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We present a variational formulation for the Kardar-Parisi-Zhang (KPZ) equation that leads to a
thermodynamic-like potential for the KPZ as well as for other related kinetic equations. For the
KPZ case, with the knowledge of such a potential we prove some global shift invariance proper-
ties previously conjectured by other authors. We also show a few results about the form of the
stationary probability distribution function for arbitrary dimensions. The procedure used for KPZ
was extended in order to derive more general forms of such a functional leading to other nonlinear
kinetic equations, as well as cases with density dependent surface tension.
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1. Introduction

Phenomena far from equilibrium are ubiquitous in nature, including among many other, turbulence in fluids, interface
and growth problems, chemical reactions, biological systems, as well as economical and sociological structures. During
the last decades the focus on statistical physics research has shifted towards the study of such systems. Among those
studies, the understanding of growing kinetics at a microscopic as well as on a mesoscopic level constitutes a major
challenge in physics and material science [Tong & Williams, 1994; Barabási & Stanley, 1995; Halpin-Healy & Zhang,
1995; Marsili et al., 1996]. Some recent papers have shown how the methods and know-how from static critical
phenomena have been exploited within nonequilibrium phenomena of growing interfaces, obtaining scaling properties,
symmetries, morphology of pattern formation in a driven state, etc [Hentschel, 1994; Prähofer & Spohn, 2004; López
et al., 2005; Fogedby, 2006; Ma et al., 2007; Castro et al., 2007].
Even though it was (briefly) discussed in [Cross & Hohenberg, 1993], there is still a common belief that the nontrivial
spatial-temporal behavior occurring in several nonequilibrium systems, originates from the non-potential (or non-
variational) character of the dynamics, meaning that there is no Lyapunov functional for the dynamics. However,
Graham and co-workers have shown in a series of papers [Graham, 1987; Graham & Tel, 1990] that a Lyapunov-like
functional exists for a very general dynamical system, the complex Ginzburg-Landau equation. Such a functional
is formally defined as the solution of a Hamilton-Jacobi-like equation, or obtained in a small gradient expansion
[Descalzi & Graham, 1994]. The confusion associated with the qualification of nonvariational dynamics comes from
the idea that the dynamics of systems having nontrivial attractors (limit cycle, chaotic) cannot be deduced from the
minimization of a potential playing the same role as the free energy in equilibrium systems [Cross & Hohenberg,
1993]. Nevertheless, this does not preclude the existence of a Lyapunov functional for the dynamics that will have
local minima identifying the attractors of the system [Montagne et al., 1996; Wio, 1997; Wio et al., 2002; Wio & Deza,
2007]. However, once the system has reached an attractor that is not a fixed point, the dynamics proceeds inside the
attractor driven by nonvariational contributions to the dynamical flow, that do not change the value of the Lyapunov
functional, implying that the dynamics is not completely determined once the indicated functional is known. This
situation has known examples even in equilibrium statistical mechanics [Hohenberg & Halperin, 1977]. Hence, the
Lyapunov functional, or nonequilibrium potential (NEP) [Graham, 1987; Graham & Tel, 1990; Wio, 1997; Ao, 2004],
plays the role in nonequilibrium situations of a thermodynamical-like potential characterizing the global properties
of the dynamics: attractors, relative (or nonlinear) stability of these attractors, height of the barriers separating
attractions basins, offering the possibility of studying transitions among the attractors due to the effect of (thermal)
fluctuations.
In a recent series of papers we have shown several results related to the obtention of the indicated NEP’s for other
system’s classes: scalar and non-scalar reaction-diffusion systems [Bouzat & Wio, 1999; von Haeften et al., 2004;
von Haeften et al., 2005; von Haeften & Wio, 2007]. In particular we have exploited those results for the study of
stochastic resonance [Gammaitoni et al., 1998] in extended systems [Wio, 1997; Bouzat & Wio, 1999; von Haeften et
al., 2000; von Haeften et al., 2004; von Haeften et al., 2005; von Haeften & Wio, 2007; Tessone & Wio, 2007; Wio
& Deza, 2007;]. In those works, we have analyzed problems of stochastic resonance in scalar and activator-inhibitor
systems, in systems with local and nonlocal interactions, studied system-size stochastic resonance, etc.
Here, and related to the kinetics of growing interfaces, we discuss the case of the Kardar-Parisi-Zhang equation (KPZ)
[Kardar, Parisi & Zhang, 1986; Medina et al., 1989]. This equation, that describes the evolution of h(x̄, t), a field that
corresponds to the height of a fluctuating interface, reads

