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Dynamics of delay-coupled excitable neural systems
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We study the nonlinear dynamics of two delay-coupled neural systems each modelled by excitable
dynamics of FitzHugh-Nagumo type and demonstrate that bistability between the stable fixed point
and limit cycle oscillations occurs for sufficiently large delay times τ and coupling strength C. As
the mechanism for these delay-induced oscillations we identify a saddle-node bifurcation of limit
cycles.

1. INTRODUCTION

The brain may be conceived as a dynamic network of
coupled neurons [1, 2, 3]. These neurons are excitable
units which can emit spikes or bursts of electrical signals.
In order to describe the complicated interaction between
billions of neurons in large neural networks, the neurons
are often lumped into highly connected sub-networks or
synchronized sub-ensembles. Such neural populations are
usually spatially localized and contain both excitatory
and inhibitory neurons [4].

The simplest model to display features of neural inter-
action consists of two coupled neural systems. Starting
from this simplest network motif, larger networks can
be built, and their effects may be studied. For exam-
ple, starting from two interconnected reticular thalamic
neurons with oscillatory behavior, it was shown in [5]
how more complex dynamics emerges in ring networks
with nearest neighbors and fully reciprocal connectivity,
or in networks organized in a two-dimensional array with
proximal connectivity and “dense proximal” coupling in
which every neuron connects to all other neurons within
some radius. In another example [6], a neural population
was itself modeled as a small sub-network of excitable
elements, to study hierarchically clustered organization
of excitable elements in a network of networks.

Most studies represent a population as an effective os-
cillatory element that is then coupled with other pop-
ulations to study synchronization and network effects
[7, 8, 9]. In these studies, the basis for the emergence
of complex network dynamics is the oscillatory behavior
of neural elements, in spite of the fact that individual
neural systems are usually in a stable steady state ex-
hibiting excitable dynamics when perturbed. A reason is
that self-sustained oscillatory behavior in the individual
element is required to define synchronization of subsys-
tems [10]. One way to resolve this is to add weak Gaus-
sian white noise to each individual element to generate
sparse Poisson-like irregular spiking patterns, as seen in
real neurons [6, 11, 12].

In this report, we introduce a time-delayed coupling
into the model of two excitable populations and demon-
strate that the coupling-delay can induce sustained os-
cillations between the two subsystems. We find a regime
of bistability between the stable fixed point and limit

cycle oscillations for sufficiently large delay times τ and
coupling strength C. As the mechanism for these delay-
induced oscillations we identify a saddle-node bifurcation
of limit cycles.
This result suggests the use of a compound system of

two time-delayed coupled excitable elements as a minimal
network motif to investigate oscillatory behavior in more
complex networks.

2. MODEL

We examine the delayed linear symmetric coupling of
two identical neural populations. Each population is rep-
resented by a simplified FitzHugh-Nagumo (FHN) sys-
tem [13, 14], which is widely used as a paradigmatic
model of excitable systems [15].
The dynamical equations are given by:

ǫẋ1 = x1 −
x3

1

3
− y1 + C[x2(t− τ)− x1(t)]

ẏ1 = x1 + a

ǫẋ2 = x2 −
x3

2

3
− y2 + C[x1(t− τ)− x2(t)]

ẏ2 = x2 + a (1)

where the two subsystems (x1, y1) and (x2, y2) corre-
spond to two neuron populations. The value of the ex-
citability parameter a determines whether the subsystem
is excitable (a > 1) or exhibits self-sustained periodic fir-
ing (a < 1). This is because at a = 1 the uncoupled
systems exhibit a Hopf bifurcation, and the fixed point
becomes an unstable focus for a<1. ǫ is the timescale pa-
rameter that, if chosen to be much smaller than unity, re-
sults in fast activator variables x1, x2, and slow inhibitor
variables y1, y2. Unless otherwise noted, we shall choose
ǫ = 0.01 and a=1.3 for numerical simulations and thus
restrict our analysis to parameter values where each of
the two subsystems exhibits excitability with a stable
fixed point.
The interaction between the two neural populations is

modelled as diffusive, i. e., the coupling vanishes if the
variables xi are identical. The coupling strength C is
taken to be symmetric for simplicity. Further, we assume
a finite signal propagation speed between distant neural
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populations. This is incorporated using the delay time τ .
Note that the coupling term has the form of a classical
diffusion term, but has lost its diffusive character through
the introduction of a propagation delay τ . More general
delayed couplings are studied in [16].

