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Abstract

A method for finding reduced-order approximations of turbulent
flow models is presented. The method preserves bounds on the pro-
duction of turbulent energy in the sense of the L2 norm of perturba-
tions from a notional laminar profile. This is achieved by decomposing
the Navier-Stokes system into a feedback arrangement between the lin-
earised system and the remaining, normally neglected, nonlinear part.
The linear system is reduced using a method similar to balanced trun-
cation, but preserving bounds on the supply rate. The method involves
balancing two algebraic Riccati equations. The bounds are then used
to derive bounds on the turbulent energy production. An example of
the application of the procedure to flow through a long straight pipe
is presented. Comparison shows that the new method approximates
the supply rate at least as well as, or better than, canonical balanced
truncation.
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1 Introduction

Classically, the study of hydrodynamic stability has proceeded via lineari-
sation and subsequent modal analysis, where the asymptotic behaviour of
small perturbations to a steady or slowly-varying base flow are considered.
This asymptotic behaviour is determined by the eigenvalues of a linear op-
erator arising from the analysis, which describes the time-evolution of the
eigenmodes.

In many situations this approach gives the whole story. However it relies on
the perturbations remaining small enough in the near-term for the asymp-
totic behaviour to be manifested before the neglected nonlinearities become
important.

For the case of flow through a straight pipe of infinite extent examined
here, this assumption is not the case. For example dependence of tran-
sition on the disturbance amplitude – a signature of nonlinearity – was
observed by Reynolds in pipe flow a century ago. Furthermore, the dis-
covery of full solutions other than the simple laminar flow [Waleffe, 2003,
Wedin and Kerswell, 2004] necessitates that the laminar solution is only lo-
cally stable.

In this case the system is non-normal or non-orthogonal – indicating that
the eigenmodes of the linearised system are not orthogonal with respect
to the perturbation energy norm. Specifically, an operator A with adjoint
A∗ is non-normal if AA∗ 6= A∗A. In such systems, ‘interference’ or phase
effects of the nearly-parallel eigenmodes may result in growth in the norm
of interest that in the near-term may dominate the asymptotic behaviour
to be expected by merely examining the eigenvalues. This growth may be
large enough for nonlinear effects to become significant in the near-term,
rendering the purely classical eigenvalue analysis of secondary importance.
Such non-normality arises in forced, damped systems such as perturbations
to a steady viscous shear flow. This effect is well understood and a review
of various ways of understanding non-normality in hydrodynamic systems is
to be found in [Schmid, 2007].

It is also understood that the production of perturbation or ‘turbulent’ en-
ergy is completely described by the non-normal dynamics of the linear sys-
tem, because the forcing arising from the nonlinearity of the perturbed sys-
tem acts orthogonally to the velocity field and so does not contribute directly
to the turbulent energy growth. This indicates that the special choice of the
perturbation energy as a norm of interest allows us, in certain respects, to
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neglect the nonlinearity. This point is made explicit in this paper.

The present work considers the behaviour of arbitrary perturbations to a
steady flow solution (laminar flow). The flow is assumed to have sufficiently
high viscosity that small perturbations eventually decay (so the eigenval-
ues of the linearised system are all stable), but sufficiently low viscosity
that the same small perturbations may be capable of growing in the in-
termediate term (the linearised system is non-normal). This work may
therefore be understood in the broader context of work applying ideas from
the field of systems theory to fluids problems. Examples of this approach
would include [Jovanović and Bamieh, 2005, Bamieh and Dahleh, 2001] and
[Bewley, 2001].

It is useful at this stage to consider the system as decomposed into two
connected sub-systems, a linear system (obtained by linearisation) and a
nonlinear part (the part that would normally be neglected). This view al-
lows their separate analysis and the analysis of their mutual interaction.
Furthermore, the linear part may be itself decomposed into various modes.
For the pipe geometry in question, an orthogonal wavenumber decomposi-
tion is appropriate and further decomposition at each wavenumber according
to turbulent energy production or dissipation is suggested.