∂h(x̄, t)

∂t
= ν∇2h(x̄, t) +

λ

2
(∇h(x̄, t))2 +Ko + ξ(x̄, t), (1)
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where ξ(x̄, t) is a Gaussian white noise, of zero mean (〈ξ(x̄, t)〉 = 0) and correlation 〈ξ(x̄, t)ξ(x̄′, t′)〉 = 2εδ(x̄− x̄′)δ(t−
t′). As indicated above, this nonlinear differential equation describes fluctuations of a growing interface with a surface
tension given by ν, λ is proportional to the average growth velocity and arises because the surface slope is parallel
transported in such a growth process.
Opposing to a claim in a recent paper [Fogedby, 2006]: The KPZ equation is in fact a genuine kinetic equation
describing a nonequilibrium process in the sense that the drift ν∇2h + λ

2∇h · ∇h − F cannot be derived from an
effective free energy; in [Wio, 2007] it was shown that such a nonequilibrium thermodynamic-like potential

(NETLP) for the KPZ equation exists.
In this paper we present the approach to obtain the NETLP for the KPZ equation, and also show how it is possible to
obtain such a NETLP for other related kinetic equations, as well as extend the procedure to other general situations.
The organization is as follows. In the next Section we show how to obtain the NETLP for the KPZ case and, exploiting
its knowledge, we discuss conjectures advanced in [Hentschel, 1994] and how they are fulfilled. Next we discuss about
the form of the stationary (or asymptotic) probability distribution function, valid for any dimension. In the
following Section we discuss the situation with a non-local interaction and symmetric kernels, showing how this form
of extending the derivation procedure allows to obtain more general forms of kinetic equations. The following Section
discusses the case of density dependent surface tension, while the last one presents some final comments.

2. Kardar-Parisi-Zhang case

2.1 Derivation

In order to show how to obtain the above indicated functional, we start considering the following simple (general)
scalar reaction-diffusion equation with multiplicative noise

∂

∂t
φ(x̄, t) = ν∇2φ(x̄, t) + f(φ(x̄, t)) + φ(x̄, t)η(x̄, t), (2)

where f(φ(x̄, t)) is a general nonlinear function. The noise η(x̄, t) is a Gaussian white noise, of zero mean and intensity
σ. For this equation we assume the Stratonovich interpretation.
It is known that the system in Eq. (2) has the following NETLP

F [φ] =

∫

Ω

{
−

∫ φ(x̄,t)

0

f(ϕ) dϕ+
ν

2
(∇φ(x̄, t))

2

}
dx̄, (3)

where Ω indicates the integration range, and

∂

∂t
φ(x̄, t) = −

δF [φ]

δφ(x̄, t)
+ φ(x̄, t) η(x̄, t); (4)

where the contribution from the boundaries is null, due to the variation δφ being fixed (= 0) at these boundaries,
as usual. As has been shown in previous works [Izús et al., 1998; Bouzat & Wio, 1998], it also fulfills the Lyapunov
characteristic ∂

∂tF [φ] ≤ 0 (it is worth here commenting that, as a matter of fact, this conditions is only valid in a
weak noise limit).
Exploiting the so called Hopf-Cole transformation we now define a new field, h(x̄, t) that, as indicated before, corre-
sponds to an interface height,

h(x̄, t) =
2ν

λ
lnφ(x̄, t), (5)

with the inverse

φ(x̄, t) = e
λ
2ν
h(x̄,t).

