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David Bohm shown that the Schrödinger equation, that is a ”visiting card” of quantum mechanics,
can be decomposed onto two equations for real functions - action and probability density. The
first equation is the Hamilton-Jacobi (HJ) equation, a ”visiting card” of classical mechanics, to
be modified by the Bohmian quantum potential. And the second is the continuity equation. The
latter can be transformed to the entropy balance equation. The Bohmian quantum potential is
transformed to two Bohmian quantum correctors. The first corrector modifies kinetic energy term
of the HJ equation, and the second one modifies potential energy term. Unification of the quantum
HJ equation and the entropy balance equation gives complexified HJ equation containing complex
kinetic and potential terms. Imaginary parts of these terms have order of smallness about the
Planck constant. The Bohmian quantum corrector is indispensable term modifying the Feynman’s
path integral by expanding coordinates and momenta to imaginary sector.

PACS numbers: 03.65.Fd, 03.65.Ta, 45.20.Jj, 47.10.Df

I. INTRODUCTION.

Let us suppose, a quantum automaton within a quasi-molecular maze searches an optimal path
from point A to B. It is a navigating problem. At solving navigation of a mobile robot, its so-
lution boils down to consideration of appropriate Bellman-Hamilton-Jacobi equation [2], [27]. As
for the quasi-classical mechanics problem, it refers to the classical Hamilton-Jacobi equation (HJ
equation) [26]. The classical theory says - the optimal path results from the principle of least action,
δJ = 0. The action J is an integral along the path from A (starting at the moment t 0) to B (finishing
at the moment t 1)

J =

t 1∫
t 0

L(~q, ~̇q; t) dt. (1)

Here the action is signed by letter J instead of generally adopted S. The letter S will be reserved
further as a symbol for entropy, like the Boltzmann entropy. In turn, J denotes a cost (value function,
the same action [44]) in Bellman-Hamilton-Jacobi equation. It is applied in theoretical problems of
robotics, Artificial Intelligence [18], [27], as well as in macroeconomics [35].,

In the above equation L(~q, ~̇q; t) is Lagrangian describing the system ”robot-maze”, ~q and ~̇q are
coordinate and velocity of the robot. Main formulas of the Lagrangian mechanics [26] resulting from
the principle of least action are collected in Table 1, page 2.

In case of the quantum automaton, its coordinate ~q and velocity ~̇q cannot both be accurately
measured simultaneously. In addition, such a phenomenon as tunnelling across a potential barrier
can be described only within the framework of quantum mechanics. It means, optimal paths from
point A to B are quantum trajectories - Bohmian trajectories [45]. They stem from solution of
modified (quantum) HJ equation. More strictly, they result from a right decomposition of the
Schrödinger equation [5], [6], [8]. At present, the Bohmian interpretation of QM has a high interest
from scientific community [3], [4], [11], [12], [30], [31], [32], [33], [39], [40], [46].
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Table 1, The Legendre’s dual transformations :

Variables : Variables :

Coordinate: ~q = {q 1, q 2, · · · , qN} Coordinate: ~q = {q 1, q 2, · · · , qN}

Momentum: ~p = {p 1, p 2, · · · , pN} Velocity: ~̇q = {q̇ 1, q̇ 2, · · · , q̇N}

Hamiltonian function : Lagrangian function :

H(~q, ~p; t) =
N∑

n=1
pnq̇n − L(~q, ~̇q; t) L(~q, ~̇q; t) =

N∑
n=1

pnq̇n −H(~q, ~p; t)

∂ H

∂ pn

= q̇n
∂ L

∂ q̇n

= pn

∂ H

∂ qn

= −ṗn
∂ L

∂ qn

= ṗn

The Schrödinger equation discovered by Erwin Schrödinger in 1926 year [37] represents a ”visiting
card” of quantum mechanics. This equation deals with wave function that is a complex function
given in Hilbert space. David Bohm shown straightforward [5], [6], [8], [23] that the Schrödinger
equation can be decomposed onto two equations, both for real functions. The first equation is
a modified Hamilton-Jacobi equation (HJ equation), and the second equation is the continuity
equation. Quantum trajectories to be submitted to the modified HJ equation demonstrate themselves
a hydrodynamical picture of the quantum mechanics [45]. This approach is very intuitive due to
classical-like understanding of the underlying dynamics [30], [31], [32], [33], Importantly, that such
approach has a pedagogical insight into entirely quantum mechanical effects such as tunneling and
interference.

