
ar
X

iv
:0

80
6.

28
40

v1
  [

q-
bi

o.
Q

M
]  

17
 J

un
 2

00
8

Cluster structure of functional networks

estimated from high-resolution EEG data

Roberta Sinatra∗,1, † Fabrizio De Vico Fallani,2, 3,† Laura Astolfi,3, 4

Fabio Babiloni,3, 4 Febo Cincotti,3 Vito Latora,5 and Donatella Mattia3

1Scuola Superiore di Catania, Catania, Italy

2Interdepartmental Research Centre for Models and Information Analysis in Biomedical Systems,

University “La Sapienza”, Rome, Italy

3IRCCS “Fondazione Santa Lucia”, Rome, Italy

4Department of Human Physiology and Pharmacology,

University “La Sapienza”, Rome, Italy

5Department of Physics and Astronomy,

University of Catania, and INFN Sezione Catania, Italy

(Dated: October 31, 2018)

Abstract

We study the topological properties of functional connectivity patterns among cortical areas in the fre-

quency domain. The cortical networks were estimated from high-resolution EEG recordings in a group

of spinal cord injured patients and in a group of healthy subjects, during the preparation of a limb move-

ment. We first evaluate global and local efficiency, as indicators of the structural connectivity respectively

at a global and local scale. Then, we use the Markov Clustering method to analyse the division of the

network into community structures. The results indicate large differences between the injured patients and

the healthy subjects. In particular, the networks of spinalcord injured patient exhibited a higher density

of efficient clusters. In the Alpha (7-12 Hz) frequency band,the two observed largest communities were

mainly composed by the cingulate motor areas with the supplementary motor areas, and by the pre-motor

areas with the right primary motor area of the foot. This functional separation strengthens the hypothesis of

a compensative mechanism due to the partial alteration in the primary motor areas because of the effects of

the spinal cord injury.
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I. INTRODUCTION

Over the last years, there has been an increasingly large interest in finding significant features

from human brain networks. In particular, the concept of functional connectivity plays a cen-

tral role to understand the organized behaviour of anatomical regions in the brain during their

activity. This organization is thought to be based on the interaction between different and dif-

ferently specialized cortical sites. Indeed, several methods have been proposed and discussed in

the literature, with the aim of estimating the functional relationships among the physiological sig-

nals [Davidet al., 2004; Leeet al., 2003] obtained from different neuro-imaging devices such

as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG)

and magnetoencephalography (MEG) apparatus [Horwitz, 2003]. Recently, a multivariate spec-

tral technique called Directed Transfer Function (DTF) hasbeen proposed [Kaminskiet al., 2001]

to determine directional influences between any given pair of channels in a multivariate data set.

This estimator is able to characterize at the same time direction and spectral properties of the brain

signals, requiring only one multivariate autoregressive (MVAR) model to be estimated from all

the EEG channel recordings. The DTF index has been demonstrated [Kaminskiet al., 2001] to

rely on the key concept of Granger causality between time series -an observed time seriesx(n)

causes another seriesy(n) if the knowledge ofx(n)s past significantly improves prediction of

y(n)- [Granger, 1969]. However, the extraction of salient characteristics from brain connectivity

patterns is an open challenging topic, since often the estimated cerebral networks have a relative

large size and complex structure. Consequently, there is a wide interest in the development of

mathematical tools that could describe in a concise way the structure of the estimated cerebral

networks [Tononiet al., 1994; Stam, 2004; Salvador, 2005; Sporns, 2002].

Functional connectivity networks estimated from EEG or magnetoencephalographic (MEG)

recordings can be analyzed with tools that have been alreadyproposed for the treatments of com-

plex networks as graphs [Strogatz, 2001; Wang & Chen, 2003; Spornset al., 2004; Stamet al.,

2006]. Such an approach can be useful, since the use of mathematical measures summarizing

graph properties allows for the generation and the testing of particular hypothesis on the physio-

logic nature of the functional networks estimated from high-resolution EEG recordings. However,

first results have been obtained for a set of anatomical brainnetworks [Strogatz, 2001; Spornset

al., 2002]. In these studies, the authors have employed two characteristic measures, theaverage

shortest path Landthe clustering index C, to extract respectively the global and local properties of
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the network structure [Watts and Strogatz 1998]. They have found that anatomical brain networks

exhibit many local connections (i.e. a highC) and a shortest separation distance between two

randomly chosen nodes (i.e. a lowL). Hence, anatomical brain networks have been designated as

small-world in analogy with the concept of the small-world phenomenon observed more than 30

years ago in social systems [Milgram 1967].