Turbulence is a self-sustaining process, so the flow perturbations need to
extract energy from the base flow, to counter dissipation. This energy ex-
traction is described in the sequel by a model obtained by linearisation
about the laminar profile. A sector-bounding or supply rate analysis is used
to pick out the dominant modes or structures in this amplification process.
We might expect these structures to feature prominently in turbulent flows,
along with the associated dissipative modes or structures excited via the
nonlinearity. The forcing required to drive the linear amplification process
is provided throughout the flow volume by the nonlinearity. The nonlinearity
is itself driven by the outcome of the linear amplification process, complet-
ing a self-supporting feedback loop. Where the amplification is insufficient,
the process will eventually decay. Furthermore, the most amplifying modes
can be calculated and the threshold at which amplification is insufficient to
sustain turbulence can be quantified exactly.

In the actual system, as in this simple model, nonlinear effects interact with
linear effects. However, given that the nonlinear effects do not create or
destroy turbulent energy, but merely redistribute it, we can consider the
linear subsystem as both producer and consumer of turbulent energy, and
will look to decompose it accordingly. We might hypothesise that structures
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dominating in turbulent flow will correspond to those linear modes that
strongly produce turbulent energy. The structures grow until their linear
(locally determinable) growth is no longer sustainable, and the nonlinear
forcing becomes significant enough to excite the more dissipative modes,
dissipating energy. The nonlinearity meanwhile also provides forcing to the
productive linear modes, allowing the process to begin again. The process
as a whole depends on an energy source to initiate the growth (the shearing
interaction with the base flow), which is manifested in the equations as a
non-normality, and a nonlinearity to provide saturation and ‘clearing’ so
that the process can begin again.

The system as a whole is then understood as a feedback process between
a conservative, redistributive nonlinearity, and energy-producing or energy-
dissipating linear modes. This self-reinforcing feedback process was partly
described in [Trefethen et al., 1993].

The presented analysis bounds the turbulent energy production of an ar-
bitrary flow at a given Reynolds number. In this respect it is a nonlin-
ear analysis. The paper goes on to propose a novel reduced-order ap-
proximation of the linear dynamics, that preserves bounds on this tur-
bulent energy production, similar to balanced truncation. For example,
see [Moore, 1981, Green and Limebeer, 1995] and, in the current context,
[Rowley, 2004]. Should the nonlinearity be retained, it is anticipated that
the nonlinear dynamics are also approximated. The proposed arrangement
is illustrated in Fig. 1. In the sense that this approach is concerned with
the contribution to turbulent energy production, the presented analysis is
related to the stochastic forcing model of [Farrell and Ioannou, 1993], the
passivity analysis of [Sharma et al., 2006] and the H∞-norm analysis of
[Jovanović and Bamieh, 2005].

The proposed scheme contrasts with the canonical balanced truncation scheme
in two important ways. Firstly, the famous ‘twice-the-sum-of-the-tail’ in-
finity norm error bound [Green and Limebeer, 1995] is lost using the new
procedure. Secondly, balanced truncation does not guarantee that sector
bounds are preserved during the procedure. Because the linear system to
be reduced may exist in connection with a setor-bounded nonlinearity, it
may be important for nonlinear stability results to preserve sector bounds
during the reduction process. For a simple motivating example, consider the
system shown in Fig. 1. If both the nonlinearity N and the linear system H
in the left half of Fig. 1 are known to be strictly passive, the system arising
from their interconnection must be stable [Zames, 1966]. Imagine balanced
truncation is applied to G yielding a reduced order model Gr. The canon-
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ical balanced truncation procedure is not guaranteed to preserve passivity.
Therefore, the interconnection of Gr with N shown in the right half of the
figure may not itself be stable. Consequently, we might like to preserve
sector bounds in any truncation procedure used in the presence of a sector
bounded nonlinearity.

2 Sector Bounded Systems

We begin briefly reviewing the theory of sector bounded systems. A classic,
comprehensive introduction is to be found in [Willems, 1972a, Willems, 1972b].