Plural noun ”paths” mentioned above at discussion of the optimal paths tracing from A to B means
that there can be a set of trajectories submitting to the principle of least action [45], as for example in
interferometer. The trajectory can bifurcate (either transmitted path or reflected path), in contrast
to the Feynman’s path integral paradigm [21], [28], where a trajectory can split (and transmitted
path and reflected path). If Bohmian trajectories are those submitted to the principle of least action,
the Feynman’s trajectories are all possible trajectories tracing from A to B (virtual trajectories).
However, only optimal trajectories (Bohmian trajectories) survive. The others cancel each other due
to interference effect. Short histories include created and annihilated virtual particles [19], [20].

The Feynman’s path integral formalism is other QM approach having a promising perspective.
It goes back to Dirac’s observation that the action plays a central role in classical mechanics (he
considered the Lagrangian formulation of classical mechanics to be more fundamental than the
Hamiltonian one [28]). Initially, Dirac in papers [15] and [16] (1933 and 1945 years) attracted
attention to a term exp(iS/h̄) corresponding to the propagator [28] (S is the classical action). The
Dirac’s observation provided much of the initial impetus for Feynman’s work, making quite explicit
the role of exp(iLdt/h̄) as a transition amplitude between states separated by an infinitesimal time
dt, and its connection to the classical principle of least action. Feynman in 1948 [19] developed this
idea, concerning other paths than only the classical one [20].

The path integral formalism is more intuitive and more powerful way of viewing quantum mechanics
helping us to insight into subtle details of it. However, its ”Achilles heel” is pathology of ”infinite
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measure”, ”infinite sums of phases” with unit absolute values, etc [21]. In particular, many of
standard real-valued, time independent potentials which are used in modeling quantum systems
are singular (for example, the attractive Coulomb potential) and do not fit with the theory [25].
To avoid these obstacles, DeWitt [13], for example, determined a quantum corrector ∆VDeW =
h̄ 2/6m ·R, R is scalar curvature [21]. It is indispensable in order to derive the Schrödinger equation
from the time evolution integral. By taking into account the Bohmian quantum potential [39]
we can find a corrector ∼ h̄ 2/2m for the path integral. It stems directly from the Schrödinger
equation [5], [6], [8], [23].

In this light the Bohmian amusing exercise acquires a new perception. It permits more forward
steps. For this reason, Sect. II outlines emergence of the modified HJ equation and the continu-
ity equation from the Schrödinger equation. We repeat decomposition of the Schrödinger equation
in detail in order to get a robust base for the following computations. In Sect. III the Bohmian
quantum potential is transformed to two quantum correctors. The first corrects the kinetic energy
term and the second corrects the potential energy term. In Sect. IV the modified HJ equation and
the continuity equation combine together. The combined equation is complex one. Such a com-
plexification generalizes the Lagrangian mechanics due to expansion of coordinates and momenta to
an imaginary sector. Sect. V introduces the path integral loaded by this complexified Lagrangian
because of expansion to the imaginary sector. Two-slit interference in light of the Bohmian trajec-
tories is considered as an example. Sect. VI gives concluding remarks and mentions the Everett’s
”many-worlds” theory as touching the complexified Lagrangian mechanics.

II. BOHMIAN DECOMPOSITION.

We begin with the following form of the The Schrödinger equation

ih̄
∂ |Ψ(~q, ~p, t)〉

∂ t
= − h̄

2m

N∑
n=1

p 2
n |Ψ(~q, ~p, t)〉+ U(~q) |Ψ(~q, ~p, t)〉. (2)

Here h̄ = h/2π ≈ 1.05457× 10−34[J · s] is reduced Planck constant, also known as Dirac’s constant,
~q = {q 1, q 2, · · · , qN} is spatial coordinate of a particle,

~p =

{
∂

∂q 1

,
∂

∂q 2

, · · · , ∂
∂qN

}
(3)

is momentum operator, m is the particle mass, U(~q) is a potential energy term. And the wave
function |Ψ(~q, ~p, t)〉 is a complex function of the spatial coordinate ~q, momentum ~p, and time t. Real
function is the probability density defined by

ρ(~q, ~p, t) = R(~q, ~p, t) 2 = |Ψ(~q, ~p, t)| 2 = 〈Ψ(~q, ~p, t)|Ψ(~q, ~p, t)〉. (4)