Many types of functional brain networks have been analyzed in a similar way. Several stud-

ies based on different imaging techniques like fMRI [Salvador et al., 2005; Eguiluzet al., 2005;

Achard & Bullmore, 2007], MEG [Stamet al., 2006; Bassettet al., 2006; Bartolomeiet al., 2006]

and EEG [Micheloyanniset al., 2006; Stamet al., 2007] have shown that the estimated functional

networks can indeed exhibit the small-world property. In the functional brain connectivity con-

text, these properties have been demonstrated to reflect an optimal architecture for the information

processing and propagation among the involved cerebral structures [Lago-Fernandezet al., 2000;

Spornset al., 2000]. In particular, a highclustering index Cis an indication of the presence in the

network of a large number of triangles. However, this index alone does not return detailed infor-

mation on the presence of larger connected clusters of nodes. This fact makes up a real obstacle in

the analysis of the network properties especially in the field of the Neuroscience where the corre-

lated behaviour of different cortical regions plays a fundamental role in the correct understanding

of cerebral systems. Methods to detect the community structures in a graph, i.e. tightly connected

group of nodes, are now available in the market [Harary & Palmer, 1973]. Communities (or clus-

ters or modules) are groups of vertices that probably share common properties and/or play similar

roles within the graph [Boccalettiet al., 2006]. Hence, communities may correspond to groups

of pages of the World Wide Web dealing with related topics [Flakeet al., 2002], to functional

modules such as cycles and pathways in metabolic networks [Guimer & Amaral, 2005; Pallaet

al., 2005], to groups of affine individuals in social networks [Girvan and Newman, 2002; Lusseau

and Newman, 2004], to compartments in food webs [Pimm, 1979;Krauseet al., 2003], and so on.

Finding the communities within a cerebral network allows identifying the hierarchy of functional

connections within a complex architecture. This opportunity would represent an interesting way

to improve the basic understanding of the brain functioning. Indeed, some cortical regions are

supposed to share a large number of functional relationships during the performance of several

motor and cognitive tasks. This characteristic leads to theformation of highly connected clusters

within the brain network. These functional groups consist in a certain number of different cerebral

areas that are cooperating more intensively in order to complete a task successfully.
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In the present paper, we present a study of the structural properties of functional networks es-

timated from high-resolution EEG signals in a group of spinal cord injured patients during the

preparation of a limb movement. In particular, we first investigate some indicators of the con-

nectivity at a global and local scale. Then we analyse the networks by studying their structure in

communities, and we compare the results with those obtainedfrom a group of healthy subjects.

II. METHODS

A. High-resolution EEG recordings in SCI patients and Healthy subjects

All the experimental subjects participating in the study were recruited by advertisement. In-

formed consent was obtained in each subject after the explanation of the study, which was ap-

proved by the local institutional ethics committee The spinal cord injured (SCI) group consisted

of five patients (age, 22-25 years; two females and three males). Spinal cord injuries were of

traumatic aetiology and located at the cervical level (C6 inthree cases, C5 and C7 in two cases, re-

spectively); patients had not suffered for a head or brain lesion associated with the trauma leading

to the injury. The control (CTRL) group consisted of five healthy volunteers (age, 26-32 years; five

males). They had no personal history of neurological or psychiatric disorder; they were not taking

medication, and were not abusing alcohol or illicit drugs. For EEG data acquisition, subjects were

comfortably seated on a reclining chair, in an electricallyshielded, dimly lit room. They were

asked to perform a brisk protrusion of their lips (lip pursing) while they were performing (healthy

subjects) or attempting (SCI patients) a right foot movement. The choice of this joint movement

was suggested by the possibility to trigger the SCIs attemptof foot movement. In fact patients

were not able to move their limbs; however they could move their lips. By attempting a foot

movement associated with a lips protrusion, they provided an evident trigger after the volitional

movement activity. This trigger was recorded to synchronize the period of analysis for both the

considered populations. The task was repeated every 6-7 seconds, in a self-paced manner, and

the 100 single trials recorded will be used for the estimate of functional connectivity by means of

the Directed Transfer Function (DTF, see following paragraph). A 96-channel system (BrainAmp,

Brainproducts GmbH, Germany) was used to record EEG and EMG electrical potentials by means

of an electrode cap and surface electrodes respectively. The electrode cap was built accordingly

to an extension of the 10-20 international system to 64 channels. Structural MRIs of the subjects
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head were taken with a Siemens 1.5T Vision Magnetom MR system(Germany).

