is determined by the eigenvalues of the sys-
tem’s Jacobian at the equilibrium point. The stan-
dard procedure is to solve the following equation
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for λ:

det[λI − J(X0)] = 0. (A.16)

Upon expanding, we get

a0λ
3 + a1λ

2 + a2λ + a3 = 0 (A.17)

where a0 = 1, a1 = 1/τ , a2 = (1/L2C2) + (KVC/
L2C2(VU − VL)), and a3 = KVC/L2C2τF (VU − VL).
Then, we may generate the so-called Routh Table
associated with the polynomial (A.17), i.e.

1 a2

a1 a3

a2 − a3

a1

a3

(A.18)

The Routh–Hurwitz criterion states that all of the
roots of the characteristic polynomial have real
parts strictly less than zero if, and only if, all ele-
ments in the first column of the Routh Table are
nonzero and have the same sign [Wiggins, 2003].
Since ai > 0 (i = 0, 1, 2, 3) here, applying the
Routh–Hurwitz criterion, we can easily get the crit-
ical stability condition for the equilibrium point as
a1a2 = a3, which can be written as

K =
τF (VU − VL)
VC(τ − τF )

. (A.19)