Without loss of generality, we express the wave function |Ψ(~q, ~p, t)〉 in terms of a real probability
density ρ(~q, ~p, t) and a phase that depends on the real variable J(~q, ~p, t) as follows

|Ψ(~q, ~p, t)〉 =
√
ρ(~q, ~p, t) exp

{
iJ(~q, ~p, t)/h̄

}
= R(~q, ~p, t) exp

{
iJ(~q, ~p, t)/h̄

}
. (5)

By substituting the wave function into the Schrödinger equation (2) we get

−∂J
∂ t
· |Ψ〉︸ ︷︷ ︸

(a)

+ih̄
1

2ρ

∂ ρ

∂ t
· |Ψ〉︸ ︷︷ ︸

(b)

=
1

2m
(∇J)2 · |Ψ〉+ U(~q) · |Ψ〉︸ ︷︷ ︸

(a)

(6)
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− ih̄

2m
∇ 2J · |Ψ〉 − ih̄

2m

(
1

ρ
∇ρ

)
(∇J)|Ψ〉︸ ︷︷ ︸

(b)

− h̄2

2m

(
1

2ρ
∇ 2ρ

)
|Ψ〉+

h̄2

2m

(
1

2ρ
∇ρ

)2

|Ψ〉︸ ︷︷ ︸
(c)

.

Operators of gradient ∇ and laplacian ∇ 2 read

∇ =

{
∂

∂ q 1

i1 +
∂

∂ q 2

i2 + · · ·+ ∂

∂ qN

iN

}
, ∇ 2 =

{
∂ 2

∂ q 2
1

+
∂ 2

∂ q 2
2

+ · · ·+ ∂ 2

∂ q 2
N

}
. (7)

A set {i1, i2, · · · , iN} represents orthogonal basis of N -dimensional state space S N .
Collecting together real terms (a) and (c), and singly imaginary terms (b) in Eq. (6) we obtain

two coupled equations for real functions J(~q, ~p, t) and ρ(~q, ~p, t)

(a) + (c) : −∂ J
∂ t

=
1

2m
(∇J) 2 + U(~q) +Q(~q, t), (8)

(b) : −∂ ρ
∂ t

= ∇
(
ρ
∇J
m

)
. (9)

Quantum potential Q(~q, ~p, t) in (8) measures a curvature induced by internal stress [46]:

Q = − h̄ 2

2m

[
∇ 2ρ

2ρ
−
(
∇ρ
2ρ

) 2 ]
= − h̄ 2

2m

∇ 2R

R
(10)

The above equations, (8) and (9), are seen to be the coupled pair of nonlinear partial differential
equations [30], [31], [32], [39]. The first of the two equations, Eq. (8), is the Hamilton-Jacobi
equation modified by the quantum potentialQ(~q, ~p, t). The second equation, Eq. (9), is the continuity
equation.

Momentum of the particle is

~p = m~v = ∇ J, (11)

where ~v is its velocity. And

1

2m
(∇ J)2 =

1

2m
~p 2 (12)

is the kinetic energy of the particle. The particle’s energy is E = −∂ J/∂ t. Equation (8) states
that total energy is the sum of the kinetic energy, potential energy, and the quantum potential [23].
Equation (9), in turn, is interpreted as simply the continuity equation for probability density ρ(~q, ~p, t).
It says that all individual trajectories demonstrate collective behavior like a liquid flux [26], [45],
perhaps, superconductive one.

We shall see that the quantum potential Q(~q, ~p, t) corrects both the kinetic energy term and the
potential energy term. Therefore, further the quantum potential corrector Q(~q, ~p, t) will be called
simply as the quantum corrector.

III. THE QUANTUM CORRECTOR AS AN INFORMATION CHANNEL.

According to the observation

ρ−1 · ∇ρ = ∇ ln(ρ) (13)
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we can prepare the quantum corrector by the following way [36]

Q(~q, t) =
h̄2

2m

[(
1

2ρ
∇ρ

)2

− 1

2

(
1

ρ
∇
(
ρ · 1

ρ
∇ρ

))]

=
h̄2

2m

[(
1

2
∇ ln(ρ)

)2

− 1

2

(
1

ρ
∇
(
ρ∇ ln(ρ)

))]

=
h̄2

2m

[(
1

2
∇ ln(ρ)

