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Abstract

We study the topological properties of functional connatgtipatterns among cortical areas in the fre-
guency domain. The cortical networks were estimated frogh-nésolution EEG recordings in a group
of spinal cord injured patients and in a group of healthy eciisj during the preparation of a limb move-
ment. We first evaluate global and local efficiency, as indisaof the structural connectivity respectively
at a global and local scale. Then, we use the Markov Clugtenethod to analyse the division of the
network into community structures. The results indicatgdalifferences between the injured patients and
the healthy subjects. In particular, the networks of spawatl injured patient exhibited a higher density
of efficient clusters. In the Alpha (7-12 Hz) frequency batie two observed largest communities were
mainly composed by the cingulate motor areas with the sapgary motor areas, and by the pre-motor
areas with the right primary motor area of the foot. This fioral separation strengthens the hypothesis of
a compensative mechanism due to the partial alteratioreiptimary motor areas because of the effects of

the spinal cord injury.
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I. INTRODUCTION

Over the last years, there has been an increasingly largeesitin finding significant features
from human brain networks. In particular, the concept ofcfional connectivity plays a cen-
tral role to understand the organized behaviour of anatainmegions in the brain during their
activity. This organization is thought to be based on therantion between different and dif-
ferently specialized cortical sites. Indeed, several waghhave been proposed and discussed in
the literature, with the aim of estimating the functiondhtenships among the physiological sig-
nals [Davidet al, 2004; Leeet al., 2003] obtained from different neuro-imaging devices such
as the functional Magnetic Resonance Imaging (fMRI) scarelectroencephalography (EEG)
and magnetoencephalography (MEG) apparatus [Horwitz3R(Recently, a multivariate spec-
tral technique called Directed Transfer Function (DTF) hesn proposed [Kaminskt al,, 2001]
to determine directional influences between any given gathannels in a multivariate data set.
This estimator is able to characterize at the same timetdireand spectral properties of the brain
signals, requiring only one multivariate autoregressM&AR) model to be estimated from all
the EEG channel recordings. The DTF index has been demtetss{igaminskiet al., 2001] to
rely on the key concept of Granger causality between timesean observed time seriesn)
causes another serigén) if the knowledge ofx(n)s past significantly improves prediction of
y(n)- [Granger, 1969]. However, the extraction of salient cheastics from brain connectivity
patterns is an open challenging topic, since often the astidhcerebral networks have a relative
large size and complex structure. Consequently, there iga interest in the development of
mathematical tools that could describe in a concise way tiuetsire of the estimated cerebral
networks [Tononet al,, 1994; Stam, 2004; Salvador, 2005; Sporns, 2002].

Functional connectivity networks estimated from EEG or metgencephalographic (MEG)
recordings can be analyzed with tools that have been alygaghpsed for the treatments of com-
plex networks as graphs [Strogatz, 2001; Wang & Chen, 2008rrSet al, 2004; Stanet al,
2006]. Such an approach can be useful, since the use of matiicehmeasures summarizing
graph properties allows for the generation and the testiqadicular hypothesis on the physio-
logic nature of the functional networks estimated from higbolution EEG recordings. However,
first results have been obtained for a set of anatomical retiworks [Strogatz, 2001; Spores
al., 2002]. In these studies, the authors have employed twactsistic measures, tlaerage

shortest path landthe clustering index (o extract respectively the global and local properties of



the network structure [Watts and Strogatz 1998]. They hauad that anatomical brain networks
exhibit many local connections (i.e. a higlh) and a shortest separation distance between two
randomly chosen nodes (i.e. aldy. Hence, anatomical brain networks have been designated as
small-world in analogy with the concept of the small-worliepomenon observed more than 30
years ago in social systems [Milgram 1967].