Before we analyse Eq. (1), let us briefly give a biophys-
ical interpretation of the hitherto abstract nature of the
dynamical variables xi and yi. This is needed to relate
our results to other work on population dynamics in neu-
ral networks, in particular to studies dealing with spiking
rates and time delays [17, 18, 19, 20]. These studies con-
sider neural fields [21, 22], that is, they extend over one
or more spatial dimensions. While neural field models
adopt the continuum limit of a network, we consider the
minimal network motif, i. e., two discrete subsystems, but
in both cases the biophysical reason to include delay is
the same.

The generic biophysical interpretation of the FHN
model is based on a single point-like neuron and was orig-
inally not derived from features of a neural population.
The variable x models fast changes of the electrical po-
tential across the membrane (spikes), and y is related to
the gating mechanism of membrane channels [13, 14]. On
the contrary, a neural population is generically described
by a time coarse-grained mean-field model, in which the
dynamical variables represent averaged spiking rates [4].
Notwithstanding, spiking rates in neural populations can
exhibit both steady state values and relaxation oscilla-
tions. Both states are described by the FHN mechanism
with a > 1 and a < 1, respectively, which justifies the
FHN model for “point-like” populations. To avoid confu-
sion about spikes vs. spiking rates, a model of uncoupled
subsystems as defined by Eq. (1) with C = 0 is some-
times referred to as the Bonhoeffer-van der Pol model
[23, 24, 25], for example in Ref. [26].

3. LINEAR STABILITY ANALYSIS

The unique fixed point of the system is symmetric and
is given by x

∗ ≡ (x∗

1
, y∗

1
, x∗

2
, y∗

2
), where x∗

i = −a, y∗i =
a3/3−a.

Denoting for convenience x(t−τ) ≡ x̃, we can re-write
system Eq. (1) as:







ẋ1

ẏ1
ẋ2

ẏ2






=







f1(x)
f2(x)
f3(x)
f4(x)






+







g1(x̃)
g2(x̃)
g3(x̃)
g4(x̃)






(2)

This system can be linearized around the fixed point x∗

by setting x(t) = x
∗ + δx(t):

δẋ = J
∗

f δx+ J̃
∗

gδx̃ (3)

with the Jacobian matrices J∗

f and J̃
∗

g. The explicit form

is

δẋ =
1

ǫ







ξ −1 0 0
ǫ 0 0 0
0 0 ξ −1
0 0 ǫ 0






δx+

1

ǫ







0 0 C 0
0 0 0 0
C 0 0 0
0 0 0 0






δx̃ (4)

where ξ = 1− a2 − C. The ansatz

δx(t) = e
λt
u (5)

where u is an eigenvector of J∗

f implies

δx̃ = e
λt
e
−λτ

u (6)

This leads to the characteristic equation

(1− ξλ+ ǫλ2)2 − (λCe−λτ )2 = 0, (7)

which can be factorized giving

1− ξλ+ ǫλ2 = ±λCe−λτ (8)

This transcendental equation has infinitely many com-
plex solutions λ. Fig. 1 shows the real parts of λ for
various values of C. As can be seen in Fig. 1 the real
parts of all eigenvalues are negative throughout, i. e., the
fixed point of the coupled system remains stable for all C.
This can be shown analytically for a > 1 by demonstrat-
ing that no delay-induced Hopf bifurcation can occur.
Substituting the ansatz λ = iω into Eq. (8) and separat-
ing into real and imaginary parts yields for the imaginary
part

ξ = ±Ccos(ωτ) (9)

This equation has no solution for a > 1 since |ξ| = a2 −
1 +C > C, which proves that a Hopf bifurcation cannot
occur.

4. DELAY-INDUCED OSCILLATIONS

The cooperative dynamics of delay-induced oscillations
in excitable systems is inherently different from those
of noise-induced oscillations. The introduction of noise
terms induces sustained oscillations in each individual
subsystem by continuously kicking these subsystems out
of their respective rest states. Coupling then produces
synchronisation effects between these individual oscilla-
tors [11, 12]. If time-delayed feedback control [27] is
applied locally to one of the subsystems, the stochas-
tic synchronisation can be tuned by varying the time-
delay. This is in line with other work where it was
demonstrated that such time-delayed feedback can be
used to control the coherence and the timescales of noise-
induced oscillations in a single FitzHugh-Nagumo system
[28, 29, 30, 31].
For delayed coupling the case is entirely different. Here

the sustained oscillations are an effect of the cooperative
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FIG. 1: Real parts Re(λ) of the eigenvalues of the fixed point
vs. time delay τ for ǫ = 0.01, a = 1.3, and (a) C=0.1, (b)
C=0.4, (c) C=0.8, (d) C=1, (e) C=2, (f) C=4.

dynamics. They are generated by the delayed interaction
between two non-oscillating stable units, and are thus
an emergent phenomenon of the compound system. The
bifurcation parameters for delay-induced bifurcations are
the coupling parameters C and τ .

