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ANALYSIS OF HIGH-RESOLUTION
MICROELECTRODE EEG RECORDINGS
IN AN ANIMAL MODEL OF SPONTANEOUS
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We perform a systematic data analysis on high resolution (0.5-12kHz) multiarray microelectrode
recordings from an animal model of spontaneous limbic epilepsy, to investigate the role of high
frequency oscillations and the occurrence of early precursors for seizures. Results of spectral
analysis confirm the importance of very high frequency oscillations (even greater than 600 Hz)
in normal (healthy) and abnormal (epileptic) hippocampus. Furthermore, we show that the
measures of Recurrence Quantification Analysis (RQA) and Recurrence Time Statistics (RTS)
are successful in indicating, rather uniquely, the onset of ictal state and the occurrence of some
warnings/precursors during the pre-ictal state, in contrast to the linear measures investigated.
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1. Introduction

Epilepsy is one of the most common pathological
neural disorder characterized by sudden and recur-
rent malfunctions of the brain, called seizures. Sud-
den incidence of seizures can be dangerous and life
threatening. Hence, the prediction/anticipation of
epileptic seizures is a topic of great interest, as it
would help to improve therapeutic methods through
the development of warning devices. A wide range
of linear and nonlinear measures [Mormann et al.,
2005; Tasemidis et al. 2005; Worrell et al., 2004; Litt
et al., 2001; Jerger et al., 2001; Mormann et al.,
2003; Quyen et al., 1999; Lehnertz & Elger, 1995,
1999; Casdagli et al., 1997; Steuer et al., 2004; Li
et al., 2004; Thomasson et al., 2001] have been sug-
gested for the prediction of seizures. But currently
there exists no widely accepted algorithm for char-
acterizing the transitions of the brain from a normal
to the pre-ictal and then to the ictal (seizure) state,
based on macroscopic EEG (Electroencephalogram)
recordings, due to many reasons [Mormann et al.,
2007]. Since the form and the type of seizure vary
greatly between individuals, devising a robust algo-
rithm for seizure anticipation is a complicated task.
One possibility to tackle this problem is to iden-
tify the basic mechanisms governing brain dynam-
ics that lead to the occurrence of a seizure [Sanchez
et al., 2006]. However, the knowledge about these
main mechanisms is still very limited.

The ongoing progress in the neural interface
technology has put forth another interesting ques-
tion: what spectrum of oscillations within EEG
are of significance for physiological and diagnos-
tic/therapeutic applications? Recent developments
in multielectrode technology has enabled us to
access and analyze oscillations at the higher end of
the frequency spectrum. Some early studies of high
frequency oscillations (80-500 Hz) from nonpri-
mates and humans already indicate the significance
of the high frequency oscillations in memory con-
solidation [Buzsaki, 1989; Buzsaki, 1996; Buzsaki
et al., 1992; Buzsaki, 1998; Clemens et al., 2007]
and seizure generation [Bragin et al., 1999a; Bra-
gin et al., 1999b; Bragin et al., 2002a; Bragin
et al., 2002b; Bragin et al., 2004]. Few fresh studies
also indicate the importance of further higher fre-
quency oscillations (>600 Hz) in some physiological
activities and epileptogenesis [Sanchez et al., 2006;
Talathi et al., 2008; Worrell et al., 2008; Firpi et al.,
2007].

In this paper, we investigate high resolution
intracranial EEG recordings (0.5-12kHz) obtained
1 vivo from a rat which has been induced to spon-
taneously seize (see Sec. 2). We analyze the data by
applying linear methods, such as moments, spectral
analysis and correlation function, and also nonlinear
methods based on the concept of recurrence [Mar-
wan et al., 2007]. Until now, recurrence based anal-
ysis of EEG data has concentrated in capturing the
nonstationarity of the ictal stage (loss of recurrence)
[Li et al., 2004; Thomasson et al., 2001]. However,
here, we adopt a different strategy to detect dynam-
ical changes in the data.

The main aim of our study is to analyze the
very highly sampled microarray electrodes record-
ings so as to understand the importance of higher
frequency oscillations in seizure analysis and their
dynamics. Unlike in traditional epilepsy research,
where control data is also obtained from subjects
who are suffering from epilepsy, we investigate the
control data that is obtained from healthy sub-
jects. This approach will enable us to compare the
role of higher frequency oscillations in healthy and
diseased states. The central question is of course
to look for unique warnings/ precursors occurring
before a seizure (the pre-ictal stage) which would
help in an early seizure anticipation. Furthermore,
we compare the results from linear measures with
that of recurrence based measures (RQA and RTS).