As φ(x̄, t) ≥ 0, h(x̄, t) is always well defined. The transformed equation reads

∂th(x̄, t) = ν∇2h+
λ

2
(∇h)2 +

λ

2ν
e−

λh
2ν f̂(h) + ξ(x̄, t), (6)

where f̂(h) = f(φ) = f(e
λ
2ν
h). Now, in order to reduce our general result to the one shown in Eq. (6), we assume

f(φ(x̄, t)) = aφ(x̄, t) (with a some constant). In this way Eq. (2) becomes Eq. (1), with a = λ
2νKo and σ =

(
λ
2ν

)2
ε.

However, the noise term that in the original equation (Eq. (2)) has a multiplicative character, in the transformed
equation (Eq. (1)) becomes additive.
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If we now apply the same transformation to the NETLP indicated in Eq.(3), restricting ourselves to f(φ(x̄, t)) =
aφ(x̄, t), we obtain

F [h] =

∫

Ω

e
λ
ν
h(x̄,t) λ

2ν

[
−Ko +

λ

4
(∇h(x̄, t))

2
]
dx̄. (7)

It is easy to prove that this functional fulfills both, the relation

∂

∂t
h(x̄, t) = −Γ[h]

δF [h]

δh(x̄, t)
+ ξ(x̄, t); (8)

as well as the Lyapunov characteristic ∂
∂tF [h] ≤ 0, where the function Γ[h] is given by

Γ[h] =

(
2ν

λ

)2

e−
λ
ν
h(x̄,t).

Hence we have a free energy-like functional from where the KPZ kinetic equation can be obtained through
functional derivation. Clearly, the contribution to the variation coming from the boundaries is again null.
It is worth to consider once more Eq. (2), but now assuming f(φ(x̄, t)) = aφ(x̄, t)−b φ(x̄, t)3, i.e. we include a limiting
(or saturating) term. In such a case, the reaction-diffusion equation corresponds to a form of the so called Schlögl
model [Mikhailov, 1990; Wio, 1994]. The “potential” contribution to the NETLP in Eq. (3) has the form

−

∫

Ω

(
a

2
φ(x̄, t)2 −

b

4
φ(x̄, t)4

)
dx̄.

Applying again the indicated Hopf-Cole transformation, in Eq. (1) a new associated term arises, having the form

−γ e
λ
ν
h(x̄,t), with b = λ

2ν γ. The new kinetic equation corresponds to a form of the so called bounded-KPZ [Grinstein
et al., 1996; Tu et al., 1997; de los Santos et al., 2007]. Clearly, we will also have an extra term in the associated
NETLP (Eq. (7)). However, here we restrict ourselves to the case b = 0, and only analyze the more “usual” form of
the KPZ equation indicated by Eq. (1).

2.2 Some Properties

Let us now check some of the properties assumed previously for such a functional. According to the analysis of global
shift invariance in [Hentschel, 1994], it is easy to see that the relations indicated by Eq. (9) in the indicated paper
are fulfilled. That is, we can prove that if l is an arbitrary (constant) shift

F [h+ l] = K[l]F [h]

Γ[h+ l] = K[l]−1Γ[h], (9)

with K[l] = e
λ
D
l =

(
2ν
λ

)2
Γ[l]−1.

To prove other conjectures also indicated in [Hentschel, 1994], we introduce the free energy-like density F̃ [h,∇h],
defined through

F [h] =

∫
dx̄ F̃ [h,∇h].

Hence, F̃ [h,∇h] = λ
2ν e

λ
ν
h(x̄,t)[−Ko +

λ
4 (∇h(x̄, t))

2
]. The relations we refer are

F̃ [h,∇h] = eshF̃1[(∇h)
2]

Γ[h,∇h] = e−shΓ1[(∇h)
2], (10)

and according to the form of F̃ [h,∇h], it is clear that the first relation above results obviously true, while for the
second relation we have that Γ[h,∇h] = e−sh(x̄,t)Γo, where Γo = 1, and s = λ