Many types of functional brain networks have been analymeal $imilar way. Several stud-
ies based on different imaging techniques like fMRI [Satwaet al., 2005; Eguiluzet al., 2005;
Achard & Bullmore, 2007], MEG [Starat al., 2006; Bassettt al., 2006; Bartolomeet al., 2006]
and EEG [Micheloyannist al,, 2006; Stanet al., 2007] have shown that the estimated functional
networks can indeed exhibit the small-world property. la thnctional brain connectivity con-
text, these properties have been demonstrated to reflegitiamead architecture for the information
processing and propagation among the involved cerebraitates [Lago-Fernandez al., 2000;
Spornset al,, 2000]. In particular, a higblustering index Gs an indication of the presence in the
network of a large number of triangles. However, this indiexea does not return detailed infor-
mation on the presence of larger connected clusters of ndtiesfact makes up a real obstacle in
the analysis of the network properties especially in thel foflthe Neuroscience where the corre-
lated behaviour of different cortical regions plays a fumeatal role in the correct understanding
of cerebral systems. Methods to detect the community strestin a graph, i.e. tightly connected
group of nodes, are now available in the market [Harary & Ralh973]. Communities (or clus-
ters or modules) are groups of vertices that probably sh@arewn properties and/or play similar
roles within the graph [Boccaletét al, 2006]. Hence, communities may correspond to groups
of pages of the World Wide Web dealing with related topicsakélet al., 2002], to functional
modules such as cycles and pathways in metabolic netwonkisn& & Amaral, 2005; Pallat
al., 2005], to groups of affine individuals in social networksrf@n and Newman, 2002; Lusseau
and Newman, 2004], to compartments in food webs [Pimm, 1R7&jseet al., 2003], and so on.
Finding the communities within a cerebral network allowsnitifying the hierarchy of functional
connections within a complex architecture. This oppotiuniould represent an interesting way
to improve the basic understanding of the brain functionitrgleed, some cortical regions are
supposed to share a large number of functional relatiosgthiping the performance of several
motor and cognitive tasks. This characteristic leads tddah®mation of highly connected clusters
within the brain network. These functional groups consist certain number of different cerebral

areas that are cooperating more intensively in order to tetmp task successfully.



In the present paper, we present a study of the structurpkpties of functional networks es-
timated from high-resolution EEG signals in a group of spowd injured patients during the
preparation of a limb movement. In particular, we first imigeste some indicators of the con-
nectivity at a global and local scale. Then we analyse thearés by studying their structure in

communities, and we compare the results with those obtdineda group of healthy subjects.

Il. METHODS

A. High-resolution EEG recordings in SCI patients and Healhy subjects

All the experimental subjects participating in the studyreveecruited by advertisement. In-
formed consent was obtained in each subject after the exgdenof the study, which was ap-
proved by the local institutional ethics committee The apoord injured (SCI) group consisted
of five patients (age, 22-25 years; two females and threesnalepinal cord injuries were of
traumatic aetiology and located at the cervical level (Chiee cases, C5 and C7 in two cases, re-
spectively); patients had not suffered for a head or braimteassociated with the trauma leading
to the injury. The control (CTRL) group consisted of five libglolunteers (age, 26-32 years; five
males). They had no personal history of neurological or pisyac disorder; they were not taking
medication, and were not abusing alcohol or illicit drugst EEG data acquisition, subjects were
comfortably seated on a reclining chair, in an electricaliyelded, dimly lit room. They were
asked to perform a brisk protrusion of their lips (lip puggimvhile they were performing (healthy
subjects) or attempting (SCI patients) a right foot moveim&he choice of this joint movement
was suggested by the possibility to trigger the SCls atteshfdot movement. In fact patients
were not able to move their limbs; however they could movér tlygs. By attempting a foot
movement associated with a lips protrusion, they provided\adent trigger after the volitional
movement activity. This trigger was recorded to synchrertie period of analysis for both the
considered populations. The task was repeated every 6endgcin a self-paced manner, and
the 100 single trials recorded will be used for the estiméfarctional connectivity by means of
the Directed Transfer Function (DTF, see following parabjaA 96-channel system (BrainAmp,
Brainproducts GmbH, Germany) was used to record EEG and BHbt&ieal potentials by means
of an electrode cap and surface electrodes respectively.eldttrode cap was built accordingly

to an extension of the 10-20 international system to 64 ablantstructural MRIs of the subjects



head were taken with a Siemens 1.5T Vision Magnetom MR sy@Barmmany).

