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Abstract

The synchronization of metacommunities due to dispersal among patches is ana-
lyzed in the case of slow-fast populations. The analysis is performed by studying a
standard model with the fast population dispersing when special meteorological condi-
tions are present. This assumption fits very well with the peculiar nature of slow-fast
systems and implies that metacommunities synchronize if the slow population accel-
erates during the outbreak of the fast population. This result has great potentials for
the study of marine and fresh-water plankton communities as well as for the study of
synchronization of insect-pest outbreaks in forests.



1 Introduction

Synchrony has been observed in metapopulations and metacommunities representing vir-
tually all major taxa and ecological roles [Liebhold et al., 2004]. It is the consequence of
two independent factors: the dispersal of populations among patches and the existence of
common meteorological driving forces (Moran effect). The theory is well established: see
[Pecora & Carroll, 1998; Blasius et al., 1999; Jansen & Lloyd, 2000] for dispersal, [Royama,
2005] for the Moran effect, and [Ranta et al., 1995; Haydon & Steen, 1997; Colombo et al.,
2008] for the mixed case. Since the theory predicts that the rate of convergence to synchrony
should be of the order of the dispersal rate, which is known to be small (for many, if not all,
populations), and local noise tends to desynchronize patches, it is surprising that synchrony
has been so often observed in the field. Here the puzzle is solved by showing that in the quite
frequent case of slow-fast populations characterized by recurrent crashes and outbreaks of
the fast populations [Rinaldi & Scheffer, 2000] (e.g. pest outbreaks, plankton blooms, and
fires in Mediterranean forests) the rate of convergence to synchrony can be large.

Synchrony of slow-fast systems has already been studied in neuroscience, where the syn-
chronization of spiking neurons is a central problem. Indeed, in a series of contributions,
Kopell and coauthors (see , for all, [Somers & Kopell, 1993]) have shown through specific
models that synchronization can be very quick and almost independent upon the coupling
strength if the fast variable is responsible for the coupling. Here we give an almost intuitive
support to this conclusion by studying a standard prey-predator model.

Our method is based on the analysis of the so-called singular case, obtained by imagining
that the prey population is infinitely faster than the predator population. In such a limit
case, the prey-predator cycle can be easily identified and is composed of four alternate slow
and fast phases [Rinaldi & Scheffer, 2000]. The two fast phases correspond to the sudden
outbreak and crash of the fast population. The analysis shows that deliberate or accidental
introductions or removals of the fast population do not influence the time of the next crash
if they are performed when the fast population is abundant, while they accelerate or delay
the next outbreak in the opposite case. This simple property allows one to point out sharp
conditions for the synchronization of coupled communities under realistic assumptions on
the dispersal processes.

2 Slow-fast Prey-predator Dynamics

Let us consider the prey-predator model with fast prey (z) and slow predator (y)

EZL‘:l‘f(l’,y), yzyg(x,y) (1)

where ¢ is a small positive parameter. For generic values of x and y, the absolute value
of & is high. This means that prey abundance varies quickly unless the state (x,y) of the
system evolves along the trivial prey isocline (z = 0) or along the non-trivial prey isocline
(f(z,y) = 0).

In the absence of prey, i.e., for x = 0, the predator abundance varies slowly, in accordance
with the equation y = y¢(0,y) and the predator goes extinct if ¢(0,y) < 0, as shown in
Fig. 1a. However, the prey net growth rate f(0,y) is in general negative for high predator
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densities but positive in the opposite case. That is to say, there exists, in general, a critical
value g of predator abundance at which f(0,yo) = 0. Thus, in the vicinity of the y axis,
i.e., after the introduction of a small amount of prey, the state of the system quickly evolves
to the left if y > yy and to the right if y < yg, as shown in Fig. 1a. For decreasing values of ¢
the trajectories become more and more horizontal until the singular case ¢ = 0 is obtained,
as shown in Fig. 1b. Figure 1b points out that the outbreak of the prey occurs when the
predator abundance reaches a value ¥,,; which is uniquely determined, through a suitable
function ¥, by the abundance of the predator at the time of prey introduction, i.e.,