ν , as Γ[h] is not function of ∇h. In
addition, it can be also proved that the indicated NETLP is also invariant under the nonlinear Galilei transformation
that, as discussed in [Fogedby, 2006], are fulfilled by the KPZ equation.
It is here adequate to make a warning. We have found that, from the indicated free energy-like functional for the KPZ
kinetic equation and by a functional derivative, we can obtain a form that resembles a (relaxation) model A according
to the classification in [Hohenberg & Halperin, 1977]. In one hand, in the standard “model A” it is known that the
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dynamics can be seen as a superposition of modes that decay exponentially towards a steady state. In addition, it is
also known that the time-dependent correlations obey certain constraints such as positivity. On the other hand, in the
KPZ problem it is known that the relaxation of perturbations decay in a stretched exponential manner [Schwartz &
Edwards, 2002; Edwards & Schwartz, 2002; Colaiori & Moore, 2002; Katzav & Schwartz, 2004]. Hence, even though
Eq. (8) looks similar to “model A”, its behavior is far from trivial, and we have no a-priori intuition to what its
dynamic could be. Clearly, this is a point to have in mind when suggesting any kind of Antsatz for the temporal
behavior.

3. Probability Distribution Function for KPZ

3.1 General Aspects

The knowledge of the NETLP indicated in the previous section, allows us to readily write the asymptotic long time
probability distribution (pdf). We start writing the (functional) Fokker-Planck equation (FPE) associated to Eq. (1),
that reads

∂

∂t
P [h(x̄, t)] =

∫

Ω

dx̄
δ

δh

{
−
[
ν∇2h(x̄, t) +

λ

2
(∇h(x̄, t))

2
]
P [h(x̄, t)] + ε

δ

δh
P [h(x̄, t)]

}
; (11)

where, in order to focus in the most relevant aspects and to simplify, we adopted Ko = 0.
In Chap. 6 of [Barabási & Stanley, 1995] as well as in Sect. 3.5 of [Halpin-Healy & Zhang, 1995] the form of the
probability distribution function (pdf) for the one dimensional KPZ equation was discussed. The form of such a pdf
for an arbitrary dimension, so far, is not known. However, here we show the general form of such a pdf.
The knowledge of such a NETLP for the KPZ equation allows us to readily write the asymptotic long time probability
distribution function (pdf), valid for (worth to be remarked) any dimension, which (due to the “diagonal” character
of Γ[h]) is given by

Pas[h(x̄)] ∼ exp

{
−
1

ε

∫
dx̄

∫ h(x̄)

href

dψ Γ[ψ]
δF [ψ]

δψ

}

∼ exp
{
−
1

ε

∫
dx̄
(
Γ[h]F̃ [h]−

∫ h(x̄)

href

dψ
δΓ[ψ]

δψ
F̃ [ψ]

)}

∼ exp
{
−
ν

2ε

∫
dx̄ (∇h)

2
+

λ

2ε

∫
dx̄

∫ h(x̄)

href

dψ (∇ψ)
2
}

∼ exp

{
−
Φ[h]

ε

}
, (12)

where, we reiterate, we assumed Ko = 0, and href is an arbitrary reference state. The second line results by using
functional methods (see for instance [Hänggi, 1985]). The third line shows a nice structure, where we can identify
a contribution, with a Gaussian dependence on the slope, plus a “correction” term proportional to λ. The above
indicated result is the valid (albeit “formal”) solution for arbitrary dimension irrespective of boundary conditions,
while for the one-dimensional case, and the adequate (periodic) boundary conditions, it is possible to show that this
pdf reduces to the well known Gaussian result [Barabási & Stanley, 1995; Halpin-Healy & Zhang, 1995].
Clearly, a relevant point is related to the interpretation of the integral over the function ψ(x̄) in Eq. (12). In order
to simplify we consider the 1-d case, and focus only on the first term. Using functional techniques, we have

ν

∫
dx

∫ h(x)

href

dψ
∂2

∂x2
ψ(x) = −

ν

2

∫
dx

∫ h(x)

href

dψ
δ

δ ψ(x)

(∫
dx′
(
∂ψ(x′)

∂x′

)2
)

=
ν

2

∫
dx

(
∂h

∂x

)2

, (13)

where we have used that δ ψ(x′)
δ ψ(x) = δ(x − x′). Another way to grasp it is via a discrete representation

≈
∑

j

∫ hj

dψj (ψj+1 − 2ψj + ψj−1)

