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Abstract

We study some of the most commonly used mutual information estima-
tors, based on histograms of fixed or adaptive bin size,k-nearest neighbors
and kernels, and focus on optimal selection of their free parameters. We ex-
amine the consistency of the estimators (convergence to a stable value with
the increase of time series length) and the degree of deviation among the es-
timators. The optimization of parameters is assessed by quantifying the de-
viation of the estimated mutual information from its true orasymptotic value
as a function of the free parameter. Moreover, some common-used criteria
for parameter selection are evaluated for each estimator. The comparative
study is based on Monte Carlo simulations on time series fromseveral lin-
ear and nonlinear systems of different lengths and noise levels. The results
show that thek-nearest neighbor is the most stable and less affected by the
method-specific parameter. A data adaptive criterion for optimal binning is
suggested for linear systems but it is found to be rather conservative for non-
linear systems. It turns out that the binning and kernel estimators give the
least deviation in identifying the lag of the first minimum ofmutual informa-
tion from nonlinear systems, and are stable in the presence of noise.
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1 Introduction

Mutual information (MI) is a nonlinear measure used in many aspects of time series
analysis, best known as a criterion to select the appropriate delay for state space
reconstruction [Kantz & Schreiber, 1997]. It is also used todiscriminate different
regimes of nonlinear systems [Hively et al., 2000; Naa et al., 2002; Wicks et al.,
2007] and to detect phase synchronization [Schmid et al., 2004; Kreuz et al., 2007].
Besides nonlinear dynamics, it is used in various statistical settings, mainly as a
distance or correlation measure in data mining, e.g. in independent component
analysis and feature-based clustering [Tourassi et al., 2001; Priness et al., 2007].

Any estimate of MI, either between two variables or as a function of delay for
time series, is (almost always) positively biased [Treves &Panzeri, 1995; Moddemeijer,
1989; Paninski, 2003; Micheas & Zografos, 2006]. For numerical-valued vari-
ables, MI increases with finer partition depending on the underlying distribution
and the sample size. Beyond the classical domain partitioning, other schemes
have been used to estimate the densities inherent in the measure of mutual in-
formation, e.g. kernels, B-splines andk-nearest neighbors [Moon et al., 1995;
Diks & Manzan, 2002; Daub et al., 2004; Kraskov et al., 2004].

There are generally few analytic results on MI. Expressionsof MI in terms of
the correlation coefficient are obtained for some known distributions, e.g. Gaussian
and Gamma distribution [Pardo, 1995; Hutter & Zaffalon, 2005]. Some statistical
results on the mean, variance and bias of the MI estimator using fixed partitioning
can be found in [Roulston, 1997; Abarbanel et al., 2001], butthe distribution of
any MI estimator is not known in general. For chaotic systemsin particular, the
discontinuity of the density function of their variables does not allow for an ana-
lytic derivation of the statistics of MI estimators. Therefore, comparisons of MI
estimators relies on simulation studies. In some studies the estimators are tested
in identifying correctly the lag of the first minimum of MI [Moon et al., 1995;
Cellucci et al., 2005]. Another performance criterion is the bias of estimators in
the case of Gaussian processes, where the true MI is known [Cellucci et al., 2005;
Trappenberg et al., 2006].

MI estimation involves one and two dimensional density estimation. Density
estimation has been studied extensively and different methods have been suggested
and compared in the statistical literature, e.g. see [Scott, 1979; Freedman & Diaconis,
1981; Silverman, 1986], but it is still to be investigated whether these methods
and the suggested criteria for the selection of method specific parameters are also
suitable for MI estimation. This is the main objective of this study. MI estima-
tors have also been compared to other linear or nonlinear correlation measures
[Palus, 1995; Steuer et al., 2002; Daub et al., 2004], but we do not pursue this here
as direct comparison is not possible due to the different scaling of the measures,
even after normalization. There are some comparative studies on the MI estima-
tors and the selection of their parameters, as well as on their performance on both
linear and nonlinear dynamical systems [Wand & Jones, 1993;Steuer et al., 2002;
Nicolaou & Nasuto, 2005; Khan et al., 2007]. Here, we extend these studies, we
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evaluate some of the most commonly used MI estimators, examine their consis-
tency and optimize the selection of their parameters including criteria for parameter
selection suggested in the literature. As the estimation depends on the underlying
time series we use Monte-Carlo simulations on systems of white noise of different
distributions, stochastic linear systems and dynamical non-linear systems (maps
and flows of varying complexity). The performance of each estimator is examined
with respect to the time series length, the distribution of noise and the noise level
in the systems.