Yout = W(yzn) (2)
The function ¥ can be determined as follows ([Rinaldi & Muratori, 1992] and references
therein). First write egs. (1) in the form

dx 1
e— = f(z,y)dt,  dt = ——dy, 3
” f(z,y) R (3)

then integrate along the trajectory from point (e, y;,) to point (€,yo:) (see Fig. 1la), and
finally let ¢ — 0 by substituting  with 0, thus obtaining

[ H0.9) 4, _ g, (4)
vin ¥9(0,9)

In general, eq. (4) cannot be solved analytically with respect to y,u, so that the function
U cannot be derived in closed form. A typical graph of the function is reported in Fig. 2.
It shows that if the introduction of prey occurs when y = v;, > yo, the outbreak occurs
when the predator density reaches the value yout = ¥(¥in) < yo. The time T;, separating
the introduction of prey from their outbreak can be evaluated by integrating eq. (3) along
the y axis from y;, t0 Your, i.€.,

Yout 1
Tio :/ dy i)
Sy y9(0,y) ©)

By contrast, if the introduction of prey occurs when y = y;, < o, then the outbreak is
immediately triggered, since f(0,y) > 0 for y < g, so that & > 0.

The case of two introductions is depicted in Fig. 3, where it is evident that any new
introduction of individuals of the fast population accelerates the outbreak. One can use the
same argument to show that a removal of prey occuring after the last introduction has the
effect of delaying the outbreak. By contrast, if the net growth rate of the prey is decreasing
with density (i.e., df /0x < 0) introductions or removals of prey when abundant (i.e., when
the system slowly evolves along the non-trivial prey isocline f(z,y) = 0) are immediately
compensated because the fast population is stable in these conditions. This implies that
perturbations of the prey when abundant do not impact on the time of their next crash.

3 The Rosenzweig-MacArthur Model

We now focus on the most popular prey-predator model, namely the Rosenzweig-MacArthur
model [Rosenzweig & MacArthur, 1963]

i T i

&= K) ax+by’ y Ca:+b

y —dy (6)
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where z and y are prey and predator abundances, r* and K are net growth rate and carrying
capacity of the prey, a* is maximum predation rate of the predator, b half-saturation constant
of the predator functional response, ¢ prey / predator conversion factor, and d predator death
rate.

We assume that ¢ > d since, otherwise, the predator population cannot persist. We also
assume that the per-capita net growth rate of the prey r* and the maximum predation rate
a* are high because this guarantees that the prey population is fast. Letting r* = r/e and
a* = a/e with ¢ positive and small, we can write model (6) in the standard form (1) with

Y (,y) = c—
T =c —
PR g\r,y b

flay) =r(l- %) —a

If K > b(c+d)/(c—d) (in the following we assume K >> b) the non-trivial prey isocline
f(z,y) = 0 (a parabola) and the non-trivial predator isocline g(x,y) = 0 (a vertical straight
line) intersect at an equilibrium point £ on the left of the vertex of the parabola, as shown
in Fig. 4. This equilibrium is unstable and surrounded (for any £ > 0) by a globally stable
limit cycle which is not known in closed form. However, if the prey population is fast, the
limit cycle is well approximated by the singular cycle ABC'D shown in Fig.4 (see [Rinaldi &
Muratori, 1992]), which is composed of four phases:

(i) A slow transition from A to B (the vertex of the parabola) during which prey and
predator vary at comparable speeds;

(ii) A fast (rigorously infinitely fast) transition from B to C' during which the prey popu-
lation collapses to zero (in practice to very low densities, if ¢ > 0);

(iii) A slow transition from C to D during which prey are absent (scarce if ¢ > 0) and
predator decay in accordance with eq. (6) with z = 0;

(iv) A fast transition from D to A corresponding to a sudden prey outbreak.

