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Abstract

We study some of the most commonly used mutual informatitimas
tors, based on histograms of fixed or adaptive bin sizeearest neighbors
and kernels, and focus on optimal selection of their freapaters. We ex-
amine the consistency of the estimators (convergence tbtestalue with
the increase of time series length) and the degree of demiathong the es-
timators. The optimization of parameters is assessed bitifyiag the de-
viation of the estimated mutual information from its trueasymptotic value
as a function of the free parameter. Moreover, some comnsed-ariteria
for parameter selection are evaluated for each estimatioe comparative
study is based on Monte Carlo simulations on time series Beweral lin-
ear and nonlinear systems of different lengths and noisddehe results
show that thek-nearest neighbor is the most stable and less affected by the
method-specific parameter. A data adaptive criterion fainogd binning is
suggested for linear systems but it is found to be rathererwative for non-
linear systems. It turns out that the binning and kernehesbrs give the
least deviation in identifying the lag of the first minimumnotitual informa-
tion from nonlinear systems, and are stable in the presenaise.
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1 Introduction

Mutual information (MI) is a nonlinear measure used in masyegts of time series
analysis, best known as a criterion to select the apprepdatay for state space
reconstruction [Kantz & Schreiber, 1997]. It is also usediszriminate different
regimes of nonlinear systems [Hively ef al., 2000; Naa e124102;| Wicks et &l.,
2007] and to detect phase synchronization [Schmid|et &4 Xreuz et al., 2007].
Besides nonlinear dynamics, it is used in various stafissettings, mainly as a
distance or correlation measure in data mining, e.g. ingaddent component
analysis and feature-based clustering [Tourassil et &1 ;2riness et al., 2007].

Any estimate of M, either between two variables or as a fioncof delay for
time series, is (almost always) positively biased [TreveRBaazeri, 199%; Moddemeijer,
1989;| Paninski, 2003; Micheas & Zogrdfos, 2006]. For nupadvalued vari-
ables, Ml increases with finer partition depending on theeulgthg distribution
and the sample size. Beyond the classical domain partigenther schemes
have been used to estimate the densities inherent in theureeat mutual in-
formation, e.g. kernels, B-splines amdnearest neighbors [Moon et/ al., 1995;
Diks & Manzan| 2002; Daub et al., 2004; Kraskov etlal., 2004].

There are generally few analytic results on MI. Expressimiigl in terms of
the correlation coefficient are obtained for some knowrridigtions, e.g. Gaussian
and Gamma distribution_[Pardo, 1995; Hutter & Zaffalon, 2D ome statistical
results on the mean, variance and bias of the M| estimatagusied partitioning
can be found in [Roulston, 1997; Abarbanel etlal., 2001],tbatdistribution of
any MI estimator is not known in general. For chaotic systé@mgarticular, the
discontinuity of the density function of their variablesedonot allow for an ana-
lytic derivation of the statistics of MI estimators. Theyef, comparisons of Ml
estimators relies on simulation studies. In some studies$timators are tested
in identifying correctly the lag of the first minimum of Ml _[Mm et al., 1995;
Cellucci et al.; 2005]. Another performance criterion ie thias of estimators in
the case of Gaussian processes, where the true Ml is knowd¢€iest al., 2005;
Trappenberg et al., 2006].

MI estimation involves one and two dimensional densityreation. Density
estimation has been studied extensively and different ogisthave been suggested
and compared in the statistical literature, e.g. see [SE@R9| Freedman & Diaconis,
1981;| Silverman,, 1986], but it is still to be investigatedetiter these methods
and the suggested criteria for the selection of method Bpgerameters are also
suitable for Ml estimation. This is the main objective ofstlstudy. MI estima-
tors have also been compared to other linear or nonlineaelation measures
[Palus| 1995; Steuer etlal., 2002; Daub et al., 2004], butaveod pursue this here
as direct comparison is not possible due to the differentrgcaf the measures,
even after normalization. There are some comparative eguath the M| estima-
tors and the selection of their parameters, as well as onglkeiormance on both
linear and nonlinear dynamical systerns [Wand & Jones, 1988)er et all, 2002;
Nicolaou & Nasuto, 2005; Khan etlal., 2007]. Here, we extdrebe studies, we



evaluate some of the most commonly used Ml estimators, exathieir consis-

tency and optimize the selection of their parameters inetudriteria for parameter
selection suggested in the literature. As the estimatigenés on the underlying
time series we use Monte-Carlo simulations on systems dewtaise of different

distributions, stochastic linear systems and dynamicatlimear systems (maps
and flows of varying complexity). The performance of eacimegior is examined

with respect to the time series length, the distribution @fa and the noise level
in the systems.

We study here the performance of three types of estimat@s,estimators
based on histograms (with fixed or adaptive bin siZzehearest neighbors and
kernels. All estimators vary in the estimation of the deesiat local regions and
we investigate the optimal parameter for the determinatiche two-dimensional
partitioning. Based on the simulation results, we propgsaal parameters for
each MI estimator with regard to the complexity of the systédme observational
noise level and the time series length.

The structure of the paper is as follows. In $éc. 2, we brieflgubs the estima-
tors considered in this study and in Sec. 3 we present thaeaiah procedure and
the simulated systems. In SEt. 4, we give quantitative teenlthe dependence of
the estimators on the parameters, time series length ard,veé propose optimal
parameter selection and compare the different Ml estimatéinally, in Sed. 5 we
discuss the results and draw conclusions.

2 Mutual Information Estimators

Ml is a measure of mutual dependence between two randonbiesiand quanti-
fies the amount of uncertainty about one variable reducedh whewing the other.
The MI of two continuous random variablég Y has the form

fxy(z,y)
1Y) = [ [ et tog, 2 duay, )

wherefx y (x, y) is the joint probability density function (pdf) of andY’, whereas
fx(z) and fy (y) are the marginal pdfs ok andY’, respectively. The units of in-
formation ofZ(X,Y") depend on the bageof the logarithm, e.g. bits for the base
2 logarithm and nats for the natural logarithm.