≈
ν

2

∑

j

∫ hj

dψj
∂

∂ψj

∑

l

[ψl+1 − ψl]
2,

that, as only the l = j and l = j − 1 terms survive, yields

≈
ν

2

∑

j

[hj+1 − hj ]
2. (14)
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In both cases we obtain the known result.
The interpretation for the second (KPZ) term is analogous to the one in the example indicated above. However,
for this case the situation is a little more delicate. Several recent papers have discussed different alternatives to the
discrete form of such a contribution in the KPZ equation in 1-d [Newman & Bray, 1996; Lam & Shin, 1998; Ma, Jiang
& Yang, 2007]. We will not come into these details here, that will be deeply discussed in [Revelli & Wio, 2008].

3.2 Nonequilibrium Potential for KPZ

The last line in Eq. (12) defines the functional Φ[h]

Φ[h] =
ν

2

∫
dx̄ (∇h)

2
−
λ

2

∫
dx̄

∫ h(x̄)

href

dψ (∇ψ)
2
. (15)

The variation of this functional give us

∂

∂ t
h(x̄, t) = −

δΦ[h]

δh(x̄, t)
+ ξ(x̄, t). (16)

This functional also fulfills the Lyapunov condition ∂
∂ tΦ[h] = −

(
δΦ[h]
δh(x̄,t)

)2
≤ 0.

Hence, such a functional could be identified as the nonequilibrium potential [Graham, 1987; Graham & Tel, 1990; Wio
et al., 2002] for the KPZ case. More, even though it could be also identified with a Hamiltonian for KPZ, it is worth
to remark that it differs from the form indicated in Eq. (3.4) of [Halpin-Healy & Zhang, 1995].
The last functional form (albeit so far only formal) could, in principle, allow us to exploit several known techniques
[Graham, 1987; Graham & Tel, 1990; Wio et al., 2002]. It also shows that the claim by previous authors indicated at
the Introduction is not true.

3.3 NEP’s application: A simple example

Here we discuss a simple example in order to show the possibilities that offers the knowledge of such a NETLP. For
this example we analyze a sightly different situation than the one studied in Eq. (1) and its associated NEP in Eq.
(15). We only consider a spatial quenched noise (“disorder”) instead of the spatial-temporal noise considered so far.
The equation associated to such a problem is

∂

∂t
h(x̄, t) = ν∇2h(x̄, t) +

λ

2
(∇h(x̄, t))2 +Ko + ϑ(x̄), (17)

where, as in previous studies [Nattermann & Renz, 1989; Krug & Halpin-Healy, 1993; Ramasco, López & Rodriguez,
2006; Szendro, López & Rodriguez, 2007], ϑ(x̄) is a quenched, Gaussian distributed, noise. For this case we have that

∂

∂t
h(x̄, t) = −Γ[h]

δF [h]

δh(x̄, t)
, (18)

with the same form of F [h] as in Eq. (7), but Ko replaced by Ko + ϑ(x̄).
The indicated studies have shown that the front profile presents a triangular structure [Ramasco, López & Rodriguez,
2006; Szendro, López & Rodriguez, 2007] and, clearly, it is of relevance to determine the slope of such structures.
Using the known form of the NETLP, we can minimize this free-energy-like functional and obtain, in the 1-d case,

that such a slope is α =
(
16
νλ

)1/3
, a value that agrees quite well with the numerical evaluations.

4. Other Kinetic Equations: Non Locality

We can go still further and look for the possibility of deriving a NETLP for more general forms of kinetic equations.
To this end, let us assume that we have the following non-local reaction-diffusion equation [Wio et al., 2002]

∂

∂t
φ(x̄, t) = ν ∇2φ(x̄, t) + aφ(x̄, t)− β

∫

Ω

dx̄′G(x̄, x̄′)φ(x̄′, t) + φ(x̄, t) η(x̄′, t), (19)

where, as discussed in [Bouzat & Wio, 1999; von Haeften et al., 2004; von Haeften & Wio, 2007], the kernel G(x̄, x̄′)
could be of a very general character, and β is the interaction intensity. It was shown that the form of the associated
NETLP is