)2

− 1

2

(
1

ρ
∇ρ · ∇ ln(ρ) +

ρ

ρ
· ∇ 2 ln(ρ)

)]

= − h̄2

2m

(
1

2
∇ ln(ρ)

)2

− h̄2

2m

(
1

2
∇ 2 ln(ρ)

)
(14)

Define a logarithmic function

SQ(~q, ~p, t) = −1

2
ln(ρ(~q, ~p, t)) = − ln

(√
ρ(~q, ~p, t)

)
(15)

to be called further quantum entropy. It is like to the Boltzmann entropy. It characterizes degree
of order and chaos of some entity (vacuum, holomovement [47]) supporting ρ(~q, ~p, t). Observe that,
vacuum is a storage of virtual trajectories supplying optimal ones for particle movement [20].

Substituting SQ(~q, ~p, t) into Eq. (14) we obtain the quantum corrector expressed in terms of this
logarithmic function (in [4], [45], [46] the term −SQ (negative SQ) is named C-amplitude)

Q(~q, ~p, t) = − h̄2

2m
(∇SQ)2︸ ︷︷ ︸
(a)

+
h̄2

2m
∇ 2SQ︸ ︷︷ ︸

(b)

. (16)

Here the term enveloped by brace (a) is viewed as the quantum corrector of the kinetic energy term.
And the term enveloped by brace (b) corrects the potential energy term. Later on we will analyze
this correction. But now let us substitute this quantum corrector to Eq. (8)

− ∂J

∂ t
=

1

2m
(∇J)2− h̄2

2m
(∇SQ)2︸ ︷︷ ︸

(a)

+U(~q)+
h̄2

2m
∇ 2SQ︸ ︷︷ ︸

(b)

. (17)

Terms enveloped by brace (a) relate to the kinetic energy term, and those enveloped by brace (b)
relate to the potential energy term. Terms colored in magenta are the quantum correctors. Observe
that, by handling with the entropy SQ instead of ρ we get a useful way to transform a non-linear
model to a linear one [3]. Substituting also SQ in the continuity equation (9) instead of ρ we obtain
the entropy balance equation

∂SQ

∂ t
= −(~v · ∇SQ) +

1

2
(∇~v). (18)

Here ~v = ∇J/m is the particle speed. A single term (∇~v) describes a rate of the entropy flow due to
spatial divergence of the speed. This term is nonzero in regions where the particle changes direction
of movement. Observe that negative SQ, C-amplitude [46] [45], relates to information [9]. So, this
equation describes balance of the information flows.

IV. BEYOND THE BOHM’S INSIGHT INTO QM CORE.

Pair of the equations - the modified HJ equation (17) and the entropy balance equation (18),
describes behavior of the quantum particle exactly [39]. Let us now multiply Eq. (18) by the factor
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−ih̄ and add the result to Eq. (17). We obtain the following complex HJ equation

− ∂J
∂ t

=
1

2m
(∇J)2 + ih̄

1

m
(∇J · ∇SQ)− h̄2

2m
(∇SQ)2︸ ︷︷ ︸

(a)

+ U(~q)− ih̄
1

2
(∇~v) +

h̄2

2m
∇ 2SQ︸ ︷︷ ︸

(b)

(19)

Here the term

J = J + ih̄SQ (20)

is complexified action. Terms enveloped by brace (a) can be rewritten as gradient of the complexified
action squared

1

2m
(∇J )2 =

1

2m
(∇J)2 + ih̄

1

m
(∇J · ∇SQ)− h̄2

2m
(∇S)2 (21)

As for the terms enveloped by brace (b) they could stem from expansion into the Taylor’s series of the
potential energy extended previously to a complex space, see, for example, like complex extension
in [30]. In our case, the potential function is extended in the complex space possessing by a small
broadening into imaginary sector. In this respect, let us now expand into the Taylor’s series the
potential function having a complex argument [48]

U(~q + i~ε ) ≈ U(~q) + i~ε ∇U(~q)−ε
2

2
∇ 2U(~q) + · · · (22)

Terms colored in blue and magenta relate to the same terms in Eq. (19). Let us examine their. Here
a small vector ~ε has dimensionality of length. But it should contain also the Planck constant, h̄, to
reproduce the second and third terms enveloped by brace (b) in Eq. (19). A minimal representation
of this vector can be as follows

~ε =
h̄

2m
s~n. (23)