Assuming a partition of the domain &f andY’, the double integral in Eq.X1)
becomes a sum over the cells of the two-dimensional partitio

o i pX,Y(i7j)
I(X7Y) - Zz’]:pX7Y( 7]) loga pX(Z)pY(])’ (2)

wherepx (i), py(j), andpx y (i, j) are the marginal and joint probability mass
functions over the elements of the one and two-dimensioadition. In the limit
of fine partitioning the expression in HJ.(2) converges ta[Bqg This may partly



justify the abuse of notation of MI for the continuous and thecretized vari-
ables. It is alwaysZ(X,Y) > 0, with equality holding for independent vari-
ables, andZ(X,Y) < H(X) < log,n (Jensen inequality), wherfl (X) =
Yo p(xi)log, p(z;) is the Shannon entropy of. For a time serie§X;}} ,
sampled at fixed times;, Ml is defined as a function of the delayassuming the
two variablesX = X; andY = X;_,,i.e.Z(7) = (X, Xp—7).

The Shannon entropy is always misestimated due to finite Issgffpcts|[Grassberger,
1988;| Kantz & Shiarmann, 1996], but we do not discuss Ml imof entropies
here as the estimation of Ml boils down to the estimation efdbnsities in Ed.{1)
or probabilities in EqL{2). The estimators of MI, denotéd), differ in the estima-
tion of the marginal and joint probabilities or densitiesing binning[Fraser & Swinney,
1986;/ Darbellay & Vajda, 1999], kernels [Silverman, 1986od et al.| 1995] or
correlation integrals [Diks & Manzan, 2002};nearest neighbors [Paninski, 2003;
Kraskov et al., 2004]B-splines [Daub et al., 2004] or the Gram-Chatrlier polyno-
mial expansion.[Blinnikov & Moessner, 1998]. All these estitors depend on at
least one parameter. We present bellow the three first dstisnthat are most
widely used.

2.1 Binning estimators

The most common MI estimator is the naive equidistant bigrgstimator (ED)
that regards the partition of the domain of each variable affinite number
of discrete bins (equidistant partitioning). The probiyit each cell or bin is
estimated by the corresponding relative frequency of aecge of the samples
in the cell or bin. The number of bins for each variable is tame, so that the
parameter to be optimized is the number of bins for the pamtibr equivalently
the bin width. The computation of this MI estimator is strdgfgrward as it is
directly estimated from the one and two dimensional histogg.

A second binning estimator is the equiprobable binningrestor (EP), which
is derived by partitioning the domain of each variablé inins of the same occu-
pancy (equiprobable partitioning) but different width.eT@quiprobable partition-
ing actually transforms the sample univariate distributio discrete uniform with
b components minimizing the effect of the univariate disttibn on the estimation.

Fraser & Swinney! [1986] suggested an estimator using antisdagpartition-
ing. This method constructs a locally adaptive partitiortred two-dimensional
plane. It starts with a partition of equiprobable bins focteaariable and makes
finer partition in areas where the joint probability densgyon-uniform until the
joint distribution on the cells is approximately uniformhd final partition is finer
in dense regions whereas less occupied regions are covétedhwger cells. It
was found inl[Palus, 1993; Cellucci et al., 2005] that thisptex algorithm does
not substantially improve the binning estimator and rezgilarge data sets to gain
accuracy; therefore it is not included in the current eviaduma

A different estimator making use of adaptive partitionifgD] is proposed
by [Darbellay & Vajda [[1999]. The partition consists of raujes specified by



marginal empirical quantiles, which are not uniform in tlease that they are not
made of a grid of vertical and horizontal lines, irrespesinof whether these lines
are equally spaced or not. The AD estimator builds such atiparin a way
that it achieves conditional independence on the rectarmfiehe partition. The
advantage of this estimator is that it is data-adaptive @ed dot a priori determine
the number of bins in the partition. The AD estimator has adidependence on
n, which determines the roughness of the partitioning in aedww automatic
way. In the abundance of data, the AD estimator reaches &fineryartition that
satisfies the independence condition in each cell, so tedbthl number of cells is
very large and analogous to a fixed-partition with a respeltilarged. Note that
the dependence of AD om is not comparable to that of the fixed-bin estimators
because it involves a change of partitioning with

For any binning scheme, the MI estimatbir) is given by Eql(R) where the
variables aré X, Y) = (X;, X;_,), the sum is referred to the partition of the two-
dimensional domain ofX;, X; ) andpx,, px,_.,px,, x,_, are the marginal and
joint probability distributions defined for each cell of thartition.

2.2 k-nearest neighbor estimator

Kraskov et al.|[2004] proposed an MI estimator (KNN) thatuiee distances of
k-nearest neighbors to estimate the joint and marginal tiessiFor each refer-
ence point from the bivariate sample, a distance lengthtsrgiéned so that the
k nearest neighbors are within this distance length. Themtimeber of points
within this distance from the reference point gives theneate of the joint density
at this point and the respective neighbors in one-dimengioa the estimate of
the marginal density for each variable. The algorithm ussssd(or squares de-
pending on the metric) of a size adapted locally and then tesorresponding
size in the marginal subspaces, so in some sense the estisalata adaptive.
Still, it involves as a free parameter the number of neigbtaorNote that a large
k regards a smab of the fixed binning estimators. However, the estimator does
not use a fixed neighborhood size and therefore there is rieaa association of
k andb. The KNN estimator is data efficient, adaptive, has minimatsand is
recommended for high-dimensional data sets [Kraskov|g2@D4]. It requires an
additional computational cost for the search of kheeighbors.