We study here the performance of three types of estimators, i.e. estimators
based on histograms (with fixed or adaptive bin size),k-nearest neighbors and
kernels. All estimators vary in the estimation of the densities at local regions and
we investigate the optimal parameter for the determinationof the two-dimensional
partitioning. Based on the simulation results, we propose optimal parameters for
each MI estimator with regard to the complexity of the system, the observational
noise level and the time series length.

The structure of the paper is as follows. In Sec. 2, we briefly discuss the estima-
tors considered in this study and in Sec. 3 we present the evaluation procedure and
the simulated systems. In Sec. 4, we give quantitative results on the dependence of
the estimators on the parameters, time series length and noise, we propose optimal
parameter selection and compare the different MI estimators. Finally, in Sec. 5 we
discuss the results and draw conclusions.

2 Mutual Information Estimators

MI is a measure of mutual dependence between two random variables and quanti-
fies the amount of uncertainty about one variable reduced when knowing the other.
The MI of two continuous random variablesX,Y has the form

I(X,Y ) =

∫

X

∫

Y
fX,Y (x, y) loga

fX,Y (x, y)

fX(x)fY (y)
dxdy, (1)

wherefX,Y (x, y) is the joint probability density function (pdf) ofX andY , whereas
fX(x) andfY (y) are the marginal pdfs ofX andY , respectively. The units of in-
formation ofI(X,Y ) depend on the basea of the logarithm, e.g. bits for the base
2 logarithm and nats for the natural logarithm.

Assuming a partition of the domain ofX andY , the double integral in Eq.(1)
becomes a sum over the cells of the two-dimensional partition

I(X,Y ) =
∑

i,j

pX,Y (i, j) loga

pX,Y (i, j)

pX(i)pY (j)
, (2)

wherepX(i), pY (j), andpX,Y (i, j) are the marginal and joint probability mass
functions over the elements of the one and two-dimensional partition. In the limit
of fine partitioning the expression in Eq.(2) converges to Eq.(1). This may partly
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justify the abuse of notation of MI for the continuous and thediscretized vari-
ables. It is alwaysI(X,Y ) ≥ 0, with equality holding for independent vari-
ables, andI(X,Y ) ≤ H(X) ≤ loga n (Jensen inequality), whereH(X) =
∑n

i=1 p(xi) loga p(xi) is the Shannon entropy ofX. For a time series{Xt}n
t=1,

sampled at fixed timesτs, MI is defined as a function of the delayτ assuming the
two variablesX = Xt andY = Xt−τ , i.e. I(τ) = I(Xt,Xt−τ ).

The Shannon entropy is always misestimated due to finite sample effects [Grassberger,
1988; Kantz & Shürmann, 1996], but we do not discuss MI in terms of entropies
here as the estimation of MI boils down to the estimation of the densities in Eq.(1)
or probabilities in Eq.(2). The estimators of MI, denotedI(τ), differ in the estima-
tion of the marginal and joint probabilities or densities, using binning [Fraser & Swinney,
1986; Darbellay & Vajda, 1999], kernels [Silverman, 1986; Moon et al., 1995] or
correlation integrals [Diks & Manzan, 2002],k-nearest neighbors [Paninski, 2003;
Kraskov et al., 2004],B-splines [Daub et al., 2004] or the Gram-Charlier polyno-
mial expansion [Blinnikov & Moessner, 1998]. All these estimators depend on at
least one parameter. We present bellow the three first estimators that are most
widely used.

2.1 Binning estimators

The most common MI estimator is the naive equidistant binning estimator (ED)
that regards the partition of the domain of each variable into a finite numberb
of discrete bins (equidistant partitioning). The probability at each cell or bin is
estimated by the corresponding relative frequency of occurrence of the samples
in the cell or bin. The number of bins for each variable is the same, so that the
parameter to be optimized is the number of bins for the partition or equivalently
the bin width. The computation of this MI estimator is straightforward as it is
directly estimated from the one and two dimensional histograms.

