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Abstract

This work concerns the non–degenerated center problem in certain families of
differential systems in R2. We study the existence of uniformly isochronous centers
and the form of their commutators. We also classify all centers of the family of the
BiLiénard systems of degree five.

1 Introduction

We consider analytic systems of differential equations in the real plane of the form:

ẋ = −y + P (x, y), ẏ = x + Q(x, y), (1)

where P (x, y) and Q(x, y) are real analytic functions in a neighborhood of the origin
without constant nor linear terms.

2 Uniformly Isochronous Centers

In this section, we consider the family of polynomial differential systems of the form:

ẋ = −y + xR(x, y), ẏ = x + yR(x, y), (2)

with R(x, y) =
∑n

i=1 Ri(x, y) where Ri is a homogeneous polynomial of degree i. The
centers of these systems are called uniformly isochronous centers. The origin, when it is a
center, is called uniformly isochronous center of system (2) because in polar coordinates
(2) takes the form: ṙ = F (r, θ), θ̇ = 1, see [7, 8].
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The center problem for this type of systems has been studied by several authors. The
case in which R(x, y) is a homogeneous polynomial of degree i has been studied in [7]
where the following result is given:

Theorem 1. Let R(x, y) be a homogeneous polynomial. Then the origin is an isochronous
center of system (2) if, and only if, one of the following conditions holds:

(i) system (2) has even degree;

(ii) system (2) has odd degree n = 2m + 1, and

2m∑

`=0

r`

∫ 2π

0
(cosϕ)2m−` (sinϕ)`dϕ = 0,

where R(x, y) =
∑n−1

`=0 r` xn−1−`y`.

In the nonhomogeneous class, the first case that has been studied corresponds to
the systems with R(x, y) = R1 + R2, see [6]. In [13] the authors study the case when
R(x, y) = R1 + R3. In [4] the authors study the case when R(x, y) = R1 + R2 + R3 with
R2

1 +R2
2 +R2

3 6= 0. The case R(x, y) = R1 +R2 +R3 +R4 with R4 6= 0 and only one Ri not
equal to zero, for i = 1, 2, 3, is studied in [1]. Systems of type (2) with R(x, y) = R2 + R4

and R(x, y) = R2 + R6 have been studied in [20] and [21], respectively.
In all the presented cases up to now, the families of centers are time–reversible, i.e,

the centers are symmetrical with respect to a straight line passing through the origin.
Therefore, the centers are invariant under the next transformation (modulo a rotation):
(x, y, t) → (x,−y,−t) or (x, y, t) → (−x, y,−t).

Hence the natural question is, are all the centers of family (2) time–reversible? It is
known that the answer to this question is negative. As we will see in the next section,
there exist non–reversible centers in the family of the uniformly isochronous systems.

2.1 Isochronous centers and commutators

A more geometric approach to differential systems of equations in the real plane gives the
notion of planar vector field.

Definition 2. The vector field associated to the differential system (1) is X = (−y +
P (x, y))∂/∂x + (x + Q(x, y))∂/∂y.

The following definition gives the notion of commutator of a vector field.

Definition 3. Two vector fields X and Y commute if their Lie bracket is null, that is
[X ,Y] = DX .Y −DY.X ≡ 0.

The following theorem shows the relation between the isochronous center problem and
the existence of transversal commutator, see for instance [18].

Theorem 4. A center at the origin of system (1), with associated vector field X , is
isochronous if, and only if, there exists an analytic vector field Y such that [X ,Y] ≡ 0 and
X and Y are transversal in a punctured neighborhood of the origin.
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Furthermore, we have the following result proved in [17], see also [12].

Theorem 5. The origin of system (1), with associated vector field X , is an isochronous
center if, and only if, there exists an analytic vector field of the form Y = (x+o(x, y))∂/∂x+
(y + o(x, y))∂/∂y such that [X ,Y] ≡ 0.