2.3 Kernel density estimator

The kernel density Ml estimator (KE) uses a smooth estimiateeainknown prob-
ability density by centering kernel functions at the datampskes; kernels are used
to obtain the weighted distances [Silverman, 1986; Moon.gt895]. The kernels
essentially weigh the distance of each point in the sampleetoeference point de-
pending on the form of the kernel function and according tovargbandwidthn,
so that a smalk produces details in the density estimate but may loose racy
depending on the data size.



KE estimator has two free parameters, the bandwigtfor the marginal den-
sities of X and Y, and the bandwidtth, for the joint density of(X,Y"). The
bandwidthh; is related to of the fixed binning estimators by an inverse relation,
e.g. arectangular kernel assigns a bin centered at theneepoint. Its advan-
tage over binning estimators is that the location of the lim®t fixed. Among the
different kernel functions, Gaussian kernels are most contynused and we use
them here as well. A kernel density estimator with Gaussand function and a
fixed bandwidthh at a pointx € R? is

= ! (x = %:)"S"H (x = x;)
fx) = (27r)d/2hdde1(8)1/2 ;GXP <— 57,2 > , ©)

whereS is the data covariance matrix and is the number of the-dimensional
vectors|[Moon et all, 1995].

3 Simulation Setup

The evaluation of the estimators is assessed by Monte-Ginlalations on white
noise, linear systems and chaotic systems of different ity listed in Tablé 1.

A Gaussian and a skewed Gamma distribution are used to gendrie noise time
series, whereas for linear systems, the autoregressivelrA&{1) and autoregres-
sive moving average ARMA(1,1) are used with coefficients imergin Table[1,

assuming both Gaussian and Gamma input white noise. Thdirear-chaotic

systems are the Henon map [Henon, 1976]

v =1-— amf_l + bxy_o,

the Ikeda map [Ikeda et al., 1980]

xy = a+b(zi—1cosui—1 — yp—18inug_q)
ye = b(wy_1sinug_1 +yi1cosu1),
whereu; = “_1+xt++y§' and the Mackey-Glass differential system [Mackey & Glass,
1977]
d_.l' _ 0'2-Tt—A _ 0.1z
d  1+20, !

where the delay\ accounts for the system complexity. We use h&re- 17 and
A = 30 for low-dimensional chaos of fractal dimension about 2 amé§pectively,
andA = 100 for high-dimensional chaos of fractal dimension about 7s&dta-
tional white noise at different levels is also assumed ferdhaotic systems, given
as a percentage of the standard deviation of the noise-ftee d
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Different lengthsn for the generated time series from each system are con-
sidered as follows. For white noise and linear systemis, given in powers of
from 5 to 13 and for nonlinear systems fromto 13. I(7) is computed using all
methods o000 realizations for each system, noise type or level, and tienes
length. As all linear systems are of ordemMI is computed only for lag. For the
nonlinear systemd,(7) is computed up to the lagfor which I(7) levels-off. For
the Mackey-Glass system we compute the lag of the first mimiroé /(7) and
specifically forA = 100 the lag that Ml levels-off because it does not exhibit a
distinct minimum. For each estimatdi(r) is computed for a wide range of values
of the free parameter and for specific values determinedamgsatd criteria, which
are specified below.

For the binning estimators ED and EP we set the number of loiris +
2,4,8,16,32,64. We also considet0 commonly used criteria fds, given in Ta-
ble[2.

For the choice of of k-nearest neighbor estimator KNN, Kraskov et al. [2004]
propose to usé = 2 to 4 (these are also used in [Kreuz et al., 2007; Khan et al.,
2007]). However for real world data one should investigdts darger values
of k. Therefore we use in the simulations a wide rangek ofalues as for,
k=2,4,8,16,32,64.

Among different kernel functions used in the literature density estimation,
and for MI estimation in particular, the common practicedsuse the Gaussian
kernel in conjunction with the "Gaussian” bandwidth of $ilsnan [1986]

4 1/(d+4)
h= <(d T 2)n’> ()

(n' is the number of thel-dimensional vectors) or multiples of |t [Harrold et al.,
2001; Steuer et al., 2002; Khan et al., 2007]. In the estonadf mutual informa-
tion with kernels, the range of bandwidths is usually nota®ed and a bandwidth
is selected according to a criterion such as the "GaussiandWwidth [Moon et al.,
1995; Steuer et al., 2002]. A multiple bandwidth selectiohesne for the test for
independence is proposed in [Diks & Pancheénko, 2008]. Aiaind simulation
studies have shown that the choice of the bandwidth is dranhdepends on the
data size![Bonnlander & Weigend, 1994; Jones et al., |1996rdfore we con-
sider a wide range for the bandwidth for one dimension ands for two dimen-
sions, as fob andk. Specifically, forh; we takel5 values in[0.01, 2] at a fixed
base-2 logarithmic step and get = h; andhy = v/2h,. The second form fokhs
accounts for the scaling of the Euclidean metrig¥ which we use in the simu-
lations. We also consider some well-known criteria for theice of bandwidths,
given in TabldB.




The three first criteria define bandwidth for both one and tivoensional space.
For the other criteria we séb equal either tdv; or v/2h;.

The true (theoretical) ML (7) is not known in general. However, for Gaussian
processeg () is given in terms of the autocorrelation functip(r) as

Z(r) = —0.5log(1 — p?(7)). (5)

In the lack of the true Ml for the other systems, we assumeistamy of the es-
timators and use the asymptotic valueldf) computed on a realization of size
n = 107. In this computation, we set for the ED and EP estimatots 64 (we
also computed MI fo up to 256, however MI did not substantially differed),
for KNN estimatork = 2, and for the KE estimatok; = 0.01 andhy = h;.
Similar approach for approximating the true Ml is usedlin ftdkd et al., 2001;
Cellucci et al., 2005]. We denotl, the true or asymptotic Ml and use it as refer-
ence to compute the accuracy of the different estimators.