B. Cortical activity and Functional connectivity Estimation

Cortical activity from high resolution EEG recordings was estimated by using realistic head

models and cortical surface models with an average of 5.000 dipoles, uniformly disposed. Esti-

mation of the current density strength, for each one of the 5.000 dipoles, was obtained by solving

the Linear Inverse problem, according to techniques described in previous papers [Babiloniet al.,

2005; Astolfiet al., 2006]. By using the passage through the Tailairach coordinates system, twelve

Regions Of Interest (ROIs) were then obtained by segmentation of the Brodmann areas on the ac-

curate cortical model utilized for each subject. The ROIs considered for the left (L) and right (R)

hemisphere are: the primary motor areas for foot (MFL and MF R) and lip movement (MLL

and ML R); the proper supplementary motor area (SML and SM R); the standard pre-motor area

(6 L and 6R); the cingulated motor area (CML and CM R) and the associative Brodmann area 7

(7 L and 7R). For each EEG time point, magnitude of the five thousands dipoles composing the

cortical model was estimated by solving the associated Linear Inverse problem [Grave de Peralta

& Gonzalez Andino, 1999]. Then, the average activity of dipoles within each ROI was computed.

In order to study the preparation to an intended foot movement, a time segment of 1.5 seconds

before the lips pursing was analysed; lips movement was detected by means of an EMG. The re-

sulting cortical waveforms, one for each predefined ROI, were then simultaneously processed for

the estimation of functional connectivity by using the Directed Transfer Function. The DTF is a

full multivariate spectral measure, used to determine the directed influences between any given

pair of signals in a multivariate data set [Kaminskiet al., 2001]. In order to be able to compare the

results obtained for data entries with different power spectra, the normalized DTF was adopted.

It expresses the ratio of influence of elementj to elementi with respect to the influence of all

the other elements oni. Details on the DTF equations in the treatment of EEG signalshave been

largely described in previous papers [Astolfiet al. 2005, Babiloniet al. 2005]. In the present

study, we selected four frequency bands of interest (Theta 4-7 Hz, Alpha 8-12 Hz, Beta 13-29

Hz and Gamma 30-40 Hz) and we gathered the respective cortical networks by averaging the val-

ues within the respective range. In order to consider only the functional links that are not due to

chance, we adopted a Montecarlo procedure. In particular, we contrasted each DTF value with

a surrogate distribution of one thousand DTF values obtained by shuffling the signals samples in
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the original EEG dataset. Then, we considered a threshold value by computing the 99th percentile

of the distribution and we filtered the original DTF values byremoving the edges with intensity

below the statistical threshold.

C. Evaluation of global and local efficiency

A graph is an abstract representation of a network. A graphG consists in a set of vertices -or

nodes-V and a set of edges -or connections-L indicating the presence of some sort of interaction

between the vertices. A graph can be described in terms of theso-called adjacency matrixA,

a square matrix such that, when a weighted and directed edge exists from the nodei to j, the

corresponding entry of the adjacency matrix isAij 6= 0; otherwiseAij = 0. Two measures are

frequently used to characterize the local and global structure of unweighted graphs: the average

shortest pathL and the clustering indexC [Watts and Strogatz, 1998; Newman, 2003; Grigorov,

2005]. The former measures the average distance between twonodes, the latter indicates the

tendency of the network to form highly connected clusters ofnodes. Recently, a more general

setup has been proposed to study weighted (also unconnected) networks [Latora & Marchiori,

2001; Latora & Marchiori, 2003]. The efficiencyeij in the communication between two nodesi

andj, is defined as the inverse of the shortest distance between the vertices. Note that in weighted

graphs the shortest path is not necessarily the path with thesmallest number of edges. In the

case the two nodes are not connected, the distance is infiniteandeij = 0. The average of all the

pair-wise efficiencieseij is the global-efficiencyEg of the graphG:

Eg(G) =
1

N(N − 1)

∑

i 6=j∈V

1

dij
(1)

whereN is the number of vertices composing the graph. The local properties of the graph can be

characterized by evaluating for every vertexi the efficiency ofGi, which is the sub-graph induced

by the neighbours of the nodei [Latora & Marchiori, 2001]. Thus, we defined the local efficiency

El of graphG as the average:

El(G) =
1

N

∑

i

Eg(Gi) (2)

Since nodei does not belong to subgraphGi, the local efficiency measures how the communication

among the first neighbours ofi is affected by the removal ofi [Latora and Marchiori, 2005; Latora

and Marchiori, 2007]. Hence the local efficiency is an indicator of the level of fault-tolerance of
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the system. Separate ANOVAs were conduced for each of the twovariablesEg andEl. Statistical

significance was fixed at 0.05, and main factors of the ANOVAs were the “between” factor GROUP

(with two levels: SCI and CTRL) and the “within” factor BAND (with four levels: Theta, Alpha,

Beta and Gamma). Greenhouse & Geisser correction has been used for the protection against the

violation of the sphericity assumption in the repeated measure ANOVA. Besides post-hoc analysis

with the Duncan’s test and significance level at 0.05 has beenperformed.