Hence, the isochronous center problem is equivalent to find a transversal commutator
in a punctured neighborhood of the origin. There are only a few families of polynomial dif-
ferential systems in which a complete classification of the isochronous centers is known, and
almost all of them have a polynomial commutator, see for instance [5, 10, 15, 16, 18, 19].
Moreover, several works are devoted to find polynomial commutators for different families
of polynomial differential systems, see [10, 18]. However, there exist polynomial differ-
ential systems without any polynomial commutator. The first example of a polynomial
isochronous center without any polynomial commutator was found by Devlin in [9]. This
example is a quartic system, with homogeneous nonlinear part, where an isochronous
center at the origin and others two non–isochronous centers coexist. The example is:

ẋ = −y − x4 − 4x2y2 + y4, ẏ = x− 4x3y. (3)

The non–existence of a polynomial commutator is based upon the following theorem:

Theorem 6. Let us consider a polynomial system (1) with an analytic commutator defined
in an open set U . If there exists a center in U , it is an isochronous center.

Proof. Let Y the analytic commutator defined in U and X the vector field associated to
the polynomial system. X and Y are not transversal in the set V = 0 with V := X ∧ Y.
Moreover, V (x, y) is inverse integrating factor. Hence, V = 0 is an invariant curve of the
polynomial system (1). Let (x0, y0) a center of X in U . Since (x0, y0) is a singular point
of X , then, V (x0, y0) = 0. Since (x0, y0) is a center in U , (x0, y0) is an isolated zero of V .
Therefore, there exists a punctured neighborhood of (x0, y0) where the fields X and Y are
transversal and by Theorem 4, (x0, y0) is an isochronous center. Hence, Devlin example
cannot have a polynomial commutator.

We note that, in particular, every center of a system with a polynomial commutator
is an isochronous center. Nevertheless, it can exist a focus singular point in U as the
following example shows ẋ = −y + x(x2 + y2), ẏ = x + y(x2 + y2), which has a focus at
the origin and the following polynomial and transversal (in a punctured neighborhood of
the origin) commutator: ẋ = x(x2 + y2), ẏ = y(x2 + y2).

3 Uniformly isochronous centers and commutators

We have seen that the isochronous center problem is equivalent to find commutators
transversal in a punctured neighborhood of the singular point. In [2], the characterization
of the polynomial commutators of uniformly isochronous centers is studied. Using these
results, the authors classify the centers of the families with R(x, y) = R1 + Rn and the
case with R(x, y) = R2 + R2n with n ∈ N, see [2, 3]. These results exhibit the usefulness
of commutators in the classification of uniformly isochronous centers. Moreover, in all
the families of uniformly isochronous centers studied in [2], the authors find that either
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they are time–reversible or they have a polynomial commutator. Consequently, one asks
whether this is the general rule. In [14], an example with a uniformly isochronous center
at the origin which is no time–reversible and has no polynomial commutator is found. The
example is the following:

ẋ = −y + x (y3 − 3xy2 + 2x2y) (1 + x2 + y2),
ẏ = x + y (y3 − 3xy2 + 2x2y) (1 + x2 + y2).

(4)

In addition, this system is shown to commute with

ẋ = x (x2 + y2)
√

x2 + y2 (1 + x2 + y2),
ẏ = y (x2 + y2)

√
x2 + y2 (1 + x2 + y2).

(5)

We note that this commutator has not radial linear part, so Theorem 5 does not
apply. Moreover, although the vector fields are transversal in a punctured neighborhood
of the origin, the commutator is not analytic, so we cannot use Theorem 4. Hence, this
commutator does not ensure the existence of a uniformly isochronous center at the origin.

In the next subsection we want to continue the study of the existence of polynomial
and analytic commutators for uniformly isochronous centers started in [2, 3].

3.1 Commutators of polynomial systems

First, we present a result that gives the degree of a polynomial commutator, provided that
this polynomial commutator exists, see [3].

Theorem 7. If system (2) has a polynomial commutator, then this polynomial commutator
is of the form:

ẋ = xK(x, y), ẏ = yK(x, y),

where K is a polynomial of the same degree as R.

In fact, the bound of the degree of the commutator is the same for systems of the form:

ẋ = −y + P2 + P3 + · · ·+ xRn, ẏ = x + Q2 + Q3 + · · ·+ yRn,

where Pi and Qi are homogeneous polynomials of degree i. This type of systems are called
infinity degenerated systems.