We evaluate the estimators and their parameters sepafateihite noise and
linear systems, for the nonlinear maps Henon and Ikeda,arntdd Mackey-Glass
system. First, we investigate the dependence of the estiman their free param-
eter for white noise and linear systems and for differenetsaries lengths giving
a total of L = 126 cases (14 systems and 9 time series lengths). For each estima
tor, we compute the mean estimated M(!) from the 1000 realizations for each
tested value of the free parameter denoted, byhere | denotes the system case and
I =1,..., L. Further, for eaclhwe compute the deviatiofl, (1) = |I.(1) — I (1)],
wherel (1) is either the true MI (for Gaussian processes) or the asyinpi@lue
computed from each estimator. All estimators convergedhéosame M| under
proper parameters as obtainedfdncreasing up ta0”. Given the asymptotic Ml
I(1), the optimal parameter values for each da@ystem and time series length)
is obtained from the minimum deviatiofY.({) with respect ta.. The estimators
are then compared for their optimal parameters by compthieglivergence of the
mean! () of each estimator fromi, () for all cases.

For the discrete nonlinear systems, therelare 48 cases§ maps including
different noise levels andltime series lengths). Here, a sindlg for each system
cannot be obtained as the Ml estimatesfdncreasing up ta0” does not converge
and the Ml forn = 107 is still dependent on parameter selection and varies also
across estimators. Therefore, for each system we set aptgticwaluel,, of the
estimator the MI computed for = 107 and for a very fine partition. So here, the
interest is in the dependence of each estimator on the freengder and the rate
of convergence towards the asymptotic value.

For the nonlinear flows derived from the Mackey-Glass systenh = 17,30
(noise-free and with noise), we concentrate on the firstmmima of Ml and com-
pute the lagy of the first minimum of Ml for each of th&000 realizations of each
system. ForA = 100 there is no clear minimum of Ml and it follows a rather



exponential decay. Therefore we compute instead thegdgr which Ml levels
off according to a criterion for levelling. In order to compahe estimators, we
examine the consistency of each estimator witlthe dependence of the estima-
tion of 7y on the parameter selection and the variance of the estirteged, from

all cases.

4 Results

4.1 Results on white noise and linear systems

The Ml for lag onel (1) from the binning estimators ED and EP increases always
with the number of biné. Thus for white noise wherg, (1) = 0 the best choice
for b is 2 that gives the smallest positiVél). For the linear processes(1) de-
creases with the time series lengtffor eachb, as shown in Fid.]1 for the ED and
EP estimates of (1) from an AR(1) process.

Figure 1 *** To be placed here ***

We note that for sufficiently largé, I(1) converges withn to the true value
Z(1) = I(1) given in [B). On the other hand, for sméJl /(1) underestimates
I (1) depending again on. Thus the optimab that gives the smallegl/..(/) and
estimates bedt,, (1) depends om.

We have observed thatdepends also on the autocorrelation functign) of
the linear system. To investigate further this dependereeamnputed ED and EP
estimates of (1) for a wide range of-(1) values of an AR(1) process. We found
that the optimab (found by the smallesii.(l)) increases smoothly with and
r(1), as shown in Fid.]2.

the form ,
b= an’e” (6)

where the coefficients, 3, v take similar values for the ED and EP estimators
(0.65,0.25,2.11 and 0.76,0.19,1.91 respectively).

Most of the criteria in Tablg]2 tend to overestiméateTo evaluate the perfor-
mance of the 10 criteria in Takllé 2 and the proposed criténi@&y.(6), we compute
the total scores.. of each criteriorne, wherec = 1,...,11, for all L = 126 tested
systems and time series lengths, as

g = T -

(Tl

()



where for each cask I.(I) = L il I.(1) is the grand mean of the means

from all criteria. According to the scorg., the proposed criterion in EGI(6) for the
optimalb, denoted H11, outperforms the other criteria when ED es$tima used,

as shown in Tablel4.

For the EP estimator, criterion H9 scores lowest and H11lriked fifth but the
differences in the scores of the best five criteria are coatpaty small.

For certain bivariate distributions and Gaussian procedsavas found that
the AD estimator was precise in estimating Ml and converged to the true M
[Kraskov et al.| 2004; Trappenberg et al., 2006]. We confitriies result by our
simulations on the white noise and linear systems with theark that the con-
vergence tol, is rather slow and is succeeded at largeas shown in Figl13.

The number of nearest neighbdré the KNN estimator determines the rough-
ness of approximation of the density functions in Elg.(1)ichltorresponds to the
roughness of the partitioning in Eg.(2). The simulationsveid that for white
noise the Ml estimated by KNN is close to zero for a long range and the devi-
ation from zero decreases fagpproaches /2 (as reported also in [Kraskov et al.,
2004]). For the linear systems the optimdk rather small. The dependence of the
KNN estimator ork holds mainly for small time series as for largehe estimated
MI converges td, for anyk, as shown in Fid.l4a.

Still, the convergence is slower for largerin any case, a highly accurate Ml is at-
tained with smalk for all but very small time series. For example, for an accura
threshold ofl0~* in estimatingl.., i.e. |I(1) — I.| < 10~*, the optimal choice for
kis 2 in almost all cases except for very smalindr (1), as shown in Fid.J4b. Note
that even for white noise time series of small lendths 8 reaches this accuracy
threshold (the peak in the graph of Fig. 4b is#or= 25 andr(1) = 0).

For the two dimensional bandwidth, we have considered, = h; and
ha = v/2h; and studied the dependence of the estimated Mtoandh, across
a large range of bandwidths for white noise and linear systeAs for k of the
KNN estimator, Ml converges with and faster for smallek,. For ho, = h; the
convergence with is correctly towardd . (see Fig[ha), but fohy = /2h; MI
decreases with; and becomes negative (see [Eig. 5b).




