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MEASURING DISLOCATION DENSITY IN ALUMINUM WITH RESONANT

ULTRASOUND SPECTROSCOPY
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Dislocations in a material will, when present in enough numbers, change the speed of propaga-
tion of elastic waves. Consequently, two material samples, differing only in dislocation density, will
have different elastic constants, a quantity that can be measured using Resonant Ultrasound Spec-
troscopy. Measurements of this effect on aluminum samples are reported. They compare well with
the predictions of the theory.
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I. INTRODUCTION

A series of papers by Maurel et al. [2004a; 2004b;
2005a; 2005b; 2006; 2007a; 2007b] have constructed a
detailed theory of the interaction of elastic waves with
dislocations in elastic, homogeneous and isotropic, solids.
This has been done both in two and three dimensions.
Dislocations have ben considered both in isolation as well
as in large numbers. In the latter case, generalization of
the Granato & Lücke [1956a; 1956b; 1966] theory has
emerged with results for change in wave propagation ve-
locity and attenuation length that clearly distinguish be-
tween longitudinal (acoustic) and transverse (shear) po-
larizations. These results are in satisfactory agreement
with laboratory measurements of acoustic attenuation
using Resonant Ultrasound Spectroscopy—RUS [Ledbet-
ter & Fortunko, 1995; Ogi et al., 1999; 2004; Ohtani et
al., 2005]. The case of an isolated dislocation in a half-
space has also been studied, as well as the case of low
angle grain boundaries mimicked as dislocation arrays.

A natural development of the above ideas and results
is to ask whether RUS can be turned into a practical
tool to measure dislocation densities in materials. In
order to do this, it is necessary to validate whatever
results are obtained using RUS with time-tested, but
more involved, High Resolution Transmission Electron
Microscopy [Williams & Carter, 2004; Arakawa et al.,
2006; Robertson et al., 2008]. A preliminary step towards
that aim is to perform RUS measurements on a number
of samples of a given material, one as received from the
provider, and the others after cold rolling, or annealing,
so as to have significantly different dislocation densities.
This paper reports a simplified form of the theory, as well
as the first such measurements, using aluminum.
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II. EFFECTIVE VELOCITY OF ELASTIC

WAVES IN A DISLOCATION-FILLED MEDIUM

We study an homogeneous, isotropic, three-
dimensional, infinite elastic medium of density ρ,
whose state is described by a vector field ~u(~x, t), the
displacement ~u at time t of a point whose equilibrium
position is at ~x. In the absence of dislocations, the
displacement ~u obeys the wave equation

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xj∂xl

= 0 (1)

with cijkl = λδijδkl+µ(δikδjl+δilδjk) the tensor of elastic
constants, and i, j, k, · · · = 1, 2, 3. A consequence of this
equation is that the medium allows for the propagation of
longitudinal (acoustic) and transverse (shear) waves with

propagation velocity cL =
√

(λ+ 2µ)/ρ and cT =
√

µ/ρ,
respectively. Their ratio γ = cL/cT > 1 is always greater
than one.

Dislocations are modeled as one dimensional objects
(“strings”, [Koehler, 1952; Granato & Lücke, 1956a,b])
~X(s, t), where s is a Lagrangean parameter that labels
points along the line, and t is time, of length L, pinned
at the ends, whose equilibrium position is a straight line.

They are characterized by a Burgers vector ~b, perpen-
dicular to the equilibrium line. Their unforced motion is
described by a conventional vibrating string equation

m
∂2Xi

∂t2
+B

∂Xi

∂t
− Γ

∂2Xi

∂s2
= 0 (2)

where the mass per unit length m and line tension Γ are
given by [Lund, 1988]

m =
ρb2

4π

(

1 + γ−4
)

ln

(

δ

δ0

)

Γ =
ρb2c2T
4π

(

1− γ−2
)

ln

(

δ

δ0

)

(3)

where δ and δ0 are external and internal cut-offs. The co-
efficient B is a phenomenological term that describes the

http://arxiv.org/abs/0808.1561v1


2

internal losses of the string due to, for example, interac-
tions with phonons and electrons. We shall only consider
glide motion, that is, motion parallel to the Burgers vec-

tor ~b.