Here m is the particle’s mass, and s is the universal constant, ”reverse velocity” [34],

s = 4πε0
h̄

e 2
≈ 4.57× 10−7 [s/m], (24)

where e ≈ −1.6 × 10−19 [C] is the elementary charge carried by a single electron and ε0 ≈ 8.854 ×
10−12 [C 2 N−1m−2] is the vacuum permittivity. Observe that, multiplication of the constant s by
the speed of light c gives enigmatic universal dimensionless constant [49] close to 137−1. Why did
we choose the constant s but not c−1? The answer is that the speed c deals with the relativistic
movements, but the constant s relates directly to quantum realm. As for the vector ~n in Eq. (23) it
we believe is a unit vector, (~n, ~n) = 1, i.e., any variation of ~ε is permitted on an N -dimensional sphere
having unit radius. In light of these remarks, we can rewrite the expansion (22) in the following
form

U(~q + i~ε ) ≈ U(~q) + ih̄

(
~n ·

(
s

2m
∇U(~q)

))
︸ ︷︷ ︸

(b1)

− h̄
2

2m

(
s 2

2m
∇ 2U(~q)

)
︸ ︷︷ ︸

(b2)

+ · · · (25)
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A therm enveloped by brace (b1) contains unit vector ~n pointing out direction of the imaginary

broadening. A force ~F = −∇U(~q) multiplied by l~n is elementary work, performing by this force at
shifting on a length l along ~n. The force multiplied by the factor s~n and divided into mass m is a
rate of velocity’s variation per unit length, i.e., it represents divergence of the velocity, (∇~v). So,
the term enveloped by brace (b1) can be rewritten in the following form

(b1) :
s

2m

(
~n · ∇U(~q)

)
= −1

2
(∇ · ~v). (26)

As for a term (s 2/2m) · U(~q) shown over brace (b2) in Eq. (25) it is dimensionless. Accurate to an

additive dimensionless term a~q 2 + (~b~q) + c it is comparable with SQ. We proclaim

(b2) : −
(
s 2

2m
∇ 2U(~q)

)
= ∇ 2SQ. (27)

Further we shall consider complexified momentum

~P = m ~̇Q = ∇J = ∇J + i h̄∇SQ (28)

and complexified coordinate

~Q = ~q + i~ε (29)

as extended representations of the real vectors ~p and ~q. The complexified momentum ~P differs from
the momentum ~p by additional imaginary term h̄∇SQ. And the complexified coordinate ~Q differs
from the real coordinate ~q by the small imaginary vector (23). Now we can rewrite Eq. (19) as
compexified the Hamilton-Jacobi equation:

− ∂J
∂ t

=
1

2m
(∇J )2 + U( ~Q) = H( ~Q, ~P ; t). (30)

From the right side complexified Hamiltonian H( ~Q, ~P ; t) is placed.
Observe that the total derivative of the complex action is as follows

dJ
d t

=
∂J
∂ t

+
N∑

n=1

∂J
∂Qn

dQn

d t
=

∂J
∂ t

+
N∑

n=1

PnQ̇n (31)

where complex derivative reads (see Ch.2 in [38], for example)

∂J
∂Qn

=
∂J

∂qn
+ i h̄

∂SQ

∂qn
= Pn. (32)

Combining Eq. (31) with (30) we obtain the the Legendre’s dual transformation [26] binding the
Hamiltonian H and the Lagrangian L

dJ
d t

= −H( ~Q, ~P ; t) +
N∑

n=1

PnQ̇n = L( ~Q, ~̇Q; t). (33)

We summarize this section by collecting in Table 2 the Legendre’s dual transformations of the
above complexified Hamiltonian and Lagrangian functions:
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Table 2, The Legendre’s dual transformations :

Variables : Variables :

Coordinate: ~Q = ~q + i
h̄

2m
s~n Coordinate: ~Q = ~q + i

h̄

2m
s~n

Momentum: ~P = ~p+ ih̄∇SQ Velocity: ~̇Q = ~̇q + i
h̄

2m
s ~̇n

Hamiltonian function : Lagrangian function :

H( ~Q, ~P ; t) =
N∑

n=1
PnQ̇n − L( ~Q, ~̇Q; t) L( ~Q, ~̇Q; t) =

N∑
n=1
PnQ̇n −H( ~Q, ~P ; t)