The maximum predator density ¥,... along the slow-fast cycle is the y-coordinate of
the vertex of the parabola, namely Y., = 7(K + b)?/(4Ka), while the minimum predator
density ¥, can be obtained using the method described above. In fact, when predator
decay in the absence of prey , point C' in Fig. 4 can be considered as the point of the last
introduction of prey, while D is the point of the corresponding outbreak, so that (see eq. (2))

Ymin = \Il(yma:v)

4 Synchronization of Coupled Patches through Blink-
ing Dispersal

Let us now consider two identical patches coupled through migration of the fast prey pop-
ulation (the addition of predator migration would not be influential). In the absence of
migration, the two patches would behave on the same slow-fast cycle and would remain out
of phase forever. In most theoretical studies, the migration process is assumed to be a contin-
uous process with net migration flow proportional (through a constant dispersal coefficient



D) to the unbalance of population densities. Under this assumption, a two-patch system
is described by eqs.(6) with x; and y; for patch 1 and z5 and ys for patch 2, and with the
addition of a prey migration flow D(x; — z;) in the two prey equations. This model is per-
fectly suited for applying the general methods of analysis of the stability of the synchronous
state [Pecora & Carroll, 1998; Jansen & Lloyd, 2000]. However, here we follow a different
approach by assuming that migration is a blinking process [Belykh et al., 2004], namely that
the dispersal coefficient D is almost always zero but very high from time to time. That is
to say, migration episodes are due to rare and short particular meteorological conditions,
such as high winds or strong water currents, but occur relatively frequently during each
slow phase of the cycle. The assumption of blinking dispersal not only has the advantage of
being more realistic in many cases but, as shown in the following, it allows one to discuss
the synchronization of slow-fast systems very effectively. Moreover the general theory of
synchronization through blinking dispersal [Belykh et al., 2004] guarantees that if a system
synchronizes under blinking dispersal it also synchronizes for a suitable constant dispersal
coefficient.

Let us then consider the effect of blinking dispersal. If both patches are in the slow phase
(iii), migration cannot be relevant because the patches are practically empty. On the other
hand, if both patches are in the slow phase (i) the masses of migrating prey can be relevant
but they cannot have serious consequences since the introduction or removal of a mass of
prey in a densely populated patch would be immediately compensated (notice that the right
branch of the parabola of Fig. 4 is the stable manifold of the prey population). Thus, the only
migrations that can have important consequences are those that transfer prey from a densely
populated patch to an empty patch. In order to determine if these migrations can synchronize
the outbreaks, we now limit our discussion to the local stability of the synchronous state, i.e.,
we consider patches which are only slightly out of phase. Assume, then, that both patches
are in the slow phase (i) and that patch 2 is delayed with respect to patch 1 of 7 units of
time (with 7 small). Immediately after the prey collapse in the leading patch, the predator
of patch 1 decrease exponentially (as Y. exp(—dt)) while the predator in the delayed patch
continue to grow until they reach the value 1,4, at which their prey collapse. At that point
the density of the predator is ¢4, in patch 2 and 9,4, exp(—dr) in patch 1. Moreover, from
the hypothesis we made on the frequency of migration events, we can assume that shortly
before that moment there has been a consistent migration of prey from patch 2 to patch 1.
Thus, the next prey outbreak in the leading patch occurs when the predator reach the density
U (Ypmaz exp(—dr)). At that time, patch 2 has predator at a slightly higher density, namely
exp(d7) ¥ (Ymar €xp(—d7)) and has shortly after, a prey outbreak triggered by an introduction
of prey coming from patch 1. After this last outbreak both patches are in the slow phase (i)
(patch 2 is now leading) and their predator densities are V(4. exp(—d7)) in patch 1 and
exp(d7) ¥ (Ymaz €xp(—d7)) in patch 2. But in phase (i), immediately after the outbreaks, the
predator increase exponentially because their dynamics can be approximated by y = (c—d)y
(see eq. (6) and recall that x = K >>b). Thus, the new delay 7 between the two patches
satisfies the relationship (exp((c — d)7") VU (Ymae €xp(—dr)) = exp(dT)V(Ymas €xp(—d7)) from
which it follows that 7'/7 = d/(c — d).