When elastic waves and dislocations interact, both
Eqns. (1) and (2) acquire right hand side—source—
terms, whose structure has been discussed in detail by
Maurel et al. [2005a,b]. Elastic waves in the presence of
N dislocations are best described not in terms of par-
ticle displacement ~u but in terms of particle velocity
~v = ∂~u/∂t and the wave equation (1) becomes

ρ
∂2vi
∂t2

− cijkl
∂2vk

∂xj∂xl

= si (4)

where the source term si is given by

si(~x, t) = cijklǫmnk

N
∑

n=1

∫

L

ds Ẋn
m(s, t)τnbl

×
∂

∂xj

δ(~x− ~Xn(s, t)). (5)

where ǫmnk is the completely antisymmetric tensor of or-
der three, and τ̂ is a unit tangent along the dislocation
line. The string equation (2) is written for the compo-
nent of motion along the glide direction, X ≡ Xktk and,
loaded by a Peach-Koehler [1950] force it becomes

mẌ(s, t)+BẊ(s, t)−ΓX ′′(s, t) = µb Mlk∂luk( ~X, t), (6)

with Mlk ≡ tlnk+tknl and n̂ ≡ τ̂× t̂ a unit binormal vec-
tor. Overdots mean time derivatives, and primes mean
derivatives with respect to s.

At this point it becomes profitable to go to the fre-
quency domain. The loaded string equation (6) can
be solved in terms of normal modes, and the solution
plugged into the right hand side of the wave equation
(4). In the long wavelength limit, λ ≫ L, and for small
string displacements, the result of this operation is

− ρω2vi − cijkl
∂2vk

∂xj∂xl

= Vikvk (7)

where

Vik =
8L

π2

(µb)2

m

S(ω)

ω2

N
∑

n=1

M
n
ij

∂

∂xj

δ(~x− ~Xn
0
) Mn

lk

∂

∂xl

(8)

and

S(ω) ≃
ω2

ω2 − ω2
1
+ iωB/m

. (9)

with

ω1 =
π

L

√

Γ

m

the frequency of the fundamental mode of the string with
fixed ends.

Maurel et al. [2005b] have provided two derivations
of effective velocities for elastic waves described by Eqn.
(8). Here we give a third, with a reasoning similar to
the one used to study waves in plasmas [Stix, 1992]: The
right-hand-side (8) is smoothed through the replacement
of the discrete sum over dislocation segments by an in-
tegral over space with a continuous density n(~x) of dis-
location segments, and the tensor Mn

ijM
n
lk by its angular

average, assuming all directions equally likely. The last
operation can be found in Appendix C of Maurel et al.
[2005b]. Eqn. (7) thus becomes, in the case of uniform
dislocation density n(~x) = n,

−ρω2vi − cijkl
∂2vk

∂xj∂xl

=

8

π2

(µb)2

m

S(ω)

ω2

nL

15
(3δikδlj + δilδkj)

∂2vk
∂xj∂xl

(10)

In wave number space this is an equation

Oikvk = 0 (11)

with

Oik ≡ −ρω2δik + cijklkjkl +
8

π2

(µb)2

m

S(ω)

ω2

nL

15
× (3δikδlj + δilδkj)kjkl.

The dispersion relation for the elastic waves in this aver-
aged medium is given by the vanishing of the determinant
of O:

detO = 0 (12)

For frequencies smaller than the fundamental frequency
of the string, ω ≪ ω1, and small damping, (ωB/m) ≪

ω2

1 , this leads to the following effective longitudinal (vL)
and transverse (vT ) phase velocities:

vL = cL

(

1−
16

15π4

1

γ2

µb2

Γ
nL3

)

(13)

vT = cT

(

1−
4

5π4

µb2

Γ
nL3

)

. (14)

III. RUS MEASUREMENTS

Resonant Ultrasound Spectroscopy allows precise mea-
surements of the elastic constants of a sample indepen-
dent of its symmetries [Migliori et al., 1993; Leisure &
Willis 1997]. An homogeneous and isotropic material
is characterized by two independent elastic constants, λ
and µ, or equivalently C11 = ρv2L and C44 = ρv2T . RUS
is known to give more precise measurements of C44, and
therefore a comparison with the theoretical prediction for
vT is possible.
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Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Preparation Annealed 400◦C/10 hrs Annealed 400◦C/5 hrs Original Rolled at 33% Rolled at 43%

d1 [cm] 1.701 ± 0.001 1.700 ± 0.001 1.7004 ± 0.0003 1.696 ± 0.001 1.7004 ± 0.0005

d2 [cm] 1.0010 ± 0.0004 0.9992 ± 0.0004 0.9991 ± 0.0005 1.000 ± 0.001 1.0005 ± 0.0003

d3 [cm] 5.002 ± 0.001 5.002 ± 0.001 5.000 ± 0.001 5.000 ± 0.001 5.001 ± 0.002

ρ [g/cm3] 2.691 ± 0.002 2.692 ± 0.002 2.696 ± 0.002 2.692 ± 0.004 2.691 ± 0.002

C11 [1011 Pa] 0.868 ± 0.038 0.880 ± 0.023 0.884 ± 0.028 0.888 ± 0.026 0.883 ± 0.023