∂H
∂ Pn

= Q̇n
∂ L
∂ Q̇n

= Pn

∂H
∂Qn

= −Ṗn
∂ L
∂Qn

= Ṗn

The Lagrangian equations of motions and the Legendre’s transformations [26] are invariant under the
above imaginary extension of the real momenta, pn, and the real velocities, vn, (n = 1, 2, · · · , N). It
should be noted, that the Hamiltonian function is quadratic in the momenta, Pn, and the Lagrangian
function is quadratic in the velocities, Q̇n. A conservation law in this case unifies conservation
of energy represented by real part, Re[H( ~Q, ~P ; t)], and the entropy balance (18) represented by

imaginary part, Im[H( ~Q, ~P ; t)].
Turning back to Eq. (30) one can write an action solution

J = −
t∫

t0

H( ~Q, ~P ; τ)dτ + C1. (34)

On the other hand the same solution can be obtained by integrating Eq. (33)

J =

t∫
t0

L( ~Q, ~̇Q; τ)dτ + C2. (35)

Here C1 and C2 are integration constants relating to different particular integrals. One can see the
both integration constants satisfy the following condition

C1 − C2 =

t∫
t0

N∑
n=1

Pn Q̇n dt =
∫
L

N∑
n=1

Pn dQn. (36)

Here L is a curve beginning at t0 and terminating at t. It is given in the state space S N . Observe
that the curvilinear integral along a closed curve

Γ =
∮ N∑

n=1

Pn dQn (37)
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is an invariant of the motion: Γ = const [26]. From here it follows, in particular, if a circulation
around every closed curve is zero at t = 0, then the same property holds permanently. This means
that a ”quantum fluid” which is initially free from vortices remains so permanently, i.e., vortices
cannot be created or destroyed.

As follows from Eq. (28) we have

~̇Q = ~̇q + i~̇ε =
1

m
~P =

1

m
∇J + i

h̄

m
∇SQ. (38)

By comparing imaginary parts in this equation we find

~̇ε =
h̄

2m
s ~̇n =

h̄

m
∇SQ ⇒ s

2
~̇n = ∇SQ. (39)

The unit vector ~n remains always on the unit sphere. Therefore, independently of its variation,
~̇nδt ≈ ~n(t+ δt)− ~n( t ), its tip undergoes rotations on the unit sphere under the quantum entropy’s
variations, ∇SQ. The quantum entropy SQ undergoes variations within regions where the potential
U(~q) varies.

Under these variations, tip of the small vector ~̇ε makes rotating movements on the sphere of a
radius r = sh̄/2m. This radius is about 2.6× 10−11 [m] for electron and it is about 1.4× 10−14 [m]
in case of proton and neutron. In particular, given rest mass m = 1 [mg] = 10−6 [kg] the radius will
be about the Planck length, 1.6× 10−35 [m]. At large masses the radius collapses and we return to
semiclassical realm.

A direction expanded beyond the real coordinate space S N - the imaginary direction - is essential
character of the quantum realm.

V. THE PATH INTEGRAL ON A COMPLEXIFIED STATE SPACE.

Solution of the Schrödinger equation is the following exponent

|Ψ( ~Q, ~P , t) 〉 = exp

{
i

h̄
J
}

= exp

{
i

h̄
J − SQ

}
. (40)

By substituting the action integral (34) into this exponent we get

|Ψ( ~Q, ~P , t) 〉 =
1

Z1

exp

{
− i

h̄

t∫
t0

H( ~Q, ~P ; τ) dτ

}
. (41)

Here Z1 = exp(−i/h̄ · C1). Probability density calculated is

〈Ψ( ~Q, ~P , t) |Ψ( ~Q, ~P , t) 〉 = exp
{
−2SQ

}
= exp

{
ln(ρ(~q, ~p, t))

}
= ρ(~q, ~p, t). (42)

The most fundamental quantity in the mathematical analysis of mechanical problems is the La-
grangian function [1], [26]. It is defined as the excess of kinetic energy over potential energy. With
this definition in mind we can enunciate d’Alembert’s principle, δJ = 0. This is ”Hamilton’s prin-
ciple” [26]. It states that the motion of an arbitrary mechanical system occurs in such a way that
definite integral (35) becomes stationary for arbitrary possible variations of the configuration of the
system, provided the initial and final configurations of the system are prescribed. This principle can
be reformulated with respect to a form

|Ψ( ~Q, ~P , t) 〉 = exp

{
i

h̄
J
}

=
1

Z2

exp

{
i

h̄

t∫
t0

L( ~Q, ~̇Q; τ)dτ

}
. (43)
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(a)  t = 0.02

(c)  t = 0.42

(b)  t = 0.14

(d)  t = 0.98

FIG. 1: Scattering gaussian wave packet on a two-slit screen. Red arrow in (a) shows its initial movement directed to the
screen. Red and blue arrows in (c) show directions of transmitted and reflected waves. Slides have been captured from a movie
gif-file fulfilled by Max Sukharev and shown in the site URL http://phorum.lebedev.ru/viewtopic.php?t=14.