B. Cortical activity and Functional connectivity Estimation

Cortical activity from high resolution EEG recordings wesdimated by using realistic head
models and cortical surface models with an average of 5.@88les, uniformly disposed. Esti-
mation of the current density strength, for each one of th@®dipoles, was obtained by solving
the Linear Inverse problem, according to techniques desdrin previous papers [Babiloet al,,
2005; Astolfiet al., 2006]. By using the passage through the Tailairach coatdasystem, twelve
Regions Of Interest (ROIs) were then obtained by segmentafithe Brodmann areas on the ac-
curate cortical model utilized for each subject. The ROlssadered for the left.() and right (R)
hemisphere are: the primary motor areas for foot (M&nd MF.R) and lip movement (MLL
and ML R); the proper supplementary motor area (8Mnd SMR); the standard pre-motor area
(6_L and 6R); the cingulated motor area (CMand CM R) and the associative Brodmann area 7
(7_.L and 7R). For each EEG time point, magnitude of the five thousanpislels composing the
cortical model was estimated by solving the associateddritreverse problem [Grave de Peralta
& Gonzalez Andino, 1999]. Then, the average activity of de&gavithin each ROl was computed.
In order to study the preparation to an intended foot movépsetime segment of 1.5 seconds
before the lips pursing was analysed; lips movement wastdetdy means of an EMG. The re-
sulting cortical waveforms, one for each predefined ROl .enben simultaneously processed for
the estimation of functional connectivity by using the Bied Transfer Function. The DTF is a
full multivariate spectral measure, used to determine thectéd influences between any given
pair of signals in a multivariate data set [Kaminskal.,, 2001]. In order to be able to compare the
results obtained for data entries with different power spe¢he normalized DTF was adopted.
It expresses the ratio of influence of elemgrtb element; with respect to the influence of all
the other elements an Details on the DTF equations in the treatment of EEG sighal® been
largely described in previous papers [Ast@fial. 2005, Babiloniet al. 2005]. In the present
study, we selected four frequency bands of interest (ThetaH, Alpha 8-12 Hz, Beta 13-29
Hz and Gamma 30-40 Hz) and we gathered the respective doréitaorks by averaging the val-
ues within the respective range. In order to consider ordyftimctional links that are not due to
chance, we adopted a Montecarlo procedure. In particukargamtrasted each DTF value with

a surrogate distribution of one thousand DTF values obtyeshuffling the signals samples in



the original EEG dataset. Then, we considered a threshbilé by computing the 99 percentile
of the distribution and we filtered the original DTF valuesreynoving the edges with intensity

below the statistical threshold.

C. Evaluation of global and local efficiency

A graph is an abstract representation of a network. A gi@monsists in a set of vertices -or
nodes-¥" and a set of edges -or connectior¥éindicating the presence of some sort of interaction
between the vertices. A graph can be described in terms daddbealled adjacency matrik,

a square matrix such that, when a weighted and directed edgs &om the nodé to j, the
corresponding entry of the adjacency matrixdis # 0; otherwiseA,; = 0. Two measures are
frequently used to characterize the local and global sireadf unweighted graphs: the average
shortest path. and the clustering indek' [Watts and Strogatz, 1998; Newman, 2003; Grigorov,
2005]. The former measures the average distance betweenddes, the latter indicates the
tendency of the network to form highly connected clustersades. Recently, a more general
setup has been proposed to study weighted (also unconheatudorks [Latora & Marchiori,
2001; Latora & Marchiori, 2003]. The efficieney; in the communication between two nodes
andy, is defined as the inverse of the shortest distance betweesethces. Note that in weighted
graphs the shortest path is not necessarily the path witlsrtredlest number of edges. In the
case the two nodes are not connected, the distance is irdimite; = 0. The average of all the
pair-wise efficiencies;; is the global-efficiency?, of the graph’:

1 1
4(G) = NV -1 de:w a; 1)

whereNis the number of vertices composing the graph. The localgrtags of the graph can be
characterized by evaluating for every verigke efficiency of;, which is the sub-graph induced
by the neighbours of the nod¢Latora & Marchiori, 2001]. Thus, we defined the local effiudy

E, of graphG as the average:
1
E(G) = + > E,(Gy) (2)