The organization of this paper is as follows. In
Sec. 2, we present the details of the data that we
investigate. Next, in Sec. 3 we describe briefly the
measures we employ to analyze the EEG data. In
Sec. 4, we present and compare the results obtained
from various methods and finally, we conclude in
Sec. 5.

2. Data Description

The EEG data comes from the rat model of
chronic limbic epilepsy using a micro-electrode
array, implanted in the ipsi-/contra- hippocam-
pal, the CA3-CA1l and the dentate gyrus regions.
The animal model of chronic limbic epilepsy is
a well documented model in literature and is
associated with recurrent spontaneous hippocam-
pal seizures. Micro-electrode array were surgically
implanted on the above specified sites of rats
brain based on earlier studies of their role in the
generation of epilepsy. Self-sustained limbic sta-
tus epilepticus was induced by hippocampal stim-
ulation after one week of surgery. Immediately
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after the stimulation and later the animal was
found to seize and the seizure detection was per-
formed by a group of experts monitoring both
video and EEG data. A detailed description about
model preparation, micro-electrode array specifica-
tions/placement /implantation surgery and induc-
tion of status epilepticus can be found in [Sanchez
et al., 2006; Talathi et al., 2008]. The multichannel
EEG potentials were recorded, synchronously, with
the sampling rate 24 414.1 Hz, which corresponds to
a sampling time of At =41 us. The data was band
pass filtered between 0.5-12 000 Hz before recording
and the analog to digital conversion was made with
16-bit analog to digital convertor.

Specifically, in this paper, we analyze three seg-
ments of 30 min intracranial EEG recordings taken
from eight channels implanted in the hippocampus
subfields CA1, CA3 and dentate gyrus. Each of the
30 min segments were a part of continuous syn-
chronous multichannel recordings collected over 73
days. Microelectrodes 1,2,7 and 8 are located in

D/V 7.00 mm

the CA1 and CA3 regions, and microelectrodes 3—6
are in the dentate gyrus (Fig. 1). The stimulation
electrode was implanted in the contralateral pos-
terior ventral hippocampus [Sanchez et al., 2006;
Talathi et al., 2008].

One of the three segments corresponds to
the quiet wakeful normal state of a healthy rat
(where the animal was either sleeping or quietly
exploring its cage) before the hippocampal stim-
ulation — control data. The remaining two data
sets correspond to quite wakefullness after the stim-
ulation during which seizure-1 and the seizure-2
were observed. The control EEG data [Fig. 2(a)]
that we analyzed was found to contain some arti-
facts like those at around 10 s, 90s, 155s and
175 s. Furthermore, the control data showed a con-
tinuous high frequency, seizure activity between
100-160s and some instantaneous high frequency
bursts at some later instances as well. The onset
of the ictal phase in the seizure-1 segment is at
about 1150 s and that of the seizure-2 segment is at
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A horizontal section of the rat’s brain showing the schematic arrangement of the electrodes [Talathi et al., 2008].
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Fig. 2. A segment of raw EEG trace from channel-1: (a) control, (b) seizure-1 and (c) seizure-2.
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approximately 1120s as can be seen from Figs. 2(b)
and 2(c).

3. Characterizing Measures of EEG

The EEG time series, with sampling time At =
41 ps, is denoted by y(iAt) = y; wherei =1,..., N
with N being the sample size. We first compute the
first derivative of the EEG time series x; = y;11 —y;
for i = 1,...,N — 1 to focus on the short term
characteristics of the system [Box & Jenkins, 1970].
Then we compute the following measures in sliding
windows of length 40 000 data points (1.63 s) shifted
by 1000 points (40 ms): variance (0?), skewness
(x), kurtosis (), relative power in different spectral
bandwidths (57’7 O, ry Bry Vrs 7«17 3) T37 ;1’ 7?7

6 fT and f8) (Appendix A.1) and autocorrelation
function (ACF) (Appendix A.2). The spectral char-
acterization of the data includes both classical and
new bandwidths (f! to f®) to exploit optimally the
high resolution data being investigated (Table 1).
The classification of the new spectral bands was
done based on the visual inspection of the power
spectrum of the data.