-4 -2 0 2 4
0

0.25

0.5

0.75

x

P(x)

FIG. 2: Red curve shows probability density (45). Blue curve draws middle (ρ 1(x) + ρ 2(x))/2. It is a curve spanned by brace
(a) in (45) and divided by 2. These curves are drawn at σ = 1 and x 1 = −x 2 = 0.5.

Here Z2 = exp(−i/h̄ · C2). In this case the principle states: this exponent becomes stationary
for arbitrary possible variations of the configuration of the system, provided the initial and final
configurations of the system are prescribed. Obviously, it results from stationarity of the integral (35)
stated above.

Fundamental principle from quantum mechanics, principle of superposition, says that sum of the

http://phorum.lebedev.ru/viewtopic.php?t=14
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wave functions |Ψ l( ~Q, ~P , t) 〉, l = 1, 2, · · ·, represents a solution of a quantum-mechanical system as
well. A probability density relating to superposition of two wave functions tracing two different paths
(trajectories can bifurcate to different routes in a double-slit experiment before they are recombined
at a detector) is

1

2

2∑
l=1

〈Ψ l( ~Q, ~P , t) | ·
1

2

2∑
k=1

|Ψ k( ~Q, ~P , t) 〉 (44)

=
1

4

(
exp

{
−2SQ; 1

}
+ exp

{
−2SQ; 2

}
+ 2 exp

{
−SQ; 1 − SQ; 2

} Interference term︷ ︸︸ ︷
cos((J1 − J2)/h̄)

)
.

Cosine in this formula can vary between 1 and −1 depending of the difference J1 − J2. It means,
that limiting values of the probability density are

1

4

(
exp{−SQ; 1}+ exp{−SQ; 2}

) 2
and

1

4

(
exp{−SQ; 1} − exp{−SQ; 2}

) 2
,

respectively.
Figure 1 shows scattering gaussian wave packet on a screen containing two slits. Interference

pattern far from the screen, in the Fraunhofer zone, becomes apparent. It simulates interference of
electron on two slits [29] got at calculating the Schrödinger equation.

In turn, probability density relating to the interference pattern far from the slits

P (x) =
1

2

(
ρ 1(x) + ρ 2(x)︸ ︷︷ ︸

(a)

+ 2
√
ρ 1(x)ρ 2(x) · cos(kx)

)
(45)

is drawn in Figure 2 by red curve. Here ρ 1(x) and ρ 2(x) are described by normal distribution

ρ l(x) =
1

σ
√

2π
exp

{
−(x− xl)

2

2σ2

}
. (46)

The slits l = 1, 2 are Λ = (x 1 − x 2) apart. And Λ is multiple of wavelength λ = 2π/k, where k
is the angular wave number. Curves in Fig. 2 are drawn at σ = 1 and x 1 = −x 2 = 0.5. Observe
that interference terms can depress different wave functions of the set {|Ψ l( ~Q, ~P , t) 〉, l = 1, 2, , · · ·}
except for that relating to a trajectory satisfying the principle of least action.

Feynman’s brilliant revelation based on the superposition principle is that all arbitrary trajectories
are accepted as possible histories of the evolving quantum system. Contributions of most paths to
the integral (35) will cancel each other, unless these paths are somehow ”close” to the solution of
δJ = 0, which is the real path of the system. In the semiclassical region the propagator will therefore
be dominated by those paths which are in the immediate vicinity of the classical path; the size of this
vicinity follows from the estimate δJ ∼ h̄. Mathematically, the Feynman’s revelation, in cartesian
coordinates (with obvious lattice discretization), reads [22]

G( ~Q ′′, t; ~Q ′, t 0) =

~Q(t)= ~Q ′′︷ ︸︸ ︷∫ ∫
· · ·

∫
︸ ︷︷ ︸

~Q(t0)= ~Q ′

D[ ~Q(τ)] exp

{
i

h̄

t∫
t0

L( ~Q, ~̇Q; τ)dτ

}
. (47)

where the path-integral symbol indicates the multiple integral [41]