Consider a linear, time invariant (LTI) system H,

y = Hu (1)

with transfer function H(s) that is analytic in the closed right half-plane.

The system H is in sector [a, b] if the transfer matrix H(iω) obeys the
following inequality

Λ(iω) = Herm[(H(iω)− aI)∗(H(iω)− bI)] ≤ 0 ∀ω ∈ R. (2)

where we use the Hermitian part of a matrix, Herm(X) = (X∗ +X)/2.

Equivalently, if there is a supply rate w(y(t), u(t)) and a non-negative storage
function S(z) such that

S(z(t)) = S(z(0)) +

∫ t

t0

w(y(s), u(s))ds (3)

with the supply rate

w(y(t), u(t)) = (a+ b)y∗(t)u(t) − abu∗(t)u(t)− y∗(t)y(t) ≥ 0 (4)

then H ∈ [a, b], where the state of H is z, and S(0) = 0.

This can be interpreted graphically as the graph of the system lying within
a conic region in the input-output space inhabited by H (see Fig. 2 for a
single-input, single-output example, and see [Zames, 1966]).

There are two special instances of broader interest, the sector [0,∞] which
corresponds to a passive system (see Fig. 3), and the sector [−γ, γ] which
corresponds to H∞-norm bounded systems (see Fig. 4). Clearly the sector
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bounds a and b are not unique; for example, a system in sector [−1, 1] is
also in sector [−2, 2].

We will make use of the following properties. If H1 ∈ [a1, b1] and H2 ∈
[a2, b2], with b1 and b2 positive, then H1+H2 ∈ [a1+a2, b1+b2]. If H ∈ [a, b]
and k > 0, then kH ∈ [ka, kb].

3 Sector Bounding of the Linearised Navier-Stokes

Equations and Bounding of the Turbulent En-

ergy Production

In this section we introduce the linearised, perturbed Navier-Stokes equa-
tions. The equations can be sector bounded and these bounds can be used
to bound turbulent energy production. The perturbed Navier-Stokes equa-
tions can be interpreted as a coupled linear system and memoryless nonlinear
system.

We begin by writing down the equations for three-dimensional incompress-
ible fluid flow evolving in time in a domain Ω ⊂ R

3. The state of the flow at
an instant in time t is fully described by a time-dependent velocity vector
field V (x, t) and a scalar pressure field P (x, t) where x is a point in Ω and
t is a point in time.

The flow is governed by the incompressible Navier-Stokes equations at Reynolds
number Re. The equations of motion are

V̇ (x, t) =− V (x, t) ·▽V (x, t)−▽P (x, t) +
1

Re
▽

2V (x, t) (5)

▽ · V (x, t) = 0. (6)

The flow also obeys prescribed boundary conditions

V (x, t) = V∂(x, t). (7)

We consider perturbations v(x, t) around an assumed steady solution v̄(x).
This gives the net velocity vector field

V = v̄ + v. (8)

The steady pressure p̄(x) is similarly perturbed by p(x, t).
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Substitution into (5) gives the perturbation equations

v̇(x, t) =− v̄(x, t) ·▽v(x, t) − v(x, t) ·▽v̄(x, t) + n(x, t)−

▽p(x, t) +
1

Re
▽

2v(x, t)

n(x, t) =− v(x, t) ·▽v(x, t),

▽ · v(x, t) =0.

(9)

A substitution has been made for the nonlinear part, giving coupled linear
and nonlinear equations. We do not make the assumption of small pertur-
bations.

The equations (9) include pressure. The pressure term can be eliminated
along with the divergence equation by projecting the equations onto the
space of divergence-free functions. Defining Π via Π(▽p) = 0, Π(v) = v
gives

v̇(x, t) =−Π

(

v̄(x, t) ·▽v(x, t)− v(x, t) ·▽v̄(x, t) +
1

Re
▽

2v(x, t) + n(x, t)

)

n(x, t) =N (v) = −v(x, t) ·▽v(x, t).