Since nodeé does not belong to subgraph, the local efficiency measures how the communication
among the first neighbours ofs affected by the removal éflLatora and Marchiori, 2005; Latora

and Marchiori, 2007]. Hence the local efficiency is an inthcaf the level of fault-tolerance of
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the system. Separate ANOVAs were conduced for each of theawablesE, and E;. Statistical
significance was fixed at 0.05, and main factors of the ANOVAgaihe “between” factor GROUP
(with two levels: SCI and CTRL) and the “within” factor BANDVth four levels: Theta, Alpha,
Beta and Gamma). Greenhouse & Geisser correction has bedriarghe protection against the
violation of the sphericity assumption in the repeated mesa8NOVA. Besides post-hoc analysis

with the Duncan'’s test and significance level at 0.05 has peeiormed.

D. Detection of Community Structures

In order to detect the community structures, we have impleatethe Markov Clustering
(MCI) algorithm [Vandongen PhD Thesis, 2000; Enrigittal, 2002]. It is one algorithm of a
few available which works even with directed graphs and iddsed on the properties of the dy-
namical evolution of random walkers moving on the graph.s@pproach is also useful since it
manages to achieve reliable results when the graph corgalfifoops, i.e. edges connecting a
node to itself. Since a community is a group of densely cot@tecodes, a random walker that
started in a node of a given community will leave this clustdy after having visited a large num-
ber of the community’s nodes. Hence, the basic idea implésdean the algorithm is to favour the
random motion within nodes of the same community. This iqioleid by alternating the applica-
tion of two operators on the transition matrix of the randoaikwvthe expansion operator and the
inflation one. The expansion operator applied on a givenixn&iturns its square power, while the
inflation operator corresponds to the Hadamard power ofdheesmatrix, followed by a scaling.

In practice, the algorithm works as follows:

1. Take the adjacency matrit and add a self-loop to each node, i.e. det= 1 for i =
1,2...., N,

2. Obtain fromA the transition probability matri¥/, that describes the random motidi;; =
Ayj

DopArs

stochastic matrix i.e. a matrix of non-negagtive elementsvahere the sum of elements of

Every elementV;; expresses the probability to go frojrto i in one step.lV is a

each column is normalized to ong; ", W;; = 1;
3. Take the square &¥ (expansion step);

4. Take the? power ¢ > 1) of every element of¥’? and normalize each column to one to

; ; reotrr o WG ; .
obtain a new stochastic matrik”: W' = S T [(W;)W (inflation step);
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5. Go back to step 3.

Step 3 corresponds to computing random walks of “highegtlesi’, that is to say random
walks with many steps. Step 4 will serve to enhance the elessm&na column having higher
values. This means, in practice, that the most probablsitran from node; will become even
more probable compared to the other possible transitioms frodej. The algorithm converges to
a matrix invariant under the action of expansion and inflatithe graph associated to such matrix
consists of different star-like components; each of themstitutes a community (or cluster) and
its central node can be interpreted as the basin of attraofithe community. For a given > 0,
MCI always converges to the same matrix; for this reason dlassified as a parametric and
deterministic algorithm. The parametetunes the granularity of the clustering, meaning that a
smallr corresponds to a few big clusters, while a bigeturns smaller clusters. In the limit of
r — 1 only one cluster is detected. In the present study, an asalydifferent levels of granularity
has been performed in order to find the value which better fits with the experimental data. Then
we have represented how the average of the number of clastenges as a function of(fig. [3).
Finally the valuer = 1.5 has been chosen to study in details how the nodes are ordanize

clusters.

lll. RESULTS

Fig. [ shows the realistic head model obtained for a reptatea subject. The twelve ROIs
used in the present study are illustrated in colour on theegkanodel that is grey coloured. At
the bottom side of the fid.] 1, we report the adjacency matnepsesenting the cortical networks
estimated, in the Alpha frequency band, from the two anayxepulations during the movement
preparation. To be noticed that such network are directeshs€quently the obtained adjacency
matrix is not symmetric. The level of grey within each mainxfigure encodes the number of
subjects that hold the functional connection identifieddwy ¢ and columnj.