F [φ] =

∫

Ω

[
−
a

2
φ(x̄, t)2 +

ν

2
(∇φ(x̄, t))

2
+ β

∫

Ω

dx̄′ φ(x̄, t)G(x̄, x̄′)φ(x̄′, t)
]
dx̄. (20)
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As we have done before, using the Hopf-Cole transformation we obtain a generalized-non-local form of the KPZ
equation

∂

∂t
h(x̄, t) = ν∇2h(x̄, t) +

λ

2
(∇h(x̄, t))

2
+Ko − βe−

λ
2ν
h(x̄,t)

∫

Ω

dx̄′G(x̄, x̄′)e
λ
2ν
h(x̄′,t) + ξ(x̄, t). (21)

Even though the nonlocal contribution indicated above differs from those discussed in [Mukherji & Bhattacharjee,
1997; Katzav, 2003], it is clear that such form of a nonlocal term is also of great interest. Repeating the previous
procedure we find the associated NETLP

F [h] =

∫

Ω

dx̄e
λ
ν
h(x̄,t)

[
−
λ

2ν
Ko +

(
λ2

8ν

)
(∇h(x̄, t))

2
+ βe−

λ
2ν
h(x̄,t)

∫

Ω

dx̄′G(x̄, x̄′)e
λ
2ν
h(x̄′,t)

]
. (22)

At this stage it is required to make some assumptions about the kernel.
We assume that the nonlocal kernel has translational invariance, that is G(x̄, x̄′) = G(x̄− x̄′). Also, that it is of (very)
“short” range, that allows us to expand it as

G(x̄− x̄′) =

∞∑

n=0

A2nδ
(2n)(x̄− x̄′), (23)

with δ(n)(x̄− x̄′) = ∇n
x′δ(x̄− x̄′), and symmetry properties taken into account. Exploiting this form of the kernel, we

arrive to the following contributions in Eq. (21)

e−
λ
2ν
h(x̄,t)β

∫

Ω

dx̄′G(x̄− x̄′)e
λ
2ν
h(x̄′,t) ≈ β

{
A0 +A2

[(
λ

2ν

)2

(∇h)
2
+

λ

2ν
∇2h

]

+A4

[(
λ

2ν

)4

(∇h)
4
+ 6

(
λ

2ν

)3

(∇h)
2
∇2h

+2

(
λ

2ν

)2

∇2 (∇h)
2
−

(
λ

2ν

)2 (
∇2h

)2
+

λ

2ν
∇4h

]}
+A6 . . . ., (24)

where the last term indicates contributions of order n ≥ 3 (2n = 6). The parameter β could (in principle) be positive
or negative, indicating an inhibitor or an activator role for the nonlocal interaction term, respectively.
These contributions have the same form of those ones that arose in several previous works, where scaling properties,
symmetry arguments, etc, have been used to discuss the possible contributions to a general form of the kinetic equation
[Hentschel, 1994; Linz et al., 2000; Lopez et al., 2005]. Clearly, the different contributions that arose in Eq. (24)
are tightly related to several of other previously studied equations, like the Kuramoto-Sivashinsky [Sivashinsky, 1977;
Kuramoto, 1978], the Sun-Guo-Grant equation [Sun et al., 1989], and others [Hentschel, 1994].

5. Density Dependent Surface Tension

We can also go further in another direction. Let us consider the case of density dependent diffusion (surface tension).
Following the same original approach, we start considering the following reaction-diffusion equation with a density
dependent diffusion for a field φ(x, t), as studied in [von Haeften et al., 2000; Tessone & Wio, 2007]

∂tφ(x, t) = ∇ (ν(φ)∇φ) + f(φ) + φ(x, t)η(x, t). (25)

As before, f(φ) is a general nonlinear function, that we collapse to f(φ) = aφ(x, t). As in Eq. (2), η(x, t) is a delta
correlated white noise of intensity σ. We assume ν(φ) = νog(φ), that –using the Hopf-Cole transformation– yields
ν̃(h) = νog̃(h).
The transformed equation reads