For large coupling delay τ the oscillation is readily un-
derstood as the two units firing alternately, each spike ini-
tiated by the delayed signal of the remote system. Since
the signal of one system is transmitted to the other and
then back, the oscillation in one system must have a pe-
riod T of approximately 2τ , and be phase shifted by T/2
with respect to the other system. This is visible in the
time series (Fig. 2(a),(b)) and in the phase portraits of
the activators (Fig. 2(c)) and inhibitors (Fig. 2 (d)).

Since the two subsystems have identical but T/2-
shifted profiles xi(t) and yi(t), the coupling terms
C[xi(t−τ)−xj(t)] (i 6= j) would vanish for all t if the
oscillation period T were precisely 2τ . Then the periodic
orbit (Fig. 3(b)) would also be a solution for the uncou-
pled subsystems (C = 0). This cannot be the case for
the excitable regime of the FHN systems (a>1) because
periodic orbits do not exist there. Hence it follows that
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FIG. 2: Delay-induced oscillations. (a), (b): Time series of
both subsystems (red solid lines: activator xi, green solid
lines: inhibitor yi; black dashed lines: fixed point values of
activator and inhibitor). (c), (d): Phase portraits of activa-
tors (c) and inhibitors (d). Parameters: ǫ = 0.01, a = 1.3,
C = 0.5, τ = 3.

the oscillation period T must be of the form T =2(τ + δ),
where δ 6=0 is the effective time shift responsible for the
non-vanishing coupling term. The phase portraits of the
activators xi in the planes (x1(t), x2(t− τ)) deviate from
the bisector (Fig. 4(a)) due to the fact that δ 6=0.

To obtain a clear picture of the timescales involved
in the dynamics, we have computed the excursion times
along the segments of the phase-space trajectory. The
start and end points of the different segments of the
trajectory (colored dots A to D) are defined to corre-
spond to the time steps when the trajectory has left or
entered a neighborhood ∆x1 (here ∆x1 = 0.01) of the
stable branches of the x1-nullcline.

In the example shown in Fig. 3 (ǫ=0.01, a=1.3, C=
0.5, τ=3) the value of the effective time shift is δ=0.012.
This value is about one third of the fast transition times
between the stable branches of the x1-nullcline, ∆t1 =
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FIG. 3: Blow-up of delay-induced oscillation in the first sub-
system: (a) time series and (b) phase portrait (x1, y1). The
four different stages of the limit cycle are separated by col-
ored dots A, B, C, D. Parameters: ǫ = 0.01, a = 1.3, C = 0.5,
τ = 3.
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0.041 and ∆t3=0.038, respectively. ∆t1 is the rise-time
of the spike, i.e., the time that elapses between leaving
the fixed point (black dot A) and crossing the right stable
branch of the x1-nullcline at B (green dot, Fig. 3(b)).
∆t3 is the drop-time, i.e., the duration of the jump back
from the right to the left stable branch of the x1-nullcline
(between blue and magenta dots, C → D). The slow
parts of the trajectory, occurring on the right (B → C)
and left (D → A) stable branches of the x1-nullcline, have
a duration ∆t2=0.357 and ∆t4=5.588, respectively. The
total oscillation period is thus T =6.024.
In Fig. 5 the phase portraits of the first of the two

delay-coupled subsystems are shown for different ex-
citability parameters a and delay times τ . The top panel
(a,b) corresponds to excitability parameters far from the
Hopf bifurcation of the uncoupled system, which occurs
at a=1. The bottom panel (c,d) corresponds to values
of a close to the Hopf bifurcation.
In the case of a=1.3 and τ = 3 (Fig. 5(a)), the oscil-

lation period T =6.024 is large enough for the two sub-
systems to nearly approach the fixed point before being
perturbed again by the remote signal. Note that Fig. 5(a)
corresponds to Fig. 3(b). If the delay time becomes much
smaller, e. g., for τ=0.8 (Fig. 5 (b)), the excitatory spike
of the other subsystem arrives while the first system is
still in the refractory phase, so that it cannot complete
the return D → A to the fixed point. The times spent
in the different stages of the limit cycle for τ = 0.8 are
∆t1 = 0.087, ∆t2 =0.111, ∆t3 =0.085, and ∆t4 =1.355,
and the oscillation period is T =1.637. The effective time
shift δ=0.018 for τ=0.8 is larger than for τ=3.
We now investigate the transition from large to small