D. Detection of Community Structures

In order to detect the community structures, we have implemented the Markov Clustering

(MCl) algorithm [Vandongen PhD Thesis, 2000; Enrightet al., 2002]. It is one algorithm of a

few available which works even with directed graphs and it isbased on the properties of the dy-

namical evolution of random walkers moving on the graph. This approach is also useful since it

manages to achieve reliable results when the graph containsself-loops, i.e. edges connecting a

node to itself. Since a community is a group of densely connected nodes, a random walker that

started in a node of a given community will leave this clusteronly after having visited a large num-

ber of the community’s nodes. Hence, the basic idea implemented in the algorithm is to favour the

random motion within nodes of the same community. This is obtained by alternating the applica-

tion of two operators on the transition matrix of the random walk: the expansion operator and the

inflation one. The expansion operator applied on a given matrix returns its square power, while the

inflation operator corresponds to the Hadamard power of the same matrix, followed by a scaling.

In practice, the algorithm works as follows:

1. Take the adjacency matrixA and add a self-loop to each node, i.e. setAii = 1 for i =

1, 2, . . . , N ;

2. Obtain fromA the transition probability matrixW , that describes the random motion:Wij =
Aij

P

k Akj
. Every elementWij expresses the probability to go fromj to i in one step.W is a

stochastic matrix i.e. a matrix of non-negagtive elements and where the sum of elements of

each column is normalized to one:
∑N

i=1Wij = 1;

3. Take the square ofW (expansion step);

4. Take the rth power (r > 1) of every element ofW 2 and normalize each column to one to

obtain a new stochastic matrixW ′: W ′ =
[(W 2)ij ]

r

P

k [(W 2)kj ]r
(inflation step);
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5. Go back to step 3.

Step 3 corresponds to computing random walks of “higher-lengths”, that is to say random

walks with many steps. Step 4 will serve to enhance the elements of a column having higher

values. This means, in practice, that the most probable transition from nodej will become even

more probable compared to the other possible transitions from nodej. The algorithm converges to

a matrix invariant under the action of expansion and inflation. The graph associated to such matrix

consists of different star-like components; each of them constitutes a community (or cluster) and

its central node can be interpreted as the basin of attraction of the community. For a givenr > 0,

MCl always converges to the same matrix; for this reason it isclassified as a parametric and

deterministic algorithm. The parameterr tunes the granularity of the clustering, meaning that a

small r corresponds to a few big clusters, while a bigr returns smaller clusters. In the limit of

r → 1 only one cluster is detected. In the present study, an analysis at different levels of granularity

has been performed in order to find the value ofr which better fits with the experimental data. Then

we have represented how the average of the number of clusterschanges as a function ofr (fig. 3).

Finally the valuer = 1.5 has been chosen to study in details how the nodes are organized in

clusters.

III. RESULTS

Fig. 1 shows the realistic head model obtained for a representative subject. The twelve ROIs

used in the present study are illustrated in colour on the cortex model that is grey coloured. At

the bottom side of the fig. 1, we report the adjacency matricesrepresenting the cortical networks

estimated, in the Alpha frequency band, from the two analyzed populations during the movement

preparation. To be noticed that such network are directed. Consequently the obtained adjacency

matrix is not symmetric. The level of grey within each matrixin figure encodes the number of

subjects that hold the functional connection identified by row i and columnj.