Consequently, the problem to detect the existence or not of a polynomial commutator
reduce to a computation problem because the degree is fixed given a polynomial system.
Moreover the form of these polynomial commutators is studied in [2, 3]. More specifically,
in [3] are proved the following theorems:

Theorem 8. System (2), with R1 = R2 = . . . = Rj−1 = 0 and Rj 6= 0 has a polynomial
commutator with radial lineal part if, and only if, there are α`, β` homogeneous polynomials
of order ` (` ≤ j, ` divides to j) verifying x∂yβ` − y∂xβ` = `α` such that the system reads
for:

ẋ = −y + xα`

r−1∑

k=j/`−1

akβ
k
` , ẏ = x + yα`

r−1∑

k=j/`−1

akβ
k
` , (6)
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with ak arbitrary real numbers and r = [(n− 1)/`]. The commutator is given by

ẋ = x + x
r−1∑

k=j/`−1

akβ
k+1
` , ẏ = y + y

r−1∑

k=j/`−1

akβ
k+1
` .

By Theorem 5, system (6) has a uniformly isochronous center at the origin because
the commutator is polynomial and has radial lineal part.

Theorem 9. System (2), where R(x, y) =
∑n−1

j=0 Rj(x, y) with Rj(x, y) homogeneous poly-
nomial of degree j, has a polynomial commutator with null linear part if, and only if, it is
of the form:

ẋ = −y + xP2`(x, y)
∑m

j=0 aj(x2 + y2)j ,

ẏ = x + yP2`(x, y)
∑m

j=0 aj(x2 + y2)j ,
(7)

with P2`(x, y) homogeneous polynomial of degree 2`, ` ≥ 0, and aj arbitrary real numbers.
In this case, the commutator is given by

ẋ = x
m∑

j=0

aj(x2 + y2)j+`, ẏ = y
m∑

j=0

aj(x2 + y2)j+`. (8)

The following theorem gives the conditions to have a uniformly isochronous center at
the origin for system (7). Moreover, when the system has a uniformly isochronous center,
by Theorem 5, it also admits an analytic commutator with radial linear part. Therefore,
the natural question is how to find it. The following theorem also gives the analytic
commutator with radial linear part of the family of systems (7), when it has a uniformly
isochronous center at the origin.

Theorem 10. System (7) with the condition
∫ 2π
0 P2`(cosϕ, sinϕ)dϕ = 0 has a uniformly

isochronous center at the origin. Moreover, it has an analytic commutator with radial
linear part of the form:

ẋ = x(x2 + y2)`
∑m

j=0 aj(x2 + y2)jH−1,

ẏ = y(x2 + y2)`
∑m

j=0 aj(x2 + y2)jH−1,
(9)

where H is an analytic first integral of the form H = (x2 + y2)`+k/(1 + h(x, y)) and ak is
the first non null coefficient of the

∑m
j=0 aj(x2 + y2)j in (7).

Proof. Taking polar coordinates, system (7) reads for

ṙ = r2`+1
m∑

j=0

ajr
2jP2`(cosϕ, sinϕ), ϕ̇ = 1.

In the case
∫ 2π
0 P2`(cosϕ, sinϕ)dϕ = 0, system (7) has an analytic first integral that in

polar coordinates takes the form

H =
−2akr

2(`+k)(` + k)
1 + αr2 + βr4 + · · ·+ 2akr2(`+k)(` + k)

∫
P2`(cosϕ, sinϕ)dϕ

.

Hence, system (7) has a uniformly isochronous center at the origin. Using this analytic
first integral we can construct the analytic commutator (9) with radial linear part.
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We remark that the vector fields associated to system (7) and the commutator (8)
are always transversal in a punctured neighborhood of the origin. We note that if the
commutator (8) is analytic in a neighborhood of the origin (that is, ` is a natural number)
then, using Theorem 4, the origin of system (7) is a uniformly isochronous center.

In short, there exist uniformly isochronous centers without polynomial commutators
but they always have an analytic one. For instance, the Volokitin example (4) is a polyno-
mial system of degree 6, which has no polynomial commutator, see [14]. Using Theorem
10, system (4) commutes with

ẋ = x(x2 + y2)
3
2 (1 + x2 + y2)H−1,

ẏ = y(x2 + y2)
3
2 (1 + x2 + y2)H−1,

(10)

where H is the first integral

H =
3(x2 + y2)3/2

4(−1 + 3x2 + 4x3 + 3y2 + 6xy2 + 3(x2 + y2)
3
2 arctan(

√
x2 + y2))

.