As a measure of global and local performance of the netwouctsire we have evaluated the
global-efficiencyE, and the local-efficiency; indices obtained for each frequency band and for
each subject. The average valueghfand £; deriving from the healthy group (CTRL) and from
the group of patients (SCI) are illustrated for each banchendcatter plot of fig[]2. We have
performed an Analysis of Variance (ANOVA) of the obtainesirés. TheE, variable showed

no significant differences for the main factors GROUP and BAM particular, the “between”
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FIG. 1: Top Reconstruction of the head model from magnetic resonanagesm The twelve regions of
interest (ROIs) are illustrated in colour on the grey cordex labelled according to previously defined
acronyms.Bottom Left Adjaceny matrix for the control group (CTRL) in the Alpha 12-Hz) band. The
level of grey encodes the number of subjects that hold thetifumal connection identified by the roiv
and columnj. Bottom Right Adjacency matrix for the patients group (SCI) in the Alphandba Same

conventions as above.

factor GROUP was found having an F value of 0.83, p=0.392enthié “within” factor BAND
showed an F value of 0.002 and p=0.99. The ANOVA performedherf} variable revealed a
strong influence of the between factor GROUP (F=32.67, B1B); while the BAND factor
and the interaction between GROUP X BAND was found not sigaifi (F=0.21 and F=0.91
respectively, p values equal to 0.891 and 0.457). Postsis tevealed a significant difference
between the two examined experimental groups (SCI, CTRthalpha and Beta band (p=0.01,
0.03 respectively). In particular, the average local-efficy of the SCI networks was significantly

higher than the CTRL networks for all these bands.
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FIG. 2: Scatter plot of the average efficiency indexes obthfrom the estimated cortical networks. Global-
efficiency is on thec-axis, local-efficiency is on thg-axis. The Greek symbol encodes the frequency band
(9 Theta,a Alpha, 5 Beta andy Gamma) and it represents the average of the values compotedtie

control (CTRL, blue-coloured font) and spinal cord injuigrdup (SCI, red-coloured font).

The identification of functional clusters within the cogimetworks estimated in the control
subjects and in the spinal cord injured patients during tbgement preparation was addressed
through the MCI algorithm (see Methods - Detection of ComityuBtructures[(I[D) ). In fig[B
the average number of clusters detected in the CTRL and S@bries is reported as a function
of the granularity parameter As it can be observed, for every valuergfand for both the Alpha
and Beta bands, the average number of clusters is greattref@Cl group than for the CTRL
one. One of the main problems with the MCI algorithm is theichof the value of the granularity
parameter to use. Usually good values-@fre in the rangél, 3| [Vandongen PhD Thesis, 2000;
Enrightet al,, 2002]. For the case under study here, the presence of aplatdig. [3 indicates

that there is a region of values such that the number of chusl@es not strongly depends on
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FIG. 3. Representation of the mean number of clusters for ICTdRue circles) and SCI (red squares)
groups as a function af, granularity parameter of the MCI algorithm, in both the Adp(top) and Beta

band (bottom).

We have decided to adopt the granularity= 1.5, that is a value in the plateau. For this value of
r, the average number of clusters in the Alpha band is equalktoBthe cortical networks of the
control subjects, while it is equal to 5 for the the spinaltimjured patients. In the Beta band, the
average number of cluster is 3.4 for the CTRL networks andat.he SCI networks, as can be
observed at the bottom of the f[g. 3.

Fig. [4 illustrates the partitioning of the cortical netwsristimated in the Alpha band for a
representative subject of the control (CTRL) group and foe@esentative patient of the spinal
cord injured (SCI) group.

Functional networks are represented as three-dimensgpaphs on the realistic head model
of the experimental subjects. The colour of each node, éalciat correspondence to each cortical
area (ROI), encodes the cluster to which the node belongsfurittional clusters detected within
the cortical networks in all the subjects and patients pi@dting in the present study are listed
in the following tables. Tablg | presents the results olatdiim the Alpha band while the taklé I
presents the results obtained in the Beta band.

In the Alpha band, the CTRL networks do not present a pagrbucomplicate division into
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TABLE I: Cortical network partitioning in the Alpha frequey band.