As a measure of global and local performance of the network structure we have evaluated the

global-efficiencyEg and the local-efficiencyEl indices obtained for each frequency band and for

each subject. The average values ofEg andEl deriving from the healthy group (CTRL) and from

the group of patients (SCI) are illustrated for each band in the scatter plot of fig. 2. We have

performed an Analysis of Variance (ANOVA) of the obtainedresults. TheEg variable showed

no significant differences for the main factors GROUP and BAND. In particular, the “between”
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FIG. 1: Top Reconstruction of the head model from magnetic resonance images. The twelve regions of

interest (ROIs) are illustrated in colour on the grey cortexand labelled according to previously defined

acronyms.Bottom Left Adjaceny matrix for the control group (CTRL) in the Alpha (7-12 Hz) band. The

level of grey encodes the number of subjects that hold the functional connection identified by the rowi

and columnj. Bottom Right Adjacency matrix for the patients group (SCI) in the Alpha band. Same

conventions as above.

factor GROUP was found having an F value of 0.83, p=0.392 while the “within” factor BAND

showed an F value of 0.002 and p=0.99. The ANOVA performed on theEl variable revealed a

strong influence of the between factor GROUP (F=32.67, p=0.00045); while the BAND factor

and the interaction between GROUP X BAND was found not significant (F=0.21 and F=0.91

respectively, p values equal to 0.891 and 0.457). Post-hoc tests revealed a significant difference

between the two examined experimental groups (SCI, CTRL) inthe Alpha and Beta band (p=0.01,

0.03 respectively). In particular, the average local-efficiency of the SCI networks was significantly

higher than the CTRL networks for all these bands.
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FIG. 2: Scatter plot of the average efficiency indexes obtained from the estimated cortical networks. Global-

efficiency is on thex-axis, local-efficiency is on they-axis. The Greek symbol encodes the frequency band

(θ Theta,α Alpha, β Beta andγ Gamma) and it represents the average of the values computed from the

control (CTRL, blue-coloured font) and spinal cord injuredgroup (SCI, red-coloured font).

The identification of functional clusters within the cortical networks estimated in the control

subjects and in the spinal cord injured patients during the movement preparation was addressed

through the MCl algorithm (see Methods - Detection of Community Structures (II D) ). In fig. 3

the average number of clusters detected in the CTRL and SCI networks is reported as a function

of the granularity parameterr. As it can be observed, for every value ofr, and for both the Alpha

and Beta bands, the average number of clusters is greater forthe SCI group than for the CTRL

one. One of the main problems with the MCl algorithm is the choice of the value of the granularity

parameter to use. Usually good values ofr are in the range]1, 3[ [Vandongen PhD Thesis, 2000;

Enrightet al., 2002]. For the case under study here, the presence of a plateau in fig. 3 indicates

that there is a region of values such that the number of clusters does not strongly depends onr.
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FIG. 3: Representation of the mean number of clusters for CTRL (blue circles) and SCI (red squares)

groups as a function ofr, granularity parameter of the MCl algorithm, in both the Alpha (top) and Beta

band (bottom).

We have decided to adopt the granularityr = 1.5, that is a value in the plateau. For this value of

r, the average number of clusters in the Alpha band is equal to 3.2 for the cortical networks of the

control subjects, while it is equal to 5 for the the spinal cord injured patients. In the Beta band, the

average number of cluster is 3.4 for the CTRL networks and 4.6for the SCI networks, as can be

observed at the bottom of the fig. 3.

Fig. 4 illustrates the partitioning of the cortical networks estimated in the Alpha band for a

representative subject of the control (CTRL) group and for arepresentative patient of the spinal

cord injured (SCI) group.

Functional networks are represented as three-dimensionalgraphs on the realistic head model

of the experimental subjects. The colour of each node, located in correspondence to each cortical

area (ROI), encodes the cluster to which the node belongs. The functional clusters detected within

the cortical networks in all the subjects and patients participating in the present study are listed

in the following tables. Table I presents the results obtained in the Alpha band while the table II

presents the results obtained in the Beta band.

In the Alpha band, the CTRL networks do not present a particularly complicate division into
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TABLE I: Cortical network partitioning in the Alpha frequency band.

CTRL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

ALFA CM L,CM R,6 L,6 R, SM R 0 0 0 0

SM L,ML L,ML R,MF L,

MF R,7 L,7 R

ARGI CM L,CM R,6 L,6 R, SM L SM R ML L 0 0

ML R,MF L,MF R,7 L,

7 R

CIFE CM L,CM R,6 L,6 R, ML L 7 L 0 0 0

SM L,SM R,ML R,MF L,

MF R,7 R

MADA CM L,CM R,6 L,SM R, 6 R,SM L,ML R, 0 0 0 0

ML L,7 L,7 R MF L,MF R

MAMA CM L,CM R,6 L,6 R, ML R 7 L 7 R 0 0

SM L,SM R,ML L,

MF L,MF R

SCI

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

BARO CM L,CM R,6 R 6 L,SM R, SM L,ML L, 7 R 0 0

ML R,MF L,MF R 7 L

IRIO CM L,CM R,SM L, 6 L 6 R ML L MF R 7 R

SM R,ML R,MF L,7 L

MASI CM L,CM R,6 L,SM L, 6 R,MF R,7 R 7 L 0 0 0

SM R,ML L,ML R,MF L

POAL CM L,CM R,6 R,SM R 6 L, SM L, ML L ML R MF L 7 R

MF R,7 L

TRDA CM L,CM R,SM L,SM R, 6 L 6 R ML R 7 L 7 R

ML L,MF L,MF R

12



FIG. 4: Graphical representation of the identified clustersof ROIs within the functional networks estimated