~Q(t)= ~Q ′′︷ ︸︸ ︷∫ ∫
· · ·

∫
︸ ︷︷ ︸

~Q(t0)= ~Q ′

D[ ~Q(τ)] ⇔ (2πi h̄ δt/m)−M/2

~Q ′′∫
~Q ′

d ~Q1

~Q ′′∫
~Q ′

d ~Q2 · · ·
~Q ′′∫

~Q ′

d ~QM (48)
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in the limit δt→ 0, M →∞, Mδt = t− t0. The factor (2πi h̄ δt/m) contains m that is the particle’s
mass. Thus, dimensionality of this factor is [length 2]. And dimensionality of the normalizing factor
(2πi h̄ δt/m)−M/2 is [length 2]−M/2 = [length]−M .

Fundamental principle from quantum mechanics, principle of superposition, underlies the path
integral. Whereas evolution of a classical object is described by a unique trajectory satisfying the
principle of least action, the path integral tests all possible virtual classical trajectories, among which
there is a unique trajectory satisfying the least action principle. Other trajectories cancel each other
by their interference.

Feynman’s path integral represented in the product form is a collection of the integrals of Fresnel
type which are generally oscillatory [24]. A trick suggested by Feynman was to add a negative imag-
inary part to Planck’s constant. This converts the oscillatory integrals into the Gaussian integrals
and makes the path integral convergent. Other more generally applicable trick is to assume that
each element of the diagonal mass matrix has a positive imaginary part [24]. Under this assumption,
the path integral can be convergent independent of the metric of space.

Natural trick is based on consecutive unfolding the Bohmian quantum corrector. The path in-
tegral computation stems directly from decomposition of the Schrödinger equation to modified HJ
equation plus the entropy balance equation. The Bohmian quantum corrector resulted from this de-
composition expands the state space S N to imaginary sector. In turn, imaginary terms emergent in
this computations suppress the wilder contributions to the path integral. Thus, we have non-trivial
N -dimensional manifold embedded in the 2N -dimensional complex state space, S N , where its real
part is the conventional coordinate state space S N .

VI. CONCLUDING REMARKS.

Figure 3(a) shows a reconstructed scene of the two-slit interference experiment. Comparison with
the two-slit interference maps of Bohmian trajectories shown, for example, in articles [7] and [12]
reveals a qualitative agreement, see Figure 3(b). Red lines drawn in this figure approximate the
Bohmian trajectory beams. They demonstrate a good agreement with the magenta rays clear visible
in the left pattern, Figure 3(a). Bohmian trajectories are seen to be geodesic trajectories of an
incompressible fluid loaded by the quantum potential [45].

Bohmian trajectories are trajectories submitted to the principle of least action that expands on
the action integral (35) containing the complexified Lagrangian function. In fact, they stem from the
complexified Euler-Lagrange, Hamilton-Jacobi mechanics. This complexified mechanics differs from
the classical mechanics cardinally. For comparison, main formulas of the classical and complexified
mechanics are collected in Tables 1 and 2 printed in pages 2 and 8, respectively. Qualitative difference
is extension of the formulas to the imaginary sector on a depth of order of smallness about h̄/m.

Expansion of three-dimensional coordinate space onto the imaginary sector underlying the com-
plexified Lagrangian mechanics introduces new quality in evolution of quantum objects. One way
to envisage the complex space is to imagine a hose-pipe. From a long distance it looks like a one
dimensional line but a closer inspection reveals that every point on the line is in fact a circle. Such
an expansion is not something strange. Currently, extra dimensions have become an accepted part
of modern theoretical physics.

It may initiate many speculations ranging from quantum state teleportation [10] to backpropaga-
tion through time [43], [44]. It refers also to the fascinating Everett’s ”many-worlds” theory [14], [17]:
the three dimensional universe or world that we see in everyday life is only one of the many worlds
which exist side by side [42].
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(a) (b)

FIG. 3: Two-slit interference experiment: (a) reconstructed scene of the two-slit interference; (b) two-slit interference map of
the Bohmian trajectories. The black-white Bohmian trajectory map is shown in the Bohm’s article [7]. Red lines drawn in this
map approximate the Bohmian trajectory beams.
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