This result advocates the use of the same bandwidth for timekestimates
of the marginal and joint distributions. We have also iniggged whether there
is dependence df; on (1) andn. As for k£ of the KNN estimator, there does
not seem to be any systematic dependence. Using the sambdltr@ccuracy in
estimating/,., the smallest optimal, is always at a low level for alt(1) andn
and there is no apparent pattern that would suggest a dartfoum of dependence
of hy onr(1) orn, as shown in Fid.J5c. The sudden jumps in the graph ofFig. 5cis
due to numerical discrepancies around the chosen thre&ialdferenth; values.

In order to evaluate the criteria for selectingandh, in Table 3, we computed
for each criterion the score defined in E4.(7) for all caséd® five optimal criteria
and their scores for varying lengths of time series from mbise and linear
systems are C1(85), C3 (0.94), C2 (0.96), C4 (1.57) and C9 (.67). The simplest
criteria turned out to score lowest with best being the "Ga&us rule of Silverman
C1 (see also Ed.[4)).

Summarizing the results on white noise and linear systetrtgsris out that
fixed binning estimators are the most dependent on the freengder, the number
of binsb, whereas for KNN and KE estimators a small number of neighb@nd
bandwidthh, respectively, turns out to be sufficient for all but very drtime se-
ries lengthn and weak autocorrelation(7). In such cases, binning estimators can
approximatel,,, better with a relatively small and we provided an expression for
this involving n andr(1). All estimators are consistent but converge at different
rates to the true or asymptotic M., as shown in Fid.16 for the AR(1) system with
weak and strong autocorrelation.

In general, the KNN estimator converges fastest. To thjgagisthe parameter-
free AD estimator would be the second best choice after th&l kestimator be-
cause it showed a slower convergence rate. KE estimator g she same
convergence rate as AD and is not significantly affected byrpater selection
(for hy = hq), however it would not be preferred due to its computaticrast.
The estimation accuracy of each estimator is quantified byindexdI.,, =
SF (e, (1) — Ino(1))?, where L = 126 and ¢,y is the optimal free parame-
ter found in the simulations above, i.e. H11 fon ED and H9 forb in EP,k = 2
for KNN, and C1 for the bandwidths in KE. The smallest ind#x,, = 0.254
was obtained by ED, followed by KE (0.302) and KNN (0.496) endas AD and
EP scored worse (1.865 and 2.231, respectively). Our nealanalysis on the
linear systems and noise showed that for the three aspeetstinfation consid-
ered, i.e. parameter dependence, rate of convergenceceamaey of estimation,
no estimator ranks first but KNN and KE turn out to perform alldvest.
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4.2 Results on nonlinear maps

In terms of chaotic systems, let us first note that MI can bevegeas a measure
on the reconstructed attractor projected® i.e. on pointsjz;, x; ,|’. Due to
the fractal structure in all scales of the chaotic attracidr) defined in terms
of a partition (see Ed.[2)) increases with finer partitiowaeds the limit ofZ(7)
given in Eq[(1) for the continuous space. On the other hawdhe estimation of
entropy, and particularly the Kolmogorov-Sinai or metridrepy, it is postulated
that there exists a so-called generation partition thatgihe expected entropy
value and further refinement to this partition does not iasedfurther the computed
entropy [Walter| 1975; Cohen & Procaccia, 1985]. Howevethwegard to the
Shannon entropy, we observed that we can only get an uppeolifdl from the
KNN estimator withk = 2 as the estimation algorithm does not allow for a finer
partition, whereas increasirigfor the binning estimators or decreasihgfor the
KE estimator within the tested range does not seem to leaohiecgence of Ml.

The trueZ(7) in Eq.(d) is not known since the joint distribution pf;, x|’
is also not known. This prevents the direct comparison ofeftenators and the
search for optimal free parameters. The presence of noiskaatic time series
sets a limit to the scale where fractal details can be obdeamd consequently to
the finiteness of the partition when estimatif@r). In that case, an asymptotic
I, does exist and the performance of the estimators in terntedfée parameter
and time series length can be compared, also for differeigenevels. In the
following, we try to delineate the differences among estor&in estimating/,
and patrticularly in converging tb,, with respect to the time series length and their
free parameter.

The discussion above would suggest that the estimated Mildladways in-
crease as the partition gets finer, but in practice this regui sufficient time series
lengthn. For the binning estimators the optimal number of binge. theb giv-
ing largest Ml and minimunZ (1) — I.(7)], is not always the largest (limited to
b = 64 in our study) but increases witfy as shown in Fid.l7a for the ED estimator
and the noise-free Henon map.

In the same figure the limits for optimal from the suggested criterion H11 in
Eq.(8) (lower for (1) = 0 and upper for (1) = 1) are shown with dotted lines and
are well beyond the optimal bins found for small lags. Fos gystem,/(7) de-
creases smoothly with and therefore the optiméldecreases as well. For= 10,
I(7) levels off for smalln and therb ~ 2 is optimal, but as: increases more bins
give indeed larger values of MI. Thus asncreases weak MI for large becomes
significant and can be distinguished from the plateau ofpaddence only when a
largerb is used for the binning estimator. However, for a fixellll converges to
I, with n, even for noise-free data (Fig. 7c).

With the addition of noise/(7) decreases and the optimal number of bins
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drops, as shown in Figl 7b and d respectivelyXd additive noise on the Henon
time series. The stronger the noise component is, the mermeterministic struc-
ture is masked and the faster the estimated Ml levels towzmeswith the lag. For
the noisy chaotic data, the pattern of the dependence ofitimnly estimates of
MI to n andb is closer to the one observed for the linear systems. For peam
the range of optimal in Fig.[1b is at the level of given by the suggested criterion
H11 forr(1) ranging from O to 1. The results on EP estimator are similar.

In line with the ED and EP estimators, the AD estimator dodscooverge
with n to I, for the nonlinear systems unless the fine patrtition is lichibg the
presence of noise, as shown in Fi. 8 for the Henon map.