from a representative control (CTRL) subject and spinal cord injured (SCI) patient during the movement

preparation in the Alpha band. The functional network is illustrated as a three-dimensional graph on the

realistic cortex model. Spheres located at the barycentre of each ROI represent nodes. Black directed arrows

represent edges. The graph partitioning is illustrated through the nodes colouring. Nodes with same colours

belong to the same cluster.

clusters, since for each subject the large part of the cortical areas belong to a unique large commu-

nity (Cluster 1). In general, the SCI networks are organizedin a larger number of clusters more

clustered, and two main communities can be observed (Cluster 1 and Cluster 2). The first com-

munity is mostly composed by the cingulate motor areas (CML and CM R), the supplementary

motor areas (SML and SMR) and the left primary motor area (MFL). The second community

is predominantly composed by the left pre-motor areas (6L) and the right primary motor area of

the foot (MFR). The remaining ROIs tend to form isolated groups.

In the Beta band both the cortical networks of the control andspinal cord injured group tend

13



TABLE II: Cortical network partitioning in the Beta frequency band

CTRL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

ALFA CM L,CM R,6 L,6 R, 7 L 7 R 0 0

SM L,SM R,ML L,ML R,

MF L,MF R

ARGI CM L,CM R,6 R,ML L, 6 L,SM L,MF R SM R 7 R 0

ML R,MF L,7 L

CIFE CM L,CM R,6 L,SM L, 6 R,ML R 7 L 0 0

SM R,ML L,MF L,

MF R,7 R

MADA CM L,CM R,SM L,SM R, 6 L,6 R,MF L ML L 7 R 0

ML R,MF R,7 L

MAMA CM L,6 R,ML L,MF R CM R,6 L,SM L, 7 L 7 R 0

SM R,ML R,MF L

SCI

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

BARO CM L,CM R,6 L,6 R, SM R,ML L 7 L 7 R 0

SM L,ML R,MF L,MF R

IRIO CM L,CM R,6 L,SM L, 6 R ML R 7 L 7 R

SM R,ML L,MF L,MF R

MASI CM L,CM R,6 L,SM L, 6 R ML L MF L 7 R

SM R,ML R,MF R,7 L

POAL CM L,CM R,SM L, 6 L,ML R,MF R 7 L,7 R 6 R ML L

SM R,MF L

TRDA CM L,CM R,SM L,SM R, 6 R,ML R 6 L ML L 0

MF L,MF R,7 L,7 R
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to get organized in two main modules (Cluster 1 and Cluster 2). In particular, while for both the

populations the first cluster is principally composed by thecingulate motor areas CML and CM R,

the SM L and SM R and the MFL and MF R, the second cluster does not present a common set

of ROIs across the experimental subjects neither in the CTRLand SCI group.

IV. DISCUSSION

The evaluation of the estimated cortical networks was addressed by means of a set of measures

typical of complex networks analysis [Boccalettiet al., 2006; Micheloyanniset al., 2006; Stam &

Reijneveld, 2007; Hilgetaget al., 2000]. We have first computed global (Eg) and local efficiency

(El), two measures that allows characterizing the organization of the functional flows in both the

inspected populations [De Vico Fallaniet al., 2007b]. The results indicate that spinal cord injuries

significantly (p<0.05) affect only the local properties of the functional architecture of the cortical

network in the movement preparation. The global property oflong-range integration between the

ROIs within the network did not differ significantly (p>0.05) from the healthy behaviour. The

higher average value of local efficiency in the SCI group suggests a larger level of the internal

organization and a higher tendency to form modules. In particular, this difference can be observed

in the two frequency bands Alpha (7-12 Hz) and Beta (13-29 Hz)- that are already known for their

involvement in electrophysiological phenomena related tothe preparation and to the execution of

limbs movements [Pfurtscheller & Lopes da Silva, 1999]. Although the efficiency indexes describe

the network topology concisely, they are not able to give information about the number of modules

and their composition within the network. For this reason, the detection of community structures

was addressed by means of the Markov Clustering (MCl) algorithm [Vandongen PhD Thesis,