(10)

The perturbation equations (10) are then described as the feedback inter-
connection between a linear part and the nonlinear part.

We achieve this by writing the system equations (10) in operator form as

v̇(x, t) = Av(x, t) + n(x, t)

n(x, t) = N (v(x, t))
(11)

and for notational convenience write this as

v =Gn

n =N (v).
(12)

Define an inner product on Ω× [t0, t],

〈α, β〉 =

∫ t

t0

∫

x∈Ω
β(x, s)∗α(x, s)dxds. (13)

Using this definition, consider the total turbulent energy, E(t) = 1
2

∫

x∈Ω v(x, t)2dx,

E(t) = 〈v,N (v)〉+ 〈Gn, n〉 . (14)
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The fields in question are real-valued. It is easily shown [Sharma et al., 2006]
that the net inflow of perturbation energy into the spatial domain Ω is

Ein = 〈v,N (v)〉 . (15)

To see this, evaluate 〈v, n〉 or equivalently,

〈v,N v〉 = −

∫ T

t0

∫

x∈Ω
v(x, t) · (v(x, t) ·▽v(x, t)) dx dt. (16)

Applying the divergence theorem, the inner integral is equivalent to an in-
tegral over the boundary,

−

∫

x∈∂Ω
(v(x, t) · v(x, t))v(x, t) · ξ̂ dx (17)

where ξ̂ is the outward-facing unit vector perpendicular to the boundary ∂Ω.
Physically interpreted, (17) quantifies the net flux of disturbance energy into
the domain through the boundary per unit time.

So, the perturbation energy is

E(t) = −〈Gn, n〉+ Ein. (18)

Assume the linearised system (G) is in sector [a, b]. We can find a suitable
a and b later. Since G is in sector [a, b], the associated supply rate is non-
negative. To evaluate the supply rate, we also need the inner product on Ω
only, which we define via

〈α, β〉
Ω
=

∫

x∈Ω
β∗(x)α(x)dx. (19)

This is the time derivative of Eq. (13). The supply rate is then

w(t) = (a+ b) 〈v(t), n(t)〉
Ω
− ab 〈n(t), n(t)〉

Ω
− 〈v(t), v(t)〉

Ω
≥ 0 (20)

which, using the time derivative of Eq. (18), gives

(a+ b)(Ėin − Ė)− ab 〈n(t), n(t)〉
Ω
− 〈v(t), v(t)〉

Ω
≥ 0 (21)

where ẋ denotes the time derivative of x. To allow for the very viscous small-
scale modes we expect, take the limit of large b, so that G ∈ [a,∞]. Then
we obtain a bound on the rate of perturbation (turbulent) energy creation,

Ė ≤ −a‖n(t)‖2Ω + Ėin. (22)
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We would seek an approximatation to G, retaining modes that contribute
maximally to this turbulent energy creation.

The turbulent energy production is bounded from above by the energy in-
flow, the sector bound a, and the norm of the nonlinear forcing function of
v, n = −v ·▽v.

Note that if a < 0, growth of the turbulent energy is possible, even from
small v, via the nonlinear feedback mechanism. If however a > 0, and there
is no net inflow, then the turbulence is guaranteed to decay.

Conservative estimates for the sector bounds a and b may easily calculated
from the linearised system by taking limits of Eq. (2), giving

b ≥
1

2
(G(jω)∗ +G(jω)) ≥ a. (23)

Bounds may also be calculated using the infinity norm (see Fig. 4),

‖G‖∞ ≤ b, ‖G‖∞ ≤ −a. (24)

If a < 0, the linear part of the system may produce turbulent energy via
the non-normality in the perturbed equations, which may be interpreted
graphically as in Fig. 5.

4 Model Reduction by Sector-Balanced Trunca-

tion

The novel reduction procedure presented here is designed to preserve sector
bounds and therefore the nonlinear turbulent energy production bounds
described in the previous section. The procedure is in this sense appropriate
for application to finding finite-dimensional approximation of Navier-Stokes
systems.