A second binning estimator is the equiprobable binning estimator (EP), which
is derived by partitioning the domain of each variable inb bins of the same occu-
pancy (equiprobable partitioning) but different width. The equiprobable partition-
ing actually transforms the sample univariate distribution to discrete uniform with
b components minimizing the effect of the univariate distribution on the estimation.

Fraser & Swinney [1986] suggested an estimator using an adaptive partition-
ing. This method constructs a locally adaptive partition ofthe two-dimensional
plane. It starts with a partition of equiprobable bins for each variable and makes
finer partition in areas where the joint probability densityis non-uniform until the
joint distribution on the cells is approximately uniform. The final partition is finer
in dense regions whereas less occupied regions are covered with larger cells. It
was found in [Palus, 1993; Cellucci et al., 2005] that this complex algorithm does
not substantially improve the binning estimator and requires large data sets to gain
accuracy; therefore it is not included in the current evaluation.

A different estimator making use of adaptive partitioning (AD) is proposed
by Darbellay & Vajda [1999]. The partition consists of rectangles specified by
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marginal empirical quantiles, which are not uniform in the sense that they are not
made of a grid of vertical and horizontal lines, irrespectively of whether these lines
are equally spaced or not. The AD estimator builds such a partition in a way
that it achieves conditional independence on the rectangles of the partition. The
advantage of this estimator is that it is data-adaptive and does not a priori determine
the number of bins in the partition. The AD estimator has a direct dependence on
n, which determines the roughness of the partitioning in a somehow automatic
way. In the abundance of data, the AD estimator reaches a veryfine partition that
satisfies the independence condition in each cell, so that the total number of cells is
very large and analogous to a fixed-partition with a respectively largeb. Note that
the dependence of AD onn is not comparable to that of the fixed-bin estimators
because it involves a change of partitioning withn.

For any binning scheme, the MI estimatorI(τ) is given by Eq.(2) where the
variables are(X,Y ) = (Xt,Xt−τ ), the sum is referred to the partition of the two-
dimensional domain of(Xt,Xt−τ ) andpXt , pXt−τ , pXt,Xt−τ are the marginal and
joint probability distributions defined for each cell of thepartition.

2.2 k-nearest neighbor estimator

Kraskov et al. [2004] proposed an MI estimator (KNN) that uses the distances of
k-nearest neighbors to estimate the joint and marginal densities. For each refer-
ence point from the bivariate sample, a distance length is determined so that the
k nearest neighbors are within this distance length. Then thenumber of points
within this distance from the reference point gives the estimate of the joint density
at this point and the respective neighbors in one-dimensiongive the estimate of
the marginal density for each variable. The algorithm uses discs (or squares de-
pending on the metric) of a size adapted locally and then usesthe corresponding
size in the marginal subspaces, so in some sense the estimator is data adaptive.
Still, it involves as a free parameter the number of neighbors k. Note that a large
k regards a smallb of the fixed binning estimators. However, the estimator does
not use a fixed neighborhood size and therefore there is not a clear association of
k andb. The KNN estimator is data efficient, adaptive, has minimal bias and is
recommended for high-dimensional data sets [Kraskov et al., 2004]. It requires an
additional computational cost for the search of thek neighbors.

2.3 Kernel density estimator

The kernel density MI estimator (KE) uses a smooth estimate of the unknown prob-
ability density by centering kernel functions at the data samples; kernels are used
to obtain the weighted distances [Silverman, 1986; Moon et al., 1995]. The kernels
essentially weigh the distance of each point in the sample tothe reference point de-
pending on the form of the kernel function and according to a given bandwidthh,
so that a smallh produces details in the density estimate but may loose in accuracy
depending on the data size.
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KE estimator has two free parameters, the bandwidthh1 for the marginal den-
sities of X and Y , and the bandwidthh2 for the joint density of(X,Y ). The
bandwidthh1 is related tob of the fixed binning estimators by an inverse relation,
e.g. a rectangular kernel assigns a bin centered at the reference point. Its advan-
tage over binning estimators is that the location of the binsis not fixed. Among the
different kernel functions, Gaussian kernels are most commonly used and we use
them here as well. A kernel density estimator with Gaussian kernel function and a
fixed bandwidthh at a pointx ∈ Rd is

f(x) =
1

(2π)d/2hddet(S)1/2

n′

∑

i=1

exp

(

−(x − xi)
τS−1(x − xi)

2h2

)

, (3)

whereS is the data covariance matrix andn′ is the number of thed-dimensional
vectors [Moon et al., 1995].