System (10) provides an analytic commutator with radial lineal part for system (4).
In summary, the polynomial systems which have a polynomial commutator and a

uniformly isochronous center at the origin are determined by Theorem 8 or Theorem
10. Moreover, there exist uniformly isochronous centers of polynomial systems which are
only characterized by the existence of an analytic commutator of the form Y = (x +
o(x, y))∂/∂x + (y + o(x, y))∂/∂y, see Theorem 5.

3.2 Commutators of analytic systems

The following theorem is given in [3] and establishes the form of an analytic commutator
for an analytic system:

Theorem 11. If the analytic system: ẋ = −y + xR(x, y), ẏ = x + y R(x, y), with
R(0, 0) = 0, has a center at the origin, then there exists an analytic commutator of the
form: ẋ = x + xK(x, y), ẏ = y + y K(x, y), with K an analytic function around the
origin with K(0, 0) = 0.

From Theorem 11 the commutativity condition reduces to the following partial differ-
ential equation:

x

(
∂K

∂y
− ∂H

∂x
+ H

∂K

∂x
−K

∂H

∂x

)
+ y

(
−∂K

∂x
− ∂H

∂y
+ H

∂K

∂y
−K

∂H

∂y

)
= 0 (11)

A straightforward generalization of Theorem 8 for analytic systems is the following:

Proposition 12. Consider the system

ẋ = −y + xa(x, y)g(b(x, y)), ẏ = x + ya(x, y)g(b(x, y)) (12)

with a(x, y) = (x∂yb(x, y)− y∂xb(x, y))/`, g an arbitrary analytic function and b(x, y)
a homogeneous polynomial of degree ` with ` 6= 0. This system has a commutator of the
form:

ẋ = x + xb(x, y)g(b(x, y)), ẏ = y + yb(x, y)g(b(x, y)), (13)

and it has an isochronous center at the origin.
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Proof. Since b(x, y) is a homogeneous polynomial of degree `, we have

x
∂b(x, y)

∂x
+ y

∂b(x, y)
∂y

= `b(x, y), (14)

and taking into account the derivatives of (14), the Lie bracket of the vector fields associ-
ated to systems (12) and (13) is null and the claim follows.

A straightforward generalization of Theorem 9 for analytic systems is the following:

Proposition 13. The analytic system:

ẋ = −y + xf(x2 + y2)g(x, y), ẏ = x + yf(x2 + y2)g(x, y)

where f(x2 +y2) is an analytic function and g(x, y) is a homogeneous polynomial of degree
2`, has a commutator of the form:

ẋ = x(x2 + y2)`f(x2 + y2), ẏ = y(x2 + y2)`f(x2 + y2)

Proof. The Lie bracket of the vector field associated to the systems gives:

[X ,Y] = f(x2 + y2)
(

x
∂g(x, y)

∂x
+ y

∂g(x, y)
∂y

− 2`g(x, y)
)
Y

Finally, since g(x, y) is a homogeneous polynomial of degree 2`, the claim follows.

4 BiLiénard equation

In this section we study another family of polynomial systems which corresponds:

ẋ = −y + F (x), ẏ = x + G(y),

where F (x) and G(y) are polynomials without constant neither linear terms. These sys-
tems are called BiLiénard systems, see [11]. In this case, the center problem has been
studied with F (x) and G(y) polynomials until fourth degree and all the centers are time–
reversible, see [13]. Furthermore, there are families of centers for F (x) and G(y) of arbi-
trary degree, see [11]. In the following theorem we classify all centers in which F (x) and
G(y) are polynomials of degree five.

Theorem 14. Consider the system:

ẋ = −y + a2x
2 + a3x

3 + a4x
4 + a5x

5, ẏ = x + b2y
2 + b3y

3 + b4y
4 + b5y

5, (15)

where ai and bi are real numbers. All centers at the origin of system (15) are time–
reversible.
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