The previous section showed how sector bounds can be used to bound the
turbulent energy production. In this section we reduce the order of the lin-
earised system responsible for producing the turbulent energy, while leaving
the nonlinear part alone.

The proposed scheme contrasts with the canonical balanced truncation scheme
in two important ways. Firstly, the famous ‘twice-the-sum-of-the-tail’ infin-
ity norm error bound [Green and Limebeer, 1995] is lost. Secondly, balanced
truncation does not guarantee that sector bounds are preserved during the
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procedure. Because the linear system to be reduced may exist in connection
with a sector-bounded nonlinearity, it may be important for nonlinear sta-
bility results to preserve sector bounds during the reduction process. For a
simple motivating example, consider the system shown in Fig. 1. If both the
nonlinearity N and the linear system H in the left half of Fig. 1 are known
to be strictly passive, the system arising from their interconnection must be
stable [Zames, 1966]. Imagine balanced truncation is applied to G yielding
a reduced order model Gr. The canonical balanced truncation procedure
is not guaranteed to preserve passivity. Therefore, the interconnection of
Gr with N shown in the right half of the figure may not itself be stable.
Consequently, we might like to preserve sector bounds in any truncation
procedure used in the presence of a sector bounded nonlinearity.

For an introductory survey of model reduction by various balanced trunca-
tion variants, the reader is directed to [Gugercin and Antoulas, 2004].

To summarise, the procedure is as follows:

1. Find the linearised system v = Gn and the associated inner product
〈·, ·〉

Ω

2. Establish that G ∈ [a, b]

3. Find an approximation to G, G̃, that is also in the same sector.

In the spirit of balanced truncation, we propose a similar state-space trun-
cation that preserves the sector bounding in the next section. We will also
see that canonical balanced truncation is recovered in a special limting case.

Suppose the system v = Hf is square, stable, finite-dimensional, linear
time-invariant and H ∈ [a, b], with minimal state-space realisation

ẋ(t) = Ax(t) +Bf(t) (25)

v(t) = Cx(t) +Df(t) (26)

E(t) = v∗(t)v(t) (27)

with x ∈ C
m, v ∈ C

l, f ∈ C
l and complex matrices A, B, C, D dimensioned

compatibly. This can be written as

H =

[

A B

C D

]

. (28)
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If the similarity transformation T is a suitably dimensioned square nonsin-
gular matrix, the following is also a realisation of H,

ż(t) = TAT−1z(t) + TBf(t) (29)

v(t) = CT−1z(t) +Df(t) (30)

z(t) = Tx(t). (31)

H is strictly in sector [a, b] if and only if the following conditions are met
[Shim, 1997],

1. There exist real, symmetric solutions X > 0 and Y > 0 of the following
two Algebraic Riccati equations (AREs)

A′X+XA−(XB−C ′(
a+ b

2
I−D))P−1(XB−C ′(

a+ b

2
I−D))′+C ′C = 0

(32)

AY+Y A′−(Y C ′−B(
a+ b

2
I−D)′)P−1(Y C ′−B(

a+ b

2
I−D)′)′+BB′ = 0

(33)

2. P < 0

3. The solutions X and Y are stabilising, that is,

A−BP−1(
a+ b

2
I −D)′C −BP−1B′X < 0 (34)

A′ − C ′P−1(
a+ b

2
I −D)B′ − C ′P−1C ′Y < 0 (35)

where P = D′D − a+b
2
(D +D′) + abI.

Since existence of solutions to the AREs (32) and (33) determine that the
system obeys the sector bound H ∈ [a, b] and thus has a supply rate in
Eq. (4), it is appropriate to determine a balancing and truncation scheme
whereby the solutions X and Y are equal and diagonal. The states spanned
by the eigenvectors of the balanced X and Y corresponding to their smallest
eigenvalues are then truncated. The truncated states are then those that
impact least on the supply rate. Thus we seek a transformation T so that
the solutions to the two AREs for the realisation in Eqs. (30-31) are equal
and diagonal with ordered elements.