CTRL
Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster5 Cluster 6
ALFA CM_L,CMR,6L,6.R, SMR 0 0 0 0
SM_L,ML LML _R,MF_L,
MF_R,7L,7R
ARGI CM_L,CMR,6L,6.R, SM.L SM_R ML_L 0 0
ML_R,MF_LMF_R,7L,
7R
CIFE CM_L,CMR,6L,6.R, ML_L 7L 0 0 0
SM_L,SM_R,ML_R,MF_L,
MF_R,7.R
MADA | CM_L,CM R,6L,SM R, 6R,SML,ML R, 0 0 0 0
ML_L,7_L,7R MF_L,MF_R
MAMA | CM.LCMR,6L,6.R, ML_R 7L 7R 0 0
SM_L,SM_R,ML_L,
MF_L,MF_R
SCI
Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster5 Cluster 6
BARO CM_L,CM_R,6R 6.L,SMR, SML,ML L, 7R 0 0
ML _R,MF_L,MF_R 7L
IRIO CM_L,CM_R,SML, 6.L 6_R ML_L MF_R 7R
SM_R,ML_RMF_L,7 L
MASI | CM_L,CM_R,6.L,SM_L, 6_.R,MFR,7.R 7L 0 0 0
SM_R,ML_L,ML _R,MF_L
POAL | CML,CM R,6R,SMR 6L, SM_L, ML _L ML R MF_L 7R
MF_R, 7L
TRDA |CM_L,CM_R,SML,SMR, 6L 6_R ML_R 7L 7R

ML _L,MF_L,MF_R
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FIG. 4: Graphical representation of the identified clustéiROls within the functional networks estimated
from a representative control (CTRL) subject and spinatidojured (SCI) patient during the movement
preparation in the Alpha band. The functional network igsiliated as a three-dimensional graph on the
realistic cortex model. Spheres located at the barycefhtaah ROI represent nodes. Black directed arrows
represent edges. The graph partitioning is illustrateolutin the nodes colouring. Nodes with same colours

belong to the same cluster.

clusters, since for each subject the large part of the @di@as belong to a unique large commu-
nity (Cluster 1). In general, the SCI networks are organireal larger number of clusters more
clustered, and two main communities can be observed (Clusaed Cluster 2). The first com-
munity is mostly composed by the cingulate motor areas (Cdhd CM R), the supplementary
motor areas (SM. and SMR) and the left primary motor area (ME). The second community
is predominantly composed by the left pre-motor areak)(@nd the right primary motor area of
the foot (MER). The remaining ROIs tend to form isolated groups.

In the Beta band both the cortical networks of the control sppidal cord injured group tend

13



TABLE II: Cortical network partitioning in the Beta frequeynband

CTRL
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
ALFA CM_L,CM_R,6L,6_R, 7L 7R 0 0
SM.L,SM_R,ML_L,ML R,
MF_L,MF_R
ARGI | CMLLCM R,6 R,ML_L, 6.L,SM.L,MFR SMR 7R 0
ML_R,MF_L,7_L
CIFE | CM_L,CM_R,6.L,SM_L, 6_.R,ML R 7L 0 0
SM_R,ML_L,MF_L,
MF_R, 7R
MADA |[CM_L,CM_R,SML,SM R, 6L,6.R,MF.L ML _L 7R 0
ML_R,MF_R,7L
MAMA | CM_L,6 RMLLMF R CMR,6L,SML, 7L 7R 0
SM_R,ML_R,MF_L
SCI
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
BARO| CM.LCMR,6L,6.R, SMR,ML_L 7L 7R 0
SM_L,ML _R,MF_L,MF_R
IRIO | CM_L,CM_R,6.L,SM_L, 6_R ML_R 7L 7R
SM_R,ML_L,MF_L,MF_R
MASI | CM_L,CM R,6.L,SM_L, 6_R ML_L MF_L 7R
SM_R,ML_R,MFR,7.L
POAL CM_L,CM_R,SMLL, 6.LLML RMFR 7L, 7R 6.R ML_L
SM_R,MF_L
TRDA |[CM_L,CM_R,SM.L,SM_R, 6.R,MLR 6.L ML _L 0

MF_LMF_R,7.L,7_R
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to get organized in two main modules (Cluster 1 and Clustetr2particular, while for both the
populations the first cluster is principally composed bydingulate motor areas CM and CM.R,
the SML and SMR and the MEL and MF.R, the second cluster does not present a common set

of ROIs across the experimental subjects neither in the CaRLSCI group.