2000; Enrightet al., 2002]. The same method has already been used successfully to detect clusters

in sequence similarity networks [Enrightet al., 2002] and in configuration space networks deriving

from free-energy landscapes [Gfelleret al., 2007]. The obtained results reveal a different average

number of clusters for the functional networks of the spinalcord injured patients and the control

subjects in both the main spectral contents. In particular,in the Alpha band the SCI network

presents an average number of modules equal to five, while theCTRL network appears to be

divided in three groups. This outcome is in accordance with the significant (p<0.05) higher level

of local-efficiency found in the functional networks of the SCI patients with respect to the control

subjects. A highEl value reflects a high clustering indexCand therefore a high density of network
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communities. The cortical areas of the control subjects do not present a clear partitioning in

different modules. They rather appear to belong to a unique community, meaning that they are all

involved, in the same way, in the exchange of information during the movement preparation. The

analysis of the functional communities within the networksobtained for the spinal cord patients

revealed a higher tendency to form separate clusters. The pre-motor areas (Brodmann 6L and

6 R), the associative regions (Brodmann 7L and 7R) and the right primary motor area of the

foot (MF R) break away from the large module that was found in the networks of the CTRL

group. In particular, the area MFR and the region 6L belong to the same cluster in at least

three experimental patients. This result reveals the necessity of the SCI networks to hold a more

efficient communication between these frontal pre-motor and primary motor structures, which are

already known to be active during the successful execution of a simple movement [Oharaet al.,

2001]. In the Beta band, the average number of identified clusters in the SCI networks and in the

CTRL networks is less different. Moreover, the ROIs that appeared to belong to different clusters

in the Alpha band are in this case functionally tied in the same community. In summary, while in

the Alpha band the control group mostly presented a unique large cluster, the spinal cord injured

patients mainly exhibited two clusters. These two largest communities are mainly composed by

the cingulate motor areas with the supplementary motor areas and by the pre-motor areas with the

right primary motor area of the foot. This functional separation is thought to be responsible of the

highest level of internal organization in the estimated networks and strengthens the hypothesis of

a compensative mechanism due to the partial alteration in the primary motor areas because of the

effects of the spinal cord injury [De Vico Fallaniet al., 2007a].
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VI. NOTES

In the current work, all the estimated functional networks are treated as unweighted and directed

graphs. They all have the same number of connections representing the 25% (for the community

structure analysis) and the 30% (for the efficiency indexes analysis) most powerful links within

the network. These particular values belonged to an interval of thresholds (from 0.1 to 0.5), for

which results remained significantly stable [De Vico Fallani et al., 2007a].
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Guimerà, R. & Amaral L.A.N. [2005] “Functional cartography of complex metabolic net-

works,” Nature433, 895-900.

Harary, F. & Palmer, E.M. [1973]Graphical enumeration(Academic Press, New York), p. 124.

Hilgetag, C.C., Burns, G.A.P.C., O’Neill, M.A., Scannell,J.W. & Young, M.P. [2000]

“Anatomical connectivity defines the organization of clusters of cortical areas in the macaque

18



monkey and the cat,”Philos. Trans. R. Soc. Lond. B. Biol. Sci.355, 91110.

Horwitz, B. [2003] “The elusive concept of brain connectivity,” Neuroimage, 19, 466-470.

Kaminski, M., Ding, M., Truccolo, W.A. & Bressler, S. [2001]“Evaluating causal relations in

neural systems: Granger causality, directed transfer function and statistical assessment of signifi-

cance,”Biol. Cybern.85, 145-157.

Krause, A.E., Frank, K.A., Mason, D.M., Ulanowicz, R.E. & Taylor, W.W. [2003] “Compart-

ments exposed in food-web structure,”Nature426, 282285.

Lago-Fernandez, L.F., Huerta, R., Corbacho, F. & Siguenza,J.A. [2000] “Fast response and

temporal coherent oscillations in small-world networks,”Phys. Rev. Lett.84, 275861.

Latora, V. & Marchiori, M. [2001] “Efficient behaviour of small-world networks,”Phys. Rev.

Lett. 87, 198701.

Latora, V. & Marchiori, M. [2003] “Economic small-world behavior in weighted networks,”

Eur. Phys. J. B.32, 249263.