A transformation that achieves this is T = Σ
1

2U ′R−1 where Y = RR′ is a
Cholesky factorisation of Y and R′XR = UΣ2U ′ is a singular value decom-
position of R′XR. A proof is presented in Appendix A.
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The balanced system may then be partitioned,

H =

[

Ã B̃

C̃ D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 . (36)

The partitioned system is then truncated

Hr =

[

A11 B1

C1 D

]

. (37)

It is also shown in Appendix A that the truncated realisation in Eq. (37) is
itself sector balanced, stable, and Hr is also strictly in sector [a, b].

Since the reduced system Hr shares the same input and output dimensions
as the full system H, the same nonlinearity is used in the approximated
nonlinear model.

Computationally, it is advisable to relax the sector bounds a and b where
they have been found by Eqs (23) and (24) to improve the conditioning of
the AREs.

It is interesting to note that canonical balanced truncation is a special case
where the sector under consideration approaches [−∞,∞], in which case the
AREs reduce to Lyapunov equations and their solutions to the controllability
and observability gramians. In this case the method coincides with balanced
truncation, and bounds on the turbulent energy production are lost.

5 Application to Hagen-Poiseuille Flow

As an illustrative example, we use flow through an infinitely long, straight
pipe. The pipe is of particular relevance to this type of analysis because
the eigenmodes of its linearised operator are always stable. Consequently
we must turn to an analysis of system non-normality to explain turbulent
energy production.

The difficulty of finding solutions to AREs involving partial differential op-
erators unfortunately imposes that we begin with a finite-dimensional model
before finding the reduced-order model. As such, the flow is Fourier trans-
formed in the streamwise (axial) and azimuthal directions. The highly ac-
curate linear code presented in [Meseguer and Trefethen, 2003] is used. The
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flow is discretised with a discretisation resolution N = 100. The Reynolds
number used is defined as

Re =
Πr3ρ

4µ2
(38)

where −Π is the streamwise pressure gradient, r the radius, ρ the density
and µ the viscosity. A state-space system is formed as in Eq. (28). For the
application under consideration, the state-space system ouput is the velocity
field and the input is the volume forcing provided by the nonlinearity. As
such the system is square and f(t)∗v(t) has units of power and provides us
with the inner product of Eq. (19). For this and most other fluids examples,
D = 0.

The flow in the pipe in question has Re = 2000. Turbulent behaviour
has been observed in pipes at this Reynolds number. The perturbation
system studied in this section is axially symmetric (k = 0) and has azimuthal
wavenumber n = 1. The sector bound used is fairly tight at [−2830, 14200].
The infinity norm of the system is ||G||∞ < 4800.

By construction, since the reduced system remains in the same sector as
the full linearised model, the supply rate inequality is preserved, as is the
nonlinear bound on energy production.

To estimate how many modes should be kept in a reduced-order model,
the singular values of the balanced ARE solutions are examined in Fig. 6.
The figure demonstrates that of the 2N = 160 states, the contribution to
the supply rate of the fourth mode is approximately two decades less than
that of the leading mode. For comparison the Hankel singular values found
during canonical balanced truncation are also shown.

The first and third modes are given in Figs. 7 and 8. The tenth mode
is shown in Fig. 9. The value of σ for the tenth mode suggests that this
and similar modes may be involved in the transfer of energy between the
modes rather than energy production. Comparison between all modes shows
that the most active modes tend to be simpler, because dissipation is more
significant for the more complex modes where significant mixing is evident.