3 Simulation Setup

The evaluation of the estimators is assessed by Monte-Carlosimulations on white
noise, linear systems and chaotic systems of different complexity, listed in Table 1.
===============================================
TABLE 1 *** To be placed here ***
===============================================
A Gaussian and a skewed Gamma distribution are used to generate white noise time
series, whereas for linear systems, the autoregressive model AR(1) and autoregres-
sive moving average ARMA(1,1) are used with coefficients as given in Table 1,
assuming both Gaussian and Gamma input white noise. The non-linear chaotic
systems are the Henon map [Henon, 1976]

xt = 1 − ax2
t−1 + bxt−2,

the Ikeda map [Ikeda et al., 1980]

xt = a + b(xt−1 cos ut−1 − yt−1 sin ut−1)

yt = b(xt−1 sin ut−1 + yt−1 cos ut−1),

whereut = κ− η
1+x2

t +y2

t
, and the Mackey-Glass differential system [Mackey & Glass,

1977]
dx

dt
=

0.2xt−∆

1 + x10
t−∆

− 0.1xt

where the delay∆ accounts for the system complexity. We use here∆ = 17 and
∆ = 30 for low-dimensional chaos of fractal dimension about 2 and 3, respectively,
and∆ = 100 for high-dimensional chaos of fractal dimension about 7. Observa-
tional white noise at different levels is also assumed for the chaotic systems, given
as a percentage of the standard deviation of the noise-free data.
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Different lengthsn for the generated time series from each system are con-
sidered as follows. For white noise and linear systems,n is given in powers of2
from 5 to 13 and for nonlinear systems from8 to 13. I(τ) is computed using all
methods on1000 realizations for each system, noise type or level, and time series
length. As all linear systems are of order1, MI is computed only for lag1. For the
nonlinear systems,I(τ) is computed up to the lagτ for which I(τ) levels-off. For
the Mackey-Glass system we compute the lag of the first minimum of I(τ) and
specifically for∆ = 100 the lag that MI levels-off because it does not exhibit a
distinct minimum. For each estimator,I(τ) is computed for a wide range of values
of the free parameter and for specific values determined by standard criteria, which
are specified below.

For the binning estimators ED and EP we set the number of bins to b =
2, 4, 8, 16, 32, 64. We also consider10 commonly used criteria forb, given in Ta-
ble 2.
===============================================
TABLE 2 *** To be placed here ***
===============================================
For the choice ofk of k-nearest neighbor estimator KNN, Kraskov et al. [2004]
propose to usek = 2 to 4 (these are also used in [Kreuz et al., 2007; Khan et al.,
2007]). However for real world data one should investigate also larger values
of k. Therefore we use in the simulations a wide range ofk values as forb,
k = 2, 4, 8, 16, 32, 64.

Among different kernel functions used in the literature fordensity estimation,
and for MI estimation in particular, the common practice is to use the Gaussian
kernel in conjunction with the ”Gaussian” bandwidth of Silverman [1986]

h =

(

4

(d + 2)n′

)1/(d+4)

(4)

(n′ is the number of thed-dimensional vectors) or multiples of it [Harrold et al.,
2001; Steuer et al., 2002; Khan et al., 2007]. In the estimation of mutual informa-
tion with kernels, the range of bandwidths is usually not searched and a bandwidth
is selected according to a criterion such as the ”Gaussian” bandwidth [Moon et al.,
1995; Steuer et al., 2002]. A multiple bandwidth selection scheme for the test for
independence is proposed in [Diks & Panchenko, 2008]. Analytic and simulation
studies have shown that the choice of the bandwidth is crucial and depends on the
data size [Bonnlander & Weigend, 1994; Jones et al., 1996]. Therefore we con-
sider a wide range for the bandwidthh1 for one dimension andh2 for two dimen-
sions, as forb andk. Specifically, forh1 we take15 values in[0.01, 2] at a fixed
base-2 logarithmic step and seth2 = h1 andh2 =

√
2h1. The second form forh2

accounts for the scaling of the Euclidean metric inℜ2, which we use in the simu-
lations. We also consider some well-known criteria for the choice of bandwidths,
given in Table 3.
===============================================
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TABLE 3 *** To be placed here ***
===============================================
The three first criteria define bandwidth for both one and two-dimensional space.
For the other criteria we seth2 equal either toh1 or

√
2h1.