The delay 7 has therefore been changed into 7/ after one population cycle and 7 < 7 if



the compression factor (¢ — d)/d [Somers & Kopell, 1993] is greater than 1, i.e., if
c > 2d. (7)

This result shows that the convergence to the synchronous state can be very quick, so that
synchrony is also guaranteed in the field [Liebhold et al., 2004]. Tt is worth noticing that the
two patches synchronize if the slow population accelerates during the outbreak of the fast one,
while what happens during the rest of the cycle does not matter. Moreover, results obtained
for two patches obviously hold for longer chains of patches provided relatively frequent
meteorological conditions favour prey migration between pairs of contiguous patches.

If condition (7) is not satisfied, i.e., if

d<c<2d (8)

then the delay 7" after one population cycle is greater than 7, so that the synchronous state
is unstable. This means that under condition (8) the two patches will either tend toward
a periodic asynchronous solution or to a quasi-periodic or intermittently chaotic attractor
[Cazelles et al., 2001; Harrison et al., 2001; Jansen, 2001]. This result disproves a common
belief, namely that dispersal synchronizes the oscillations of Rosenzweig-MacArthur prey-
predator communities [Jansen, 1999].

5 Application to Fresh-water Plankton Communities

The study of synchronization of fresh-water plankton communities becomes possible through
our condition. In fact the values of the parameters suggested for algae-zooplankton inter-
actions [Rose et al., 1988 are ¢ = 0.6 — 0.7 and d = 0.20 — 0.23 so that condition (7) is
satisfied (compression factor roughly equal to 2). Since also condition b << K is satisfied
(suggested ratio b/ K = 0.05) and algae grow slightly faster than zooplankton, we can expect
that chains of shallow lakes connected from time to time through small channels could have
synchronous algae outbreaks and crashes, i.e., synchronous clear water episodes. Moreover,
the seasonal forcing of the water body reinforces this result through the Moran effect. In-
deed, a long and detailed survey [Ravera, 1977] of the main characteristics of Lake Lugano
(CH), a narrow lake composed of a chain of four weakly connected pools (see Fig. 5), has
pointed out a remarkable synchrony of the clear water episodes in the four pools. This is
perfectly illustrated in Fig. 6 (extracted from [Ravera, 1977]) where the four graphs report
the transparency (measured through Secchi depth) in each pool in the period 1972-75. The
sharp raises of each curve (see, in particular, the end of February 1974) indicate a transition
from transparent to turbid water due to an algae bloom (i.e. to a prey outbreak).

Our result might also be used for studying the patchiness of oceanic plankton populations,
a well documented phenomenon [Hillary & Bees, 2004]. Another promising line of application
of the ideas presented here is the study of synchronization of insect-pest outbreaks in forests,
which has been largely debated but not yet fully understood [Johnson et al., 2005].
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Figure captions

Figure 1
Trajectories of a prey-predator model with fast prey and slow predator when prey are very
scarce: (a) e > 0 small; (b) singular case ¢ = 0. Double arrows indicate fast motion.

Figure 2
The graph of the function W given by (2) for the model analyzed in the text. The function
is defined for y;, > yo.

Figure 3

When there are two introductions of prey (the first when y = v, and the second when
y = yi ) the outbreak occurs at y” ,, i.e., it is accelerated with respect to the outbreak that
would be produced by the first introduction alone.

Figure 4
Prey and predator isoclines of model (6) and singular cycle ABC'D for the following param-
eter valuesr =2, K =1.1,a=3,0=0.25,¢=0.75,d = 0.2.

Figure 5
The four pools of Lake Lugano (CH) and their maximum depths. Along the dotted lines the
lake is only one meter deep.

Figure 6
Transparency in the four pools (measured in Secchi depth) in the period 1972-75. Sharp
raises of the curves indicate algae blooms.
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