For the purposes of comparison with canonical balanced truncation, a very
aggressive model reduction keeping just a single state was calculated using
sector-balanced truncation and canonical balanced truncation. The infinity
norms for the reduced models were 5710 for balanced truncation and 4836
for sector-balanced truncation. The sector-balanced truncation happens to
outperform in this case on a traditional infinity-norm measure, although of
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course the method gives no a priori bounds on this norm, unlike canoni-
cal balanced truncation. More pertinent to our purpose is the effect of the
reduction procedure on the supply rate. This was evaluated directly by
examining the eigenvalues of Eq. (2) for the original and reduced models
using the sector bound [−2830, 14200] over a range of frequencies. This
comparison in shown in Fig. 10. In the figure, the lower panel shows the
fractional error of the reduced models compared with the original, defined

by
(

λi(Λ̂(iω)) − λi(Λ(iω))
)

/λi(Λ(iω)). The matching of the supply rate us-

ing the sector bounded method is evidently superior. In fact, the balanced
truncation method breaks the sector bounds, significantly violating the in-
equality of Eq. (2). However, it should be noted that with a higher-order
reduced model, both methods give very good results.

6 Conclusions

A Riccati-based method for model reduction based on balancing with re-
gard to sector bounding has been presented. The supply rate of the reduced
model approximates the supply rate of the original model. When applied
to the linearised Navier-Stokes equations and considering the passivity of
the nonlinear term neglected in the linearisation, this sector bounding re-
sults in a bound on the turbulent energy production of the full nonlinear
Navier-Stokes equations at a given Reynolds number. These bounds may be
calculated from the linearised system. Because the scheme preserves the sec-
tor bounds of the linearised system it also preserves bounds on the turbulent
energy production of the whole system, including the nonlinearity.

The scheme has been applied to linearised perturbations about pipe flow for
a typical case of Re = 2000. The perturbation system is axially symmetrix
and has azimuthal wavenumber of 1. Representative modes coresponding
to energy production and transfer have been identified and presented. A
comparison shows that sector-balanced truncation approximates the supply
rate at least as well as, or better than, canonical balanced truncation,
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A A sector balancing transformation

This appendix concerns the stable, finite-dimensional, linear time-invariant
system v = Hf defined in Eq. 28.

Lemma A.1. There exists a similarity transformation T so that the solu-
tions to the two sector bounding algebraic Riccati equations (AREs) for the
realisation in Eqs. (30-31) are equal and diagonal with ordered elements.

The transformation that achieves this is T = Σ
1

2U ′R−1 where Y = RR′

is a Cholesky factorisation of Y and R′XR = UΣ2U ′ is a singular value
decomposition of R′XR.
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Proof. Since the system H is in sector [a, b], so is the transformed system
in Eq. 31. Forming the appropriate ARE analogous to Eq. 32 for the trans-
formed system results in a new ARE with solution XT ,

T−1′A′T ′XT +XTTAT
−1−

(XTTB − T ′−1
C ′(

a+ b

2
I −D))P−1(XTB − T ′−1

C ′(
a+ b

2
I −D))′ +

T ′−1
C ′CT−1 = 0 (39)

where P = D′D − a+b
2
(D +D′) + abI.

Substituting RR′ for Y and R′−1UΣ2U ′R−1 for X into Eq. 32 gives

A′R′−1UΣ2U ′R−1 +R′−1UΣ2U ′R−1A−

(R′−1UΣ2U ′R−1B − C ′(
a+ b

2
I −D))P−1(R′−1UΣ2U ′R−1B − C ′(

a+ b

2
I −D))′ +

C ′C = 0. (40)

Left-multiplying by T ′−1 = Σ−1/2U ′R′ and right-multiplying by T−1 =
RUΣ−1/2 results in
[

Σ−1/2U ′R′A′R′−1UΣ1/2
]

Σ+ Σ
[

Σ1/2U ′R−1ARUΣ−1/2
]

−

(ΣΣ1/2U ′R−1B − Σ−1/2U ′R′C ′(
a+ b

2
I −D))P−1(ΣΣ1/2U ′R−1B − Σ−1/2U ′R′C ′(

a+ b

2
I −D))′ +

Σ−1/2U ′R′C ′CRUΣ−1/2 = 0. (41)

Comparison of Eqs. 41 and 39 shows that with T = Σ
1

2U ′R−1, Σ is a solution
of Eq. 39. The proof for the second ARE analogous to Eq. 33 proceeds
similarly. Since H ∈ [a, b] regardless of realisation, Σ is a stabilising solution
to both AREs.