The true (theoretical) MII(τ) is not known in general. However, for Gaussian
processesI(τ) is given in terms of the autocorrelation functionρ(τ) as

I(τ) = −0.5 log(1 − ρ2(τ)). (5)

In the lack of the true MI for the other systems, we assume consistency of the es-
timators and use the asymptotic value ofI(τ) computed on a realization of size
n = 107. In this computation, we set for the ED and EP estimatorsb = 64 (we
also computed MI forb up to 256, however MI did not substantially differed),
for KNN estimatork = 2, and for the KE estimatorh1 = 0.01 andh2 = h1.
Similar approach for approximating the true MI is used in [Harrold et al., 2001;
Cellucci et al., 2005]. We denoteI∞ the true or asymptotic MI and use it as refer-
ence to compute the accuracy of the different estimators.

We evaluate the estimators and their parameters separatelyfor white noise and
linear systems, for the nonlinear maps Henon and Ikeda, and for the Mackey-Glass
system. First, we investigate the dependence of the estimators on their free param-
eter for white noise and linear systems and for different time series lengths giving
a total ofL = 126 cases (14 systems and 9 time series lengths). For each estima-
tor, we compute the mean estimated MIĪc(l) from the1000 realizations for each
tested value of the free parameter denoted byc, where l denotes the system case and
l = 1, ..., L. Further, for eachl we compute the deviationdIc(l) = |Īc(l)− I∞(l)|,
whereI∞(l) is either the true MI (for Gaussian processes) or the asymptotic value
computed from each estimator. All estimators converged to the same MI under
proper parameters as obtained forn increasing up to107. Given the asymptotic MI
I∞(l), the optimal parameter values for each casel (system and time series length)
is obtained from the minimum deviationdIc(l) with respect toc. The estimators
are then compared for their optimal parameters by computingthe divergence of the
meanI(τ) of each estimator fromI∞(l) for all cases.

For the discrete nonlinear systems, there areL = 48 cases (8 maps including
different noise levels and6 time series lengths). Here, a singleI∞ for each system
cannot be obtained as the MI estimate forn increasing up to107 does not converge
and the MI forn = 107 is still dependent on parameter selection and varies also
across estimators. Therefore, for each system we set as asymptotic valueI∞ of the
estimator the MI computed forn = 107 and for a very fine partition. So here, the
interest is in the dependence of each estimator on the free parameter and the rate
of convergence towards the asymptotic value.

For the nonlinear flows derived from the Mackey-Glass systemfor ∆ = 17, 30
(noise-free and with noise), we concentrate on the first minimum of MI and com-
pute the lagτ0 of the first minimum of MI for each of the1000 realizations of each
system. For∆ = 100 there is no clear minimum of MI and it follows a rather
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exponential decay. Therefore we compute instead the lagτ0 for which MI levels
off according to a criterion for levelling. In order to compare the estimators, we
examine the consistency of each estimator withn, the dependence of the estima-
tion of τ0 on the parameter selection and the variance of the estimatedlagsτ0 from
all cases.

4 Results

4.1 Results on white noise and linear systems

The MI for lag oneI(1) from the binning estimators ED and EP increases always
with the number of binsb. Thus for white noise whereI∞(1) = 0 the best choice
for b is 2 that gives the smallest positiveI(1). For the linear processes,I(1) de-
creases with the time series lengthn for eachb, as shown in Fig. 1 for the ED and
EP estimates ofI(1) from an AR(1) process.
===============================================
Figure 1 *** To be placed here ***
===============================================
We note that for sufficiently largeb, I(1) converges withn to the true value
I(1) = I∞(1) given in (5). On the other hand, for smallb, I(1) underestimates
I∞(1) depending again onn. Thus the optimalb that gives the smallestdIc(l) and
estimates bestI∞(1) depends onn.