The increase of. directs the algorithm of AD to make a finer partition which
results in a larged (7). The effect ofn on the adaptive estimator decreases with
the increase of the noise level.

As pointed earlier, there is a loose relationship betweemtimber of nearest
neighborsk in the KNN estimator and the number of bihsn the binning esti-
mators, i.e. smalk corresponds to large The lower limitk = 1 corresponds
to the finest partition for the given data, and the analaoguaeuld be formidably
large and is not reached in our studybagoes up to 64 (the same stands#ap to
256). Thus direct comparison to binning estimators whewvery small cannot be
drawn. For noise-free chaotic time series, very fine pargtiare sought and this
agrees with the suggestionlin Kraskov et al. [2004] to usdlsknat the order of
3, which was also used in other simulation studies [Kreuz.gP8D7| Khan et al.,
2007]. In Fig[®a, we show for the noise-free Henon map flaj increases with
decreasing.

For smalln, a large value of: gives a poor estimation of the densities and conse-
quently of I (7). For a fixedk, Ml increases with (see Figl Bb). Assuming a fixed
k the effect ofn. on the KNN estimator is large similarly to the effect:obn the
AD estimator as there in no convergence of MI withcontrary to the fixed-bin
estimators. In agreement to the binning estimators, thedwhthe KNN estimator
decreases with the noise level. Therefore the dependeri<h festimator o
is smaller and/(7) converges faster td,, with n (Fig.[dc). Further, for largen
the estimation is the same regardless of the value of

The dependence of the KE estimator on the bandwidths similar to the
dependence of the KNN estimator bnAs shown in Fig[_I0a and b for the noise-
free Henon mapl (1) increases with the decreaselafranging from 0.01 to 2.




We note that such extremely large valued 6f) for very small bandwidtth; do
not occur by any other estimator. Given that the KNN estimiipk = 1 sets an
upper limit for the estimated(7) on the given time series, largéfr) obtained
by the KE estimator are superficially overflown estimates ttuéhe use of an
unsuitably smalk, for the given time series. This systematic bias for very mal
hi is more pronounced with the addition of noise as it persistteasame level
for largerr (see Figl.IDc). For the noisy dati) decreases and differences with
respect to the partitioning parameters are smaller, arfeata observed also with
the other estimators (see Higl 10c and d). Also, the estihidte) is rather stable
to the change of.

Regarding thé criteria for selectingy; (and at cases,, see Tablgl3), the esti-
mated bandwidths vary with the criterion but within a smatige, e.g. fon = 256
they are bounded iff).13, 0.35] except C3 that always gives larger bandwidths and
in this caseh; ~ 0.7). Deviations of the estimated bandwidths hold for larger
but at smaller magnitudes, e.g. for= 8192, they are bounded if9.03, 0.18] and
for C3hy ~ 0.37). All criteria depend om in a similar way and estimate smaller
bandwidths as increases giving largef(7) (see FiglIlla fon = 8192).

When noise is added to the time series, the estimated using different band-
width selection criteria converge and are rather stablehéochange of: (see
Fig.[11b).

Contrary to linear systems, for noise-free nonlinear méps,estimated Ml
does not converge to an asymptofic and even for very large time series the Mi
values computed by different estimators vary, as we tested = 107. For in-
creasingn, a finer partition gives larger Ml regardless of the sele@stimator.
The closest approximation to the finest partition for a latge succeeded by the
KNN estimator using a very smal, sayk = 2 for n = 107. This turned out to be
indeed an upper bound of the estimated MI for lange~or the other estimators,
restrictions to the partition resolution, i.e. smalléstfor KE and largesb for the
binning estimators, bound the estimated MI to smaller \&luer example, bins
up tob = 256 for ED and EP estimators underestimate M| for= 107, meaning
thatb has to increase towards computationally prohibitive langegnitudes to suc-
ceed an adequately fine partition for this data size. In theesaay, the bandwidth
h1 has to decrease accordingly witrand for largen the KE estimator turns out to
be computationally ineffective. The presence of noise aétsver limit to the par-
tition resolution and allows for an asymptotic Ml valiig to which all estimators
converge withn for suitably fine partition.

The results on the different estimators were only given lier lHenon map in
order to facilitate comparisons, but qualitatively simitesults are obtained from
the same simulations on the lkeda map.
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4.3 Results on nonlinear flows

When using MI on nonlinear flows the interest is often in ectiray the lagr, of
the first minimum of MI. We examine the estimatemgfwith the different M| es-
timators on the Mackey-Glass system for deldys= 17,30 and 100 that regard
increasing complexity of correlation dimension being rfolyg2,3 and 7, respec-
tively [Grassberger & Procaccia, 1983].

The simulations using the ED and EP estimators showed thasdamer is
estimated for alb, all n and noise levels, and faA = 17 and A = 30. For
A = 100 we estimated the lag for which Ml levels off and there was swan@tion
in the selection ofy (see Fig['IR).

Ty is stable withn and the addition of noise.
AD estimator is also not affected by, when computing the lag of the mini-
mum MI 7y in the Mackey-Glass system (see Figl 13a).

Figure 13 *** To be placed here ***

Addition of noise does not affect the meay as shown in Fig_13b. From sim-
ulations on the Mackey-Glass system with = 100 we observe that the mean
estimated lag that Ml levels off, holds for increasingsee Fig[ 1Bc) and addition
of noise does not affect it.

The estimation ofy using the KNN estimator on the Mackey Glass systems
varies more wittn andk than for the binning estimators, as shown in Eid. 14a and
b.

With the addition of noise, the variance of the estimatgdecreases with respect
to k, and the mean is rounded to the same integer fot.afor the Mackey Glass
system withA = 100 we observed that there is consistency witandn, with Ml
for all k£ having the same shape and therefore giving the same lagvidlimg off
(see Fig[[IKc).

The mean estimated, using the KE estimator on realizations of each of the
three Mackey-Glass systems is stable against changestimehseries length and
bandwidth as for the binning estimators.