Furthermore, we apply nonlinear measures
estimated from Recurrence Plots (RPs) [Eck-
mann et al, 1987] to the EEG data. An RP
is a two-dimensional visualization of the trajec-
tory of a dynamical system in phase space. The
measures that we use include measures from the
Recurrence Quantification Analysis (RQA) [Web-
ber, Jr & Zbilut, 1994; Zbilut & Webber Jr,
1992; Zbilut et al., 1998; Marwan & Kurths,
2005]: Determinism (DET), Mean Diagonal Line
Length (L), Laminarity (LAM) and Trapping Time
(TT) (Appendix A.3). We also analyze a mea-
sure based on Recurrence Time Statistics (RTS)
[Gao, 1999; Gao & Cai, 2000; Ngamga et al.,
2007], namely, the Mean Recurrence Time (Wiean)
(Appendix A .4).

Table 1. Classification of the spectral bandwidths.
Frequency Frequency
Band Range (Hz) Band Range (Hz)
B 0.5-4.0 3 100-200
0 4.0-8.0 f 200-600
oY 8.0-13.0 f° 6001000
I6) 13.0-30.0 1 10002000
~ 30.0-48.0 I 2000-5000
It 48.0-60.0 18 5000-12 000
12 60.0-100.0

4. Results and Discussion

In this section, we exemplify the results of our anal-
ysis by presenting, comparing and discussing the
results from channel-1 of the control and seizure
data. Here, it is important to mention that we
choose to illustrate our results by considering EEG
recordings from channel-1 for the sake of clarity and
consistency.

4.1.

All the linear measures considered, namely, the
moments, the spectral measures and the correla-
tion measures, were able to distinguish the con-
trol data (corresponding to a healthy rat) from the
seizure data. Furthermore, they indicated the onset
of seizures and some pre-ictal events. However, all
of them failed to clearly discriminate the pre-ictal
warnings from some “random” events which occur
in the control data. We illustrate the drawbacks of
the linear measures by considering the spectral mea-
sures as an example.

Figure 3 shows the spectrogram, i.e. the time
evolution of the estimated power spectrum for
200s segments of control [Fig. 3(a)] and seizure-1
[Fig. 3(b)] data. It gives an overall picture of the
role played by the different bandwidths as defined
in Table 1. It is obtained by computing the power
spectrum of windowed frames of a given signal.

The artifacts present in the control data are
clearly represented by stripe-like structures that
extend over the entire frequency range. We observe
a decrease of power in the higher frequency range
(approximately from 2 to 12kHz) in the seizure
data, compared to the control data. This observa-
tion clearly differentiates the activities of the hip-
pocampus of a healthy and epileptic rat. On the
other hand, the onset of the seizure, marked by “S”,
is associated with an increase of power from 0.5 to
2000 Hz [Fig. 3(b)]. The spectrogram of the seizure
data also indicates seizure like, pre-ictal events, at
about 1031s, 1058s, 1100s and 1125s. However,
such intermittent peaks, that are associated with
an an increase of power in the frequency range from
0.5 to 2000 Hz were also seen in the control data.
E.g. between 100 and 160s [Fig. 3(a)].

Since the relative power measures provide a
more quantitative definition of the role played by
the different frequency bands in different physio-
logical /pathological processes, we proceed to find
if it is possible to precisely differentiate between
(i) the control and seizure data and (ii) the high

Linear measures
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Fig. 3.
is marked by the symbol “S”.

frequency burst observed in the control and seizure
data. The estimated relative power measures dis-
criminated the seizure data from the control data
by a decrease in energy in the 5-12 kHz bandwidth
(f2 (Appendix A.1)), unlike the spectrogram which
showed a decrease in the frequency range 2—-12 kHz.
As it can be seen from Fig. 4, f2 in the control
data fluctuates about 8- 107! [Fig. 4(a)] and in the
seizure data, it fluctuates around 7 - 10~2. The rel-
ative power measures computed for the remaining
frequency bands (4, 0r, ar, B, Vr, 7}3 7?’ 7§’ 7{13 7?3

6 and f7 (Appendix A.1)) of the seizure data show
an increase in energy in the case of seizure data
compared to the control data. For example, f, in
the control data fluctuates about 1-10~! [Fig. 4(a)]
and in the seizure data, it fluctuates around 4-107!
[Fig. 4(b)]. The spectrogram, however, did not show
such a clear cut difference between the seizure and
the control data in the 0.5-5000 Hz range.