We have observed thatb depends also on the autocorrelation functionr(τ) of
the linear system. To investigate further this dependence we computed ED and EP
estimates ofI(1) for a wide range ofr(1) values of an AR(1) process. We found
that the optimalb (found by the smallestdIc(l)) increases smoothly withn and
r(1), as shown in Fig. 2.
===============================================
Figure 2 *** To be placed here ***
===============================================
A search for a parametric fit of optimalb regarding the graph of Fig. 2b resulted in
the form

b = αnβeγρ2

(6)

where the coefficientsα, β, γ take similar values for the ED and EP estimators
(0.65,0.25,2.11 and 0.76,0.19,1.91 respectively).

Most of the criteria in Table 2 tend to overestimateb. To evaluate the perfor-
mance of the 10 criteria in Table 2 and the proposed criterionin Eq.(6), we compute
the total scoreSc of each criterionc, wherec = 1, . . . , 11, for all L = 126 tested
systems and time series lengths, as

Sc =

∑L
l=1(Īc(l) − I∞(l))2

∑L
l=1(

¯̄Ic(l) − I∞(l))2
(7)
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where for each casel, ¯̄Ic(l) = 1
11

∑11
c=1 Īc(l) is the grand mean of the means

from all criteria. According to the scoreSc, the proposed criterion in Eq.(6) for the
optimalb, denoted H11, outperforms the other criteria when ED estimator is used,
as shown in Table 4.
===============================================
Table 4 *** To be placed here ***
===============================================
For the EP estimator, criterion H9 scores lowest and H11 is ranked fifth but the
differences in the scores of the best five criteria are comparatively small.

For certain bivariate distributions and Gaussian processes, it was found that
the AD estimator was precise in estimating MI and converged fast to the true MI
[Kraskov et al., 2004; Trappenberg et al., 2006]. We confirmed this result by our
simulations on the white noise and linear systems with the remark that the con-
vergence toI∞ is rather slow and is succeeded at largen, as shown in Fig. 3.
===============================================
Figure 3 *** To be placed here ***
===============================================

The number of nearest neighborsk in the KNN estimator determines the rough-
ness of approximation of the density functions in Eq.(1), which corresponds to the
roughness of the partitioning in Eq.(2). The simulations showed that for white
noise the MI estimated by KNN is close to zero for a long range of k and the devi-
ation from zero decreases ask approachesn/2 (as reported also in [Kraskov et al.,
2004]). For the linear systems the optimalk is rather small. The dependence of the
KNN estimator onk holds mainly for small time series as for largen the estimated
MI converges toI∞ for anyk, as shown in Fig. 4a.
===============================================
Figure 4 *** To be placed here ***
===============================================
Still, the convergence is slower for largerk. In any case, a highly accurate MI is at-
tained with smallk for all but very small time series. For example, for an accuracy
threshold of10−4 in estimatingI∞, i.e. |I(1)−I∞| < 10−4, the optimal choice for
k is 2 in almost all cases except for very smalln andr(1), as shown in Fig. 4b. Note
that even for white noise time series of small length,k ≤ 8 reaches this accuracy
threshold (the peak in the graph of Fig. 4b is forn = 25 andr(1) = 0).

For the two dimensional bandwidthh2 we have consideredh2 = h1 and
h2 =

√
2h1 and studied the dependence of the estimated MI onh1 andh2 across

a large range of bandwidths for white noise and linear systems. As for k of the
KNN estimator, MI converges withn and faster for smallerh1. For h2 = h1 the
convergence withn is correctly towardsI∞ (see Fig. 5a), but forh2 =

√
2h1 MI

decreases withh1 and becomes negative (see Fig. 5b).
===============================================
Figure 5 *** To be placed here ***
===============================================

10



This result advocates the use of the same bandwidth for the kernel estimates
of the marginal and joint distributions. We have also investigated whether there
is dependence ofh1 on r(1) andn. As for k of the KNN estimator, there does
not seem to be any systematic dependence. Using the same threshold accuracy in
estimatingI∞, the smallest optimalh1 is always at a low level for allr(1) andn
and there is no apparent pattern that would suggest a particular form of dependence
of h1 onr(1) or n, as shown in Fig. 5c. The sudden jumps in the graph of Fig. 5c is
due to numerical discrepancies around the chosen thresholdfor differenth1 values.