IV. DISCUSSION

The evaluation of the estimated cortical networks was adeiet by means of a set of measures
typical of complex networks analysis [Boccaledtial., 2006; Micheloyannigt al,, 2006; Stam &
Reijneveld, 2007; Hilgetagt al., 2000]. We have first computed globd () and local efficiency
(E)), two measures that allows characterizing the organizatfdhe functional flows in both the
inspected populations [De Vico Fallagtial., 2007b]. The results indicate that spinal cord injuries
significantly (p<0.05) affect only the local properties of the functionalrarecture of the cortical
network in the movement preparation. The global propertpig-range integration between the
ROIs within the network did not differ significantly £0.05) from the healthy behaviour. The
higher average value of local efficiency in the SCI group sstga larger level of the internal
organization and a higher tendency to form modules. In@a#r, this difference can be observed
in the two frequency bands Alpha (7-12 Hz) and Beta (13-29 H&t are already known for their
involvement in electrophysiological phenomena relatethéopreparation and to the execution of
limbs movements [Pfurtscheller & Lopes da Silva, 1999]haligh the efficiency indexes describe
the network topology concisely, they are not able to giverimiation about the number of modules
and their composition within the network. For this reastie, detection of community structures
was addressed by means of the Markov Clustering (MCI) algoriVandongen PhD Thesis,
2000; Enrightet al,, 2002]. The same method has already been used successfudliect clusters
in sequence similarity networks [Enrigéttal., 2002] and in configuration space networks deriving
from free-energy landscapes [Gfellgral,, 2007]. The obtained results reveal a different average
number of clusters for the functional networks of the spowd injured patients and the control
subjects in both the main spectral contents. In particutathe Alpha band the SCI network
presents an average number of modules equal to five, whil€1HL network appears to be
divided in three groups. This outcome is in accordance wvaighsignificant (pc0.05) higher level
of local-efficiency found in the functional networks of th€I$atients with respect to the control

subjects. A hight; value reflects a high clustering indésand therefore a high density of network
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communities. The cortical areas of the control subjects alopnesent a clear partitioning in
different modules. They rather appear to belong to a unigueneunity, meaning that they are all
involved, in the same way, in the exchange of informationrduthe movement preparation. The
analysis of the functional communities within the netwooksained for the spinal cord patients
revealed a higher tendency to form separate clusters. Tdenptor areas (Brodmannl6and
6_R), the associative regions (Brodmanr. &nd 7.R) and the right primary motor area of the
foot (MF_R) break away from the large module that was found in the nddsvof the CTRL
group. In particular, the area MR and the region & belong to the same cluster in at least
three experimental patients. This result reveals the séges the SCI networks to hold a more
efficient communication between these frontal pre-motar@imary motor structures, which are
already known to be active during the successful executiansimple movement [Oharet al,,
2001]. In the Beta band, the average number of identifiedersisn the SCI networks and in the
CTRL networks is less different. Moreover, the ROIs thatesgppd to belong to different clusters
in the Alpha band are in this case functionally tied in the s@mmmmunity. In summary, while in
the Alpha band the control group mostly presented a uniqge leluster, the spinal cord injured
patients mainly exhibited two clusters. These two largestrmunities are mainly composed by
the cingulate motor areas with the supplementary motosaed by the pre-motor areas with the
right primary motor area of the foot. This functional sepiarais thought to be responsible of the
highest level of internal organization in the estimatedvwoeks and strengthens the hypothesis of
a compensative mechanism due to the partial alteratioreiptimary motor areas because of the
effects of the spinal cord injury [De Vico Fallaet al., 2007a].
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VI. NOTES

In the current work, all the estimated functional netwonlkesteeated as unweighted and directed
graphs. They all have the same number of connections repiregehe 25% (for the community
structure analysis) and the 30% (for the efficiency indexedyais) most powerful links within
the network. These particular values belonged to an intefresholds (from 0.1 to 0.5), for

which results remained significantly stable [De Vico Fallainal., 2007a].
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