The onset of the seizure is clearly detected by
f7and f& (marked by “S” in Fig. 4(b)). Analogous
to the spectrogram, we observe strong fluctuations
between 900-1150s in f7 and f3 just before the
onset of the seizure as well as between 400-800 s.
It is not clear whether these fluctuations are also
pre-ictal warnings, since the magnitude of all the
fluctuations are similar to that of events observed
during the 100-160 s in the control data. This means
that the measures cannot distinguish between pre-
ictal warnings and other “random” fluctuations
which occur in the control data. Other linear mea-
sures investigated are found to have a similar
problem.
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Spectrogram of the EEG signal from channel-1 (a) control and (b) seizure-1 (200s segments). The onset of the seizure

These results are indicative of the following
facts. First, higher frequency oscillations definitely
play an important role during the latent period of
epileptogenesis as well as during the ictal state.
Second, since the EEG recordings from the freely
behaving healthy rats also exhibit such intermittent
increase of energy in the higher frequency range,
their possible role in governing other physiological
activities (which are so far not clear) cannot be
neglected. Hence, with only the spectral informa-
tion, it is difficult to characterize the high frequency
bursts occurring prior to a seizure as preictal warn-
ings/precursors. In the next section, we show that
this problem can be solved by obtaining a dynami-
cal perspective of the data.

4.2. Nonlinear measures: RQA
and RTS

Recurrence plots (RPs) and RPs based measures
(RQA and RTS) have been shown to be useful for
the analysis of a great variety of complex real world
systems [Marwan et al., 2007]. In this section, we
present the results of recurrence analysis of the
EEG recordings. Time profiles of each of the RQA
and the RTS measures were computed using sliding
windows, as mentioned in Sec. 3. Before calculat-
ing the recurrence based measures, we sampled the
EEG data to 2.5kHz to facilitate the computation
of the recurrence matrix in each window. Then,
the univariate data in each channel was embed-
ded to reconstruct the phase space [Takens, 1981].
The reconstruction was done using an embedding
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Fig. 4. Time course of f; (green line) and f& (brown line) for (a) control and (b) seizure-1 data for channel-1. The onset of

seizure is marked by the symbol “S”.

dimension of 6 and a time delay of 10 (correspond-
ing to ~ 4.0 ms). A variety of different embed-
ding parameters were tested but the results were
found to be qualitatively the same in all the cases
studied.

The RPs constructed from each window were
made to have the same number of recurrence points,
i.e. the threshold ¢ defining the size of the neigh-
borhood (see (Appendix A.3)) was chosen so that
the recurrence rate [Eq. (A.7)] was the same in
all windows (RR = 0.05). This procedure is nec-
essary because if we use the same threshold ¢ for all
channels and all windows, changes in the amplitude

might conceal changes in the dynamics. We know
that the onset of seizure is manifested in the EEG
recordings as high amplitude activities. Using a
fixed threshold e for such a signal will be obviously
successful only in capturing the nonstationarity in
the data. The EEG signals from different chan-
nels often have different amplitudes, which require
adjusting of € for each channel. Other parameters
for the RQA were chosen as follows: [y, = 4 (corre-
sponding to ~ 1.6 ms), vyin = 4 and Theiler window
[Theiler, 1986] of length 1. For other choices of these
parameters, the results were again qualitatively the
same.
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The RQA measures allow us to distinguish
between control and seizure data. For example,
DET [Eq. (A.8)] fluctuates about 0.001 for the
control data [Fig. 5(a)] and about 0.003 for the
seizure data [Fig. 5(b)]. The RQA measures detect
the onset of the seizure clearly (marked as “S” in
Fig. 5(b)). Furthermore, the RQA measures fluctu-
ate strongly before the seizure around 900-1150s
[Fig. 5(b)], indicating pre-ictal transitions of the
brain. Unlike linear measures, these fluctuations
correspond to the pre-ictal warnings and are about
two orders of magnitude higher than the “ran-
dom” fluctuations that occur in the control data
[Fig. 5(a)]. Hence, the RQA measures are able to
clearly detect the onset of the seizure, as well as
recognize the “random” fluctuations.