Our simulations showed that all estimators identify sudfitly 7, as the shape
of the MI function is not affected significantly byor by the addition of noise. ED
and KE estimators are the estimators of choice for this taskhey give smaller
variation in the estimation of, compared to the other estimators.
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5 Discussion

MI estimators are sensitive to their free parameter, witiminig estimators (ED and
EP) being the most affected. There is a loose correspondanoeg the different
free parameters, k£ and hy depending also on the time series length. Thus the
differences in the performance of the estimators can ba&qal to some degree by
the coarseness of the partition as determined by the freenader. The choice 6f
for the binning estimators determines the bin size of thétpar. The analogue of
the bin size for the KNN estimator is the size of neighbortsogigien by the number
of neighborsk and for the KE estimator is the size of the efficient suppoithef
kernel approximation given by the bandwidth (andhz). The simulation results
have quantified the correspondence of the different freenpaters and showed that
for large time series, a suitable refined partition can béyeascommodated by a
very smallk or hy, whereas for the binning estimators the requirement formrg ve
large b renders the binning estimator computationally ineffextiVo this respect,
the KNN estimator adapts easily to a refined partition byirsgtisay,k = 2, as
does the adaptive binning estimator (AD) that has no frearpater, whereas,;
has to be further investigated at ranges of small values.

The optimization of the parameters of the estimators is gargial, even more
than the choice of the estimator. Therefore, we focused tmatng the opti-
mal free parameter of each estimator in order to fairly eMaluhe estimators. For
linear systems, we evaluated also different selectiorraitfor the optimal free
parameter and based on the simulation study we proposetiddixed-binning
estimators the optimal as a function of the autocorrelation and the time series
lengthn. The parameter-free AD estimator tends to overestimatedvipared to
the other estimators, indicating that the in-build paotitalgorithm of AD termi-
nates at a very fine partition. The KNN estimator turns outaahe least sensitive
to its free parameter. For example= 2 that gives a very fine partition does not
deviate much for smaller time series where largesre more appropriate. Our
simulation results on the linear systems have shown thaEhestimator depends
less than the binning estimators on the free parameter éadlected ranges bf
andb, respectively.

For noise-free nonlinear systems, all estimators lackistegy, i.e. the es-
timated MI does not converge witlato an asymptotic value. Therefore, optimal
parameter cannot be derived for these systems. The optarateter values found
for the linear systems tend to give conservative estimdt®4l dor the nonlinear
systems, for which a finer partition is required. This is acowdated by a small
in the KNN estimator. Indeed the simulation study on thesdléht chaotic systems
has shown that the KNN estimator has the least variance dtlfrée parametet
than all other estimators. For noisy nonlinear systemsMhiom all estimators
converge withn to an upper limit set by noise and KNN estimator fo# 2 turned
out to reach this limit faster.

For the computation of the lagy of the first minimum of MI, the binning
estimators ED and EP as well as the KE estimator seem to petfest. For
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the Mackey-Glass system, we observed that althdigh may vary with the free
parameter of the estimator angr is rather stable. The addition of noise does not
seem to effect the estimation gf.

The KE estimator has the highest computational cost andxbd-hinning es-
timators become computationally intractable witeimas to be very large, as for
long chaotic time series. On the other hand, the KNN estimatmather fast for
long time series that require smalfor which neighbor search is faster. The com-
putation efficiency of the AD estimator is comparable to thakKNN and these
two estimators seem to be the most appropriate for all magburposes in terms
of computational efficiency, parameter selection (srhdtir KNN and no free pa-
rameter for AD) and accuracy of estimation (with KNN scorbejter than AD).

We note that the consistency of estimators of Ml on linearesys is not indica-
tive of the behavior of the estimators on nonlinear systefthlough consistency
of estimators is claimed in some recent works, this mightueetd the use of only
linear systems or noisy real data, such as EEG.
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Table 1: The simulation systems and their parameters. The inhite noise for
the linear systems (rows 4 to 7) and the observational whitgerfor the nonlin-
ear systems (rows 8 to 10) have zero mean and standard deviste. Gamma
noise is skewed withy = 0.5.The parameter notations gsefor the meang for
the standard deviation andfor the skewness coefficieng, for the coefficient of
the autoregressive part for AR(1) and ARMA(1,1) ahébr the coefficient of the
moving average part of ARMA(L,1); for the sampling time and for the dis-
cretization time for the Mackey-Glass system. The noisel¢egonsidered for the
nonlinear systems at®% and40%.

Systems Parameters Noise
Gaussian white noise y = 0,0 = 1

Gamma white noise| u=0,0 =1,7v=0.5

AR(1) »=20.5,0.9,—-0.5,-0.9 Gaussian
AR(1) » =10.5,0.9,—-0.5,—-0.9 Gamma
ARMA(1,1) 0=0.919=06& ¢ =0.7,9 =03 | Gaussian
ARMA(1,1) p=079=03& ¢ =0.3,¥ =0.1 | Gamma
Henon a=14b=0.3 Gaussian
Ikeda a=10,b=0.9,x=04,7=06.0 Gaussian
Mackey-Glass A =17,30,100, 75 = 17,0 = 0.1 Gaussian
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Table 2: Criteria for the selection of the number of bins. Plaeameters in the
expressions are the time series lengththe standard deviationy the interquartile
range IQR, the range of the daiand the standardized skewnegsas defined in
[Doane/ 1976]. The exact expressions for criteria H8 and &9ke found in the
in the corresponding references, given in the third column.