Latora, V. & Marchiori, M. [2005] “Vulnerability and protection of infrastructure networks,”

Phys. Rev. E71, 015103R.

Latora, V. & Marchiori, M. [2007] “A measure of centrality based on network efficiency,”New

Journal of Physics9, 188.

Lee, L., Harrison, L.M. & Mechelli, A. [2003] “The functional brain connectivity workshop:

report and commentary,”Neuroimage19, 457-465.

Lusseau, D. & Newman, M.E.J. [2004] “Identifying the role that animals play in their social

networks,”Proceedings of the Royal Society of London B271, S477S481.

Micheloyannis, S., Pachou, E., Stam, C.J., Vourkas, M., Erimaki, S. & Tsirka, V. [2006] “Using

graph theoretical analysis of multi channel EEG to evaluatethe neural efficiency hypothesis,”

Neuroscience Letters402, 273277.

Milgram, S. [1967] “The Small World Problem,”Psychology Today1(1), 60-67.

Newman, M.E.J. [2003] “The structure and function of complex networks,”SIAM Review45,

167-256.

Ohara, S., Mima, T., Baba, K., Ikeda, A., Kunieda, T., Matsumoto, R., Yamamoto, J., Mat-

suhashi, M., Nagamine, T., Hirasawa, K., Hon. T., Mihara, T., Hashimoto, N., Salenius, S. &

Shibasaki, H. [2001] “Increased synchronization of cortical oscillatory activities between human

supplementary motor and primary sensorimotor areas duringvoluntary movements,”J, Neurosci.

21(23), 9377-9386.

19



Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. [2005] “Uncovering the overlapping community

structure of complex networks in nature and society,”Nature435, 814-818.

Pfurtscheller, G. & Lopes da Silva, F.H. [1999] “Event-related EEG/MEG synchronization and

desynchronization: basic principles,”Clin. Neurophysiol.110(11), 1842-57.

Pimm, S.L. [1979] “The structure of food webs,”Theoretical Population Biolology16, 144158.

Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D. & Bullmore, E. [2005]

“Neurophysiological Architecture of Functional MagneticResonance Images of Human Brain,”

Cereb Cortex15(9), 1332-42.

Sporns, O., Tononi, G. & Edelman, G.E. [2000] “Connectivityand complexity: the relationship

between neuroanatomy and brain dynamics,”Neural Netw.13, 909922.

Sporns, O. [2002] “Graph theory methods for the analysis of neural connectivity patterns,” In

R. Kötter (Ed.), Neuroscience databases,A practical guide, 171-185.

Sporns, O., Chialvo, D.R., Kaiser, M. & Hilgetag, C.C. [2004] “Organization, development

and function of complex brain networks,”Trends Cogn. Sci.8, 418-25.

Sporns, O. & Zwi, J.D. [2004] “The small world of the cerebralcortex,” Neuroinformatics2,

145-162.

Stam, C.J. [2004] “Functional connectivity patterns of human magnetoencephalographic

recordings: a ’small-world’ network?,”Neurosci. Lett.355, 25-8.

Stam, C.J., Jones, B.F., Manshanden, I., van Cappellen van Walsum, A.M., Montez, T., Ver-

bunt, J.P., de Munck J.C., van Dijk B.W., Berendse, H.W. & Scheltens, P. [2006] “Magnetoen-

cephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease,”Neu-

roimage32(3), 1335-44.

Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M. & Scheltens, P. [2006] “Small-World Net-

works and Functional Connectivity in Alzheimer’s Disease,” Cereb. Cortex, 17(1), 92-9.

Stam, C.J. & Reijneveld, J.C. [2007] “Graph theoretical analysis of complex networks in the

brain,” Nonlinear Biomed. Phys.1, 3 epub.

Strogatz, S.H. [2001] “Exploring complex networks,”Nature410, 268-76.

Tononi, G., Sporns, O. & Edelman, G.M. [1994] “A measure for brain complexity: relat-

ing functional segregation and integration in the nervous system,” Proc. Natl. Acad. Sci.91,

50335037.

Van Dongen, S., [2000]Graph Clustering by Flow Simulation, PhD thesis, University of

Utrecht.

20



Watts, D.J. & Strogatz, S.H. [1998] “Collective dynamics of’small-world’ networks,”Nature

393, 440-442.

21


	Introduction
	Methods
	High-resolution EEG recordings in SCI patients and Healthy subjects
	Cortical activity and Functional connectivity Estimation
	Evaluation of global and local efficiency
	Detection of Community Structures

	Results
	Discussion
	acknowledgments
	Notes
	References