Also note that DET, which is a measure of
predictability of the underlying system, increases
at the onset of the seizure and during the warn-
ings. This indicates that the signal becomes more
deterministic during the seizure, as well as during

Time course of DET for (a) control at channel-1 and (b) seizure-1 data. The onset of seizure is marked by the

the warnings. This result is obtained by fixing the
recurrence rate in our analysis, instead of fixing the
threshold e. This enables us to overcome the prob-
lem of amplitude fluctuations during the normal,
pre-ictal and ictal states and allows us to compare
properly the transitions in the brain dynamics. The
results are also in accordance with earlier studies
which indicate that during the pre-ictal and seizure
phases, the brain exhibits more ordered behavior
than during inter-ictal phases [Sackellares et al.,
2000].

Even though we have presented here only the
results for DET (Fig. 5), the results of the other
RQA measures also clearly indicate the warnings
and the onset of the seizure in almost all channels.

The mean recurrence time (Wiean) [Eq. (A.12)]
does not distinguish between the control and the
seizure data [Fig. 6(b)], in contrast to the other
measures studied. However, Wiean indicates the
onset of the seizures with a sharp increase (marked
as “S” in Fig. 6(b)). Moreover, Wy,ean shows clear
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fluctuations between 900-1150s [Fig. 6(b)] corre-
sponding to the fluctuations found in the RQA
measures, which can be interpreted as warnings.
However, there were a few channels in which Wi ean
did not clearly indicate the precursors to the
seizures.

5. Conclusion

The brain is one of the most interesting and chal-
lenging dynamical systems in nature. Significant
progress has been made over the last years in under-
standing the brain at the microscopic level (single

Time course of the measure Wmean for (a) control and (b) seizure data from channel-1. The onset of the seizure is

neurons and single synapses). However, under-
standing its dynamics on a macroscopic scale is
still a huge task. Studies in this direction could
greatly improve our understanding of the basic
principles governing information processing in the
brain and pathogenesis of neuropsychiatric disor-
ders. Epilepsy is one of the prime candidates to
acquire the benefits of this research. Furthermore,
understanding the transitions of the brain prior to
seizure, is crucial to help prevent life threatening
events.

Modern neural interface technology has opened
new doors in epileptogenesis research. Recent
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studies support the significance of high frequency
oscillations in the pathological and physiological
activities. In this paper, we have compared
the capability of different univariate linear mea-
sures such as moments, spectral band power and
autocorrelation function with measures from the
Recurrence Quantification Analysis (RQA) and
Recurrence Time Statistics (RTS), to analyze very
high resolution EEG recordings obtained from a
healthy rat (control data) and rats induced with
status epilepticus (seizure data).

All linear measures that were investigated dis-
tinguish the control and seizure data. Spectral
analysis has revealed the role of high frequency
oscillations (> 600 Hz) in the highly sampled data.
Though all the univariate measures investigated
are found to indicate the pre-ictal changes, all of
them failed to distinguish between pre-ictal warn-
ings and “random” fluctuations found in the control
data. However, recurrence based dynamical mea-
sures (RQA and RTS), computed from RPs of EEG
recordings, discriminated the high frequency oscilla-
tions occurring in the control data from that occur-
ring during pre-ictal/ictal warning periods. They
clearly discern between the “random” fluctuations
which often occur in the control data, and real warn-
ings which appear prior to a seizure. The results
support the hypothesis that the epileptic brain
makes intermittent and abrupt transitions into and
out of an ictal like state (precursors/warnings) prior
to a seizure. The findings also support the fact that
pre-ictal and ictal phases are more deterministic
than inter-ictal ones. The next steps are to test
the statistical validity (sensitivity, specificity, false
positives and false negatives, etc.) of our approach
by applying it to larger experimental data sets
and also to compare the efficiency of our method
with the other nonlinear measures that have been
proposed for seizure prediction purpose [Mormann
et al., 2005; Mormann et al., 2003; Quyen et al.,
1999; Lehnertz & Elger, 1995, 1999].
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Appendix A

A.1. Relative power of

spectral bands

The estimation of the power spectrum [Hegger
et al., 1999] of a time series {;}¥, is given by the
square of the smoothed amplitudes of the Fourier
Transform

J
Py = s3], f:ang, (A1)
where fs = 1/At is the sampling rate, and
| XN
sp=—= z;ed2HIN, A2
F= TN z; i (A:2)

with N being the length of the considered time
series. Based on literature [Mormann et al., 2005;
Worrell et al., 2004] and on visual inspection of the
spectrogram and power spectrum, we classify the
frequency range between 0.5-12 000 Hz into 13 dif-
ferent spectral bands. The relative power contained
in the different bands is defined as follows