C44 [1011 Pa] 0.2680 ± 0.0017 0.2664 ± 0.0007 0.2661 ± 0.0008 0.2647 ± 0.0007 0.2643 ± 0.0007

vL [m/s] 5679± 124 5719 ± 76 5725± 89 5744 ± 84 5728 ± 75

vT [m/s] 3156± 10 3146± 4 3142± 5 3136 ± 5 3133 ± 4

TABLE I: Dimensions, density, C11, C44, vL and vT for the five samples. Columns are ordered for increasing expected density
dislocation. Absolute errors for C11 and C44 are computed as the standard deviations of a set of 135 = 5 ·33 results: for each of
the 5 positions per sample, the elastic constant seed values used in RUS are varied 3 times each, within an interval close to the
final measured values (±20%). The density is also varied 3 times within 〈ρ〉 ± δρ, giving a total of 27 possible combinations.
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FIG. 1: (a) Typical frequency spectrum, showing the first 14 resonances for sample N◦ 3 of Table I. The first resonant mode
is at ≈ 18 kHz, the last one at ≈ 101 kHz. (b) Shear wave velocity for the five samples under study. The arrow indicates the
direction in which dislocation density is expected to increase.

We have taken five aluminum samples cut from the
same bar. One, as bought, one cold-rolled at 33%,
one cold rolled at 43%, one annealed at 400◦C, for 5
hours, and another for 10 hours. Longer annealing means
lower dislocation density, and stronger cold-rolling means
higher dislocation density. The five samples were shaped
as parallelepipeds, with dimensions as in Table I. Samples
are labeled 1, 2, 3, 4 and 5 for increasing expected density
dislocation. A RUS apparatus was built in-house [Carú,
2007; Jara, 2007], and used to measure the two elastic
constants of the five samples. The sample-apparatus con-
tact force is small, of the order of 0.1 N. A typical spec-
trum is shown in Figure 1a. Each resonant frequency was
measured for several ultrasonic driving amplitudes (typi-
cally five) in order to verify that the resonances are well in
the linear acoustic regime. Additionally, each sample was
placed five times in the apparatus in order to reduce er-
rors due to slight dependence of the resonant frequencies
on the contact load and positioning with respect to the
ultrasonic receiver. The measured elastic constants C11

and C44 as well as the shear and longitudinal wave veloc-
ities are also given in Table I. No clear tendency in vL is
observed. Within experimental errors, it is almost con-
stant. However, vT shows a clear decreasing tendency.
It is plotted in Figure 1b versus sample number. The
difference between the errors of both wave velocities is
consistent with the fact that RUS is much more precise
for C44, basically because resonant frequencies depend
strongly on C44 and weakly on C11.

IV. DISCUSSION AND CONCLUSIONS

For simplicity we shall assume, a common assumption,
λ = µ, so that γ2 = 3. Independent measurements for
the original sample give γ2 = 3.3, and this ratio does not
change significantly from sample to sample.
Using (3) we have

µb2

Γ
=

4πγ2

γ2 − 1
ln−1

(

δ

δ0

)
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so there is only a dependence on the ratio of cut-offs.
Taking δ = 106δ0 we get the following expression for the
fractional change in shear wave velocity:

vT − cT
cT

= −
16

5π3

3

2

nL3

6 ln 10
. (15)

The data of Figure 1b are consistent with

nL3
∼ 0.3 (16)

and with a (linear) trend in agreement with theory,
namely that the higher the dislocation density, the lower
the effective speed of shear waves.
Taking L ∼ 100 nm as a typical dislocation length

would give a variation in dislocation density among the
various samples of order nL ∼ 109 mm−2, a conclusion
that it should be possible to test by direct measurement
with High Resolution Transmission Electron Microscopy
(HRTEM). Work along this direction is in progress.
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