]

Criteria | Number of bins Reference
H1 1+ logyn [Sturge, 1926]
H2 | 1.87(n —1)%4 [Bendat & Piersol, 1966]
H3 1 4 logy n + logy o [Doane, 1976]
H4 Vn [Tukey & Mosteller, 1977]
Hs | Ans [Scott, 1979]
H6 21(?'}1—5;) [Freedman & Diaconis, 1981
H7 | V2n [Terrell & Scott, 1985]
H8 min. of stochastic complexity [Rissanen, 1992]
H9 mode of log of marginal posterior pg [Knuth, 2006]
H10 | \/n/5 [Cochran, 1954]
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Table 3: Criteria for the selection of bandwidths for ohg¢)(and two (2) dimen-
sions. The parameters in the expressionsaare 1.8 — (1) if n < 200 and
a = 1.5 if n > 200, wherer(1) is the autocorrelation at lag R = 1/2\/7, s
is the standard deviation and IQR is the interquartile raofgbe data. The exact
expressions for the last four criteria can be found in theesmponding references,
given in the third column.

Criteria | hq ho Reference
Cl | (4/3n)Y/5 (1/n)1/6 | [Silverman, 1986]
C2 | (4/3n)Y/° (4/5n)Y/¢ | [Silverman, 1986]
C3 | 1.06an~1/5 an~1/6 [Harrold et al., 2001]
C4 (8\/;1%)1/5 min(s IQR) h1 [Silverman, 1986]
C5 3n 7 1.349 V2hi [Wand & Jones, 1995]
0 Lstage direct plugin |4 [Wand & Jones, 1995]
Cc7 V2hy
c8 Solve-the-equation plug-in i [Sheather & Jones, 1991]
C9 V2h, .
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Table 4: Ranking and scorg of the 5 criteria for b scoring lowest for theeD
and EP estimators for varying lengths of time series from whiteseoand linear

systems.
Criteria | S for ED | Criteria | S for EP
H11 0.25 H9 0.61
H7 0.94 H7 0.62
H8 1.16 H8 0.65
H5 1.20 H10 0.67
H9 1.41 H11l 0.72
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Figures captions

Figure 1: Mear/ (1) as a function ob from 1000 realizations of AR(1) with coef-
ficienty = r(1) = 0.5 and additive Gaussian noise for (a) the ED and (b) the EP
estimator and for data sizes as given in the legend.

Figure 2: (a) Optimal number of bins for differentfor AR(1) systems with
lag one autocorrelation(1) as in the legend. (b) Graph of the optinddbr a range
of log,(n) andr(1). The results in both panels regard the ED estimator.

Figure 3: Mean estimated M| with AD estimator as a functiomdfom 1000
realizations of (a) normal white noise and (b) AR(1), with= 0.5 and normal
input white noise.

Figure 4. (a) Mean estimated MI with the KNN estimator as afiom of n
from 1000 realizations of AR(1) with(1) = 0.5 and normal input white noise for
k as in the legend. The dotted line standsfgr. (b) Graph of the optimat for a
range oflog,(n) andr(1).

Figure 5: Mean estimated MI with the KE estimator as a fumctid/, from
1000 realizations oA R(1) with (1) = 0.5 and normal input white noise for (a)
hi = ho, and (b)h; = v/2ho, andn as in the legend. (c) Graph of the optintal
for a range ofog,(n) andr(1).

Figure 6: (a) Mean estimated MI vsfor the estimators given in the legend
from simulations on AR(1) with-(1) = 0.5 and normal input white noise. For
each estimator the optimal free parameter is consideredHill for ED, H9 for
EP,k = 2 for KNN and C1 for KE. (b) As (a) but for(1) = 0.9.

Figure 7: (a) Optimal number of birisas a function of the time series length
n for the ED estimator from 1000 realizations of the Henon nwalffferent lags,
as given in the legend. (b) Same graph as in (a) but for the iHerap with20%
additive noise. In both plots the dotted lines give the optinumber of bing from
the suggested criterion inl(6) assuming r(1)=0 and r(1)sXieen in the plot. (c)
Mean estimated MI with ED estimator as a functionrdfom 1000 realizations of
the Henon map fob = 32, andn as in the legend. (d) As (c) but for Henon map
with 20% additive noise.

Figure 8: Mean estimated MI with AD estimator as a function-éfom 1000
realizations of the Henon map with no noise in (a) and Rii¥t noise in (b).

Figure 9: (a) Mean estimated MI with KNN estimator as a fumctdf 7 from
1000 realizations of the Henon map, fer= 256 andk as in the legend. (b) As in
(a) but fork = 2 andn as in the legend. (c) As in (a) but for Henon map vty
additive noise.

Figure 10: (a) Mean estimated MI with KE estimator as a furctf 7 from
1000 realizations of the Henon map, far= 512 and bandwidths as in the legend.
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(b) As in (a) but forn = 4096 and bandwidths as in the legend. (c) and (d) are the
same as (a) and (b) respectively but for the Henon map 20ith additive noise.

Figure 11: (a) Mean estimated MI with KE estimator as a fuorcof 7 from
1000 realizations of the noise-free Henon map with= 8192 and nine bandwidth
selection criteria as given in the legend. (b) As (a) butfif;, additive noise.

Figure 12: (a) Mean estimateg and standard deviation as error bar as a func-
tion of b from all time series lengths using the ED estimator on thekdgdslass
system withA = 17,30, 100, as given in the legend. (b) As in (a) but for the EP
estimator.

Figure 13: (a) Mean estimateg and standard deviation as error bar as a func-
tion of n using the AD estimator on 1000 realizations of the MackegsSIsystem
with A = 17,30, as given in the legend. (b) As in (a) (without standard devi-
ations) for additive noise with level0, 40%, as given in the legend. (c) Mean
estimated MI with the AD estimator as a functionofrom 1000 realizations of
the Mackey-Glass witlh = 100, for »n as in the legend.

Figure 14. Mean estimateg) as a function of: using the KNN estimator on
1000 realizations of the Mackey-Glass system with4a)= 17, and (b)A =
30. (c) Mean estimated MI with the KNN estimator as a functionrdfom 1000
realizations of the Mackey-Glass with = 100, for £ as in the legend and =
2048.
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