delay times τ close to the Hopf bifurcation at a= 1.05.
Again we choose τ = 3 (Fig. 5(c)) and find T = 6.018
and δ = 0.009. The times spent in the different phases
of the oscillation period T are ∆t1 =0.043, ∆t2 =0.329,
∆t3 = 0.186, and ∆t4 = 5.461. For the shorter delay
time τ = 0.8 (Fig. 5(d)) we find T = 1.630, δ = 0.015,
∆t1 = 0.072, ∆t2 =0.240, ∆t3 =0.070, and ∆t4 =1.249.
We find the same pattern as far from the Hopf bifurca-
tion. The effective time shift δ is smaller if τ becomes
larger and the system can approach the fixed point. Fur-
thermore, if the system is close to the Hopf bifurcation
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FIG. 4: (a) Phase portrait of delay-coupled excitable sys-
tem in the plane (x1(t), x2(t− τ )) with positions on the orbit
marked as colored dots A,B,C,D as in Fig. 3. (b) Time series
of (x2(t − τ ) − x1(t)). The inset shows a longer time series.
Parameters: ǫ = 0.01, a = 1.3, C = 0.5, τ = 3.
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FIG. 5: Phase portraits of delay-coupled excitable system
(x1, y1) for different excitability parameters a and delay times
τ (trajectories: solid blue, nullclines: dashed black). (a)
a=1.3, τ = 3, (b) a = 1.3, τ = 0.8, (c) a = 1.05, τ = 3, (d)
a=1.05, τ=0.8. Other parameters: ǫ=0.01, C=0.5.

and τ is sufficiently large so that the fixed point is very
closely approached, δ becomes much smaller than far
from the Hopf bifurcation, and tends to zero for a → 1.
The reason is that when the excitatory spike arrives in
the first subsystem, there is a turn-on delay δ before the
first subsystem emits a spike. This is because the trajec-
tory has to cross the middle branch of the x1-nullcline
due to this upstream impulse. This section of the tra-
jectory becomes the smaller, the closer the fixed point A
(at x1 = −a) is to the minimum of the x1 nullcline (at
x1 =−1). This also explains the origin of the time-shift
δ.

Finally, we shall investigate the question whether the
system exhibits bistability between the fixed point and
the limit cycle oscillation for all values of τ . In Fig. 6 the
regime of oscillations is shown in the parameter plane
of the coupling strength C and coupling delay τ . The
oscillation period is color coded. The boundary of this
colored region is given by the minimum coupling delay
τmin as a function of C. For large coupling strength τmin

is almost independent of C; with decreasing C it sharply
increases, and at some minimum C no oscillations exist
at all. At the boundary, the oscillation sets in with fi-
nite frequency and amplitude as can be seen in the inset
of Fig. 6 which shows a cut of the parameter plane at
C = 0.8. The oscillation period increases linearly with
τ . The mechanism that generates the oscillation is a
saddle-node bifurcation of limit cycles (see Fig. 6 inset
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FIG. 6: Regime of oscillations in the (τ, C) parameter plane
for initial conditions corresponding to single-pulse-excitation
in one system. The oscillation period T is color coded. The
transition between black and color marks the bifurcation line.
Inset (a) shows the oscillation period vs. time delay τ in a cut
at C=0.8. Parameters: ǫ=0.01, a=1.3. Inset (b): schematic
plot of the saddle-node bifurcation of a stable (red solid line)
and unstable (blue dashed) limit cycle. The maximal oscilla-
tion amplitude is plotted vs. the delay time τ and the stable
fixed point is plotted as a solid black line. The gray back-
ground marks the bistable region.

(b)), creating a pair of a stable and an unstable limit
cycle. The unstable limit cycle can be visualized from
transients starting at appropriate initial conditions (see
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FIG. 7: Unstable delay-induced limit cycle. (a), (b): Time
series of both subsystems (red solid lines: activator xi, green
solid lines: inhibitor yi; black dashed lines: fixed point value
of activator and inhibitor). (c),(d): phase portraits of (x1,y1)
(top) and (x2,y2) (bottom). The unstable small-amplitude
limit cycle is visualized by the initial part of the transient
approaching the stable fixed point. Parameters: ǫ = 0.01,
a=1.3, C=0.5, τ=3.

Fig. 7). The trajectory initially remains near the unsta-
ble limit cycle, which separates the two attractor basins
of the stable limit cycle and the stable fixed point, and
then asymptotically approaches the stable fixed point.

5. CONCLUSION

We have shown that delayed coupling can induce peri-
odic spiking in a compound system of two coupled neuron
populations if the delay and the coupling strength are suf-
ficiently large. Bistability of a fixed point and limit cycle
oscillations occur even though the single excitable ele-
ment displays only a stable fixed point. The two neural
populations oscillate with a phase lag of π.
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