4 Hz 8 Hz

1 1
=% D, Pp th=5 D Pr
f=0.5Hz f=4Hz
1 13Hz 1 30Hz
ar:FZPf; @ZF Z Py;
f=8Hz f=13Hz
1 48 Hz 1 60 Hz
— . 1 _ .
’YT_F Z va fr_F Z va
f=30Hz f=48Hz

100 Hz 200 Hz

1 1
fP=5 2. P fi=3% > Fr
F=60 Hz F=100Hz
1 600 Hz 1 1000 Hz
fl=5 2. Pn =% 2. Pr
F=200 Hz F=600 Hz
1 2000 Hz 1 5000 Hz
F=35 > P fl=5 > Fr
£=1000 Hz £=2000 Hz
1 12000 Hz
8
F=% 2. Fr
F=5000 Hz

(A.3)

where P = Z}i%%ZHZ Py is the total power in the
signal.

A.2. Autocorrelation function

The autocorrelation function A(7) of a time series
{z;}¥, at alag 7 is defined as

N—1
(@i — Z)(Tigr — T)
Alr) = S— , (A.4)
> (zi— 1)
i=1

where Z denotes the mean value. Denoting the first
zero crossing of A(7) by 7., we define the following
index for a given lag Tax

Tmax

> AR,

T
max k=1

ACF =

(A.5)

which is an estimate for the decay of the envelope
of A(7) [Lai et al., 2004].

A.3. Recurrence quantification
analysis (RQA)

A Recurrence Plot (RP) is a two-dimensional visu-
alization of the trajectory of a dynamical system in
phase space. RPs consist of the graphical represen-
tation of the binary matrix

Ri; =0(e — [[xi — x4),

where x; € R¢ stands for a point in a d-dimensional
phase space at time i, € is a predefined threshold,
©(-) is the Heaviside function, and || - || is a norm,
e.g. the Euclidean or the Maximum norm. The RP

i,j=1,...,N (A.6)
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is then obtained by assigning a black point to the
value one and a white point to the value zero.

To quantify the structures found in an RP,
a set of measures, called Recurrence Quantifica-
tion Analysis (RQA), has been proposed [Zbilut
& Webber Jr, 1992; Webber, Jr & Zbilut, 1994;
Zbilut et al., 1998; Marwan & Kurths, 2005]. We
use the following RQA measures for our study:

e Recurrence rate (RR), which is defined as the
probability of finding a black point in an RP (note
that its definition coincides with that of correla-
tion sum)

N
1
RR = N2 Z O (e — [Ixi — %))
ij=1
e Determinism (DET), which is defined as the per-

centage of black points forming a diagonal line of
at least length i

(A7)

N
> 1P

l:lmin
DET = —~
> 1P(l)
=1

where P(l) denotes the probability of finding a
diagonal line of length [ in the RP. It was intro-
duced to quantify the predictability of the sys-
tem. For a purely periodic system, DET =1 and
DET — 0 for a purely stochastic system.

e Mean diagonal length (L), which is the average
length of the diagonal lines found in the RP

N
> 1P

(A.8)

(A.9)

I=lmin
It is the average time during which two trajecto-
ries remain close to each other in phase space.
e Laminarity (LAM), which is defined as the per-
centage of black points present in a black vertical

line of the RP of at least length I,

N
> P

l:lmin
LAM = S A—
> IR
=1

where P,(l) is the probability to find a vertical
line of length [ in the RP. It quantifies the lami-
nar states present in the given trajectory and is
capable of detecting chaos—chaos transitions and
intermittency [Marwan et al., 2002].

e Trapping Time (TT), which is defined as the
mean black vertical line found in an RP

N
> IR

l:lmin
S
PRAG
=1

where P,(l) is the probability to find a vertical
white line of length [ in the RP. It measures the
mean time for which a trajectory will stick to a
certain state.

, (A.10)

(A.11)

A.4. Recurrence Time Statistics
(RTS)

Recurrence Time Statistics (RTS) are based on the
study of the time intervals that a system needs
to recur close to a former state. In an RP these
time intervals correspond to the white vertical lines.
From the distribution of the white vertical lines, we
can estimate the mean recurrence time by

N
>
ljvl ’
> W)
=1

where W (1) is the probability to find a vertical white
line of length [ in the RP.

Winean = (A.12)