Lemma A.2. The truncated realisation in Eq. (37) is itself sector balanced,
stable, and Hr is also strictly in sector [a, b].

Proof. If X =

[

X1 0
0 X2

]

> 0 then direct substitution into Eq. 32 shows

that

A′

11X1+X1A11−(X1B1−C ′

1(
a+ b

2
I−D))P−1(X1B1−C ′

1(
a+ b

2
I−D))′+C ′

1C1 = 0

(42)
and similarly for X2.
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Furthermore, direct substitution of X =

[

X1 0
0 X2

]

into Eq. 34 gives

[

A11 A12

A21 A22

]

+

[

B1P
−1(a+b

2
I −D′)C1 B1P

−1(a+b
2
I −D′)C2

B2P
−1(a+b

2
I −D′)C1 B2P

−1(a+b
2
I −D′)C2

]

−

[

B1P
−1B′

1X1 B1P
−1B′

2X2

B2P
−1B′

1X1 B2P
−1B′

2X2

]

< 0. (43)

Considering this as of the form

[

α β
γ δ

]

< 0

means that

[

x′1 x′2
]

[

α β
γ δ

] [

x1
x2

]

< 0 ∀x, x =

[

x1
x2

]

.

Since this is true for all x it must be true for the case x2 = 0. Therefore

A11 −B1P
−1(

a+ b

2
I −D)′C1 −B1P

−1B′

1X1 < 0 (44)

so X1 itself is a stabilising solution of the reduced ARE (42) (and similarly
for X2). A similar argument holds for the second ARE (33). The result
then follows immediately taking X = Σ.
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sector balanced truncation

Figure 1: The nonlinear model reduction process. G is the full-order linear
system, Gr is the reduced-order linear system. N is the nonlinearity. The
velocity field is v and the forcing provided by the nonlinearity is n
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PSfrag replacements
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a=c+r

b=c-r
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Figure 2: For a system y = Hu, H ∈ [a, b], or w > 0. The gradients of the
two lines are a and b. The shaded area represents the possible input-output
pairs
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PSfrag replacements

y

u

Figure 3: Passive systems are a special case of Fig. 2, where H ∈ [0,∞], H
is passive, or y∗u ≥ 0. A passive system never produces more output energy
than that which is stored within the system plus that which is supplied to
it.
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PSfrag replacements
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Figure 4: H∞ -norm bounded systems are a special case of Fig. 2, where
H ∈ [−γ, γ], or ‖y‖2/‖u‖2 < γ, or ‖H‖∞ ≤ γ. Such a system’s output
energy is bounded by a ratio to the input energy.
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Figure 5: H ∈ [a,∞]. The energy ‖y‖2 may increase transiently, even
though H is stable, but the growth is bounded. In the presence of a conser-
vative nonlinear feedback, the system may not return to rest, but the energy
production rate is bounded.
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Figure 6: The first twenty singular values of the balanced ARE solutions
for sector balanced truncation for sector [−2830, 14200] (*) and the Hankel
singular values (+).

radial azimuthal axial

Figure 7: Re = 2000, k = 0, n = 1. The velocity field of the most important
mode, with σ = 7518
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radial azimuthal axial

Figure 8: Re = 2000, k = 0, n = 1. The third most important mode, with
σ = 317

radial azimuthal axial

Figure 9: Re = 2000, k = 0, n = 1. The tenth mode, with σ = 6
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Figure 10: Re = 2000, k = 0, n = 1. The upper panel shows the eigenvalues
of Eq. (2) for the original model (-), the sector-balanced reduced model (-·-)
and for balanced truncation (- -). The balanced truncation method violates
the inequality of Eq. (2) showing that the reduced model is no longer in the
sector chosen. The lower panel shows the fractional error of the reduced
models compared with the original.
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