∂th(x, t) = ∇ (ν̃(h)∇h) +
λ̃(h)

2
(∇h)

2
+Ko + ξ(x, t), (26)

with λ̃(h) = λog̃(h) and a = λo

2νo
Ko. This equation has a KPZ-like form, with both a density dependent surface tension

term and a density dependent nonlinear coupling, with both nonlinearities having the same functional dependence.
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In order to see the associated NETLP, let us remember its form for the original reaction-diffusion equation (Eq. (25)),
it reads

F [φ] =

∫

Ω

{
−

∫ φ

0

ν(φ′)f(φ′) dφ′ +
1

2
(ν(φ)∇φ)

2

}
dx, (27)

that fulfills [von Haeften et al., 2000]

∂

∂t
φ(x, t) = −

1

ν(φ)

δF [φ]

δφ
+ φ η(x, t).

Applying once more the Hopf-Cole transformation, we obtain

F [h] =

∫

Ω

dx

(
λo

2νo

)2 {
−

∫ h

du e
λou
2νo ν̃(u)Ko +

1

2

(
ν̃(h)e

λoh
2νo ∇h

)2}
. (28)

From this NETLP we can prove that

∂

∂t
h(x̄, t) = −Γ̃[h]

δF [h]

δh(x, t)
+ ξ(x, t); (29)

where ξ(x, t) is a white noise of intensity ε (with σ =
(
λo

2νo

)2
ε), and the function Γ̃[h] is given by

Γ̃[h] =

(
2νo
λo

)2
e−

λo
νo
h(x̄,t)

ν̃(h)
.

As before, if we have f(φ(x̄, t)) = aφ(x̄, t)− b φ(x̄, t)3, we get a generalized form of the “bounded KPZ” equation.

6. Conclusions

The previous results indicates that, for a very general form of a KPZ-like equation, we can device a NETLP à la
carte. Consider the following equation

∂th(x̄, t) = ν∇2h+
λ

2
(∇h)2 + F (h) + ξ(x̄, t) (30)

where F (h) is a general nonlinear function of h. According to the previous results we could readily write the associate
NETLP that has the form

F [h] =

∫ {
−
λ

2ν

∫ h

href

e
λu
ν F (u)du +

λ2

8ν

(
e

λh
2ν ∇h

)2
}
dx. (31)

Clearly, it fulfills the Lyapunov condition ∂
∂tF [h(x̄, t)] ≤ 0, and also, through functional derivation, allows us to obtain

the kinetic equation as

∂

∂t
h(x̄, t) = −Γ[h]

δF [h]

δh(x, t)
+ ξ(x, t), (32)

with Γ[h] =
(
2ν
λ

)2
e−

λ
ν
h(x̄,t). Hence, it is clear that we can write the NETLP for a very general KPZ-like form,

independently of the actual form of F (h).
Summarizing, we have here found the form of the Lyapunov functional or NETLP for the KPZ equation. More, we
have devised a way to extent the procedure to derive it, and in such a way we were able to derive more general forms,
including several kinetic equations studied in the literature of interface growing phenomena. Even the case of density
dependent surface tension, have been discussed. From this NETLP, and through a functional derivative, we have
obtained either the KPZ as well as other generalized kinetic equations. We have also shown that the NETLP for KPZ
fulfills global shift properties, as well as other ones anticipated for such an unknown functional. More, we have found
the exact expression, valid for any dimension, for the probability distribution function, and have commented on the
result of a simple example that indicate the usefulness of such a functional.
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As indicated in the literature, dynamic renormalization group techniques, being useful and powerful, in many cases
only offers incomplete results, having no access to the strong coupling phase [Barabási & Stanley, 1995; Wiese, 1998].
Hence, it is clear the need of alternative ways to analyze the KPZ and related problems, as for instance the self-
consistent expansion [Katzav & Schwartz, 1999; Katzav, 2003]. The present results open new possibilities of making
non-perturbational studies for the KPZ problem. For instance, through the analysis of long time mean values of
h(x̄, t). In a similar way, it would be possible to obtain correlations, and from them to extract information about
scaling exponents. Such study will be the subject of forthcoming work.
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