In order to evaluate the criteria for selectingh1 andh2 in Table 3, we computed
for each criterion the score defined in Eq.(7) for all cases. The five optimal criteria
and their scores for varying lengths of time series from white noise and linear
systems are C1 (0.85), C3 (0.94), C2 (0.96), C4 (1.57) and C9 (1.67). The simplest
criteria turned out to score lowest with best being the ”Gaussian” rule of Silverman
C1 (see also Eq.(4)).

Summarizing the results on white noise and linear systems, it turns out that
fixed binning estimators are the most dependent on the free parameter, the number
of binsb, whereas for KNN and KE estimators a small number of neighbors k and
bandwidthh1, respectively, turns out to be sufficient for all but very small time se-
ries lengthn and weak autocorrelationr(τ). In such cases, binning estimators can
approximateI∞ better with a relatively smallb and we provided an expression for
this involving n andr(1). All estimators are consistent but converge at different
rates to the true or asymptotic MII∞, as shown in Fig. 6 for the AR(1) system with
weak and strong autocorrelation.
===============================================
Figure 6 *** To be placed here ***
===============================================

In general, the KNN estimator converges fastest. To this respect, the parameter-
free AD estimator would be the second best choice after the KNN estimator be-
cause it showed a slower convergence rate. KE estimator has about the same
convergence rate as AD and is not significantly affected by parameter selection
(for h2 = h1), however it would not be preferred due to its computationalcost.
The estimation accuracy of each estimator is quantified by the indexdIcopt =
∑L

i=1(Īcopt(l) − I∞(l))2, whereL = 126 and copt is the optimal free parame-
ter found in the simulations above, i.e. H11 forb in ED and H9 forb in EP,k = 2
for KNN, and C1 for the bandwidths in KE. The smallest indexdIcopt = 0.254
was obtained by ED, followed by KE (0.302) and KNN (0.496), whereas AD and
EP scored worse (1.865 and 2.231, respectively). Our numerical analysis on the
linear systems and noise showed that for the three aspects ofestimation consid-
ered, i.e. parameter dependence, rate of convergence, and accuracy of estimation,
no estimator ranks first but KNN and KE turn out to perform overall best.
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4.2 Results on nonlinear maps

In terms of chaotic systems, let us first note that MI can be viewed as a measure
on the reconstructed attractor projected onℜ2, i.e. on points[xt, xt−τ ]

′. Due to
the fractal structure in all scales of the chaotic attractor, I(τ) defined in terms
of a partition (see Eq.(2)) increases with finer partition towards the limit ofI(τ)
given in Eq.(1) for the continuous space. On the other hand, for the estimation of
entropy, and particularly the Kolmogorov-Sinai or metric entropy, it is postulated
that there exists a so-called generation partition that gives the expected entropy
value and further refinement to this partition does not increase further the computed
entropy [Walter, 1975; Cohen & Procaccia, 1985]. However, with regard to the
Shannon entropy, we observed that we can only get an upper limit of MI from the
KNN estimator withk = 2 as the estimation algorithm does not allow for a finer
partition, whereas increasingb for the binning estimators or decreasingh1 for the
KE estimator within the tested range does not seem to lead to convergence of MI.

The trueI(τ) in Eq.(1) is not known since the joint distribution of[xt, xt−τ ]′

is also not known. This prevents the direct comparison of theestimators and the
search for optimal free parameters. The presence of noise inchaotic time series
sets a limit to the scale where fractal details can be observed and consequently to
the finiteness of the partition when estimatingI(τ). In that case, an asymptotic
I∞ does exist and the performance of the estimators in terms of the free parameter
and time series length can be compared, also for different noise levels. In the
following, we try to delineate the differences among estimators in estimatingI∞
and particularly in converging toI∞ with respect to the time series length and their
free parameter.

The discussion above would suggest that the estimated MI should always in-
crease as the partition gets finer, but in practice this requires a sufficient time series
lengthn. For the binning estimators the optimal number of binsb, i.e. theb giv-
ing largest MI and minimum|I∞(τ) − Īc(τ)|, is not always the largest (limited to
b = 64 in our study) but increases withn, as shown in Fig. 7a for the ED estimator
and the noise-free Henon map.
===============================================
Figure 7 *** To be placed here ***
===============================================
In the same figure the limits for optimalb from the suggested criterion H11 in
Eq.(6) (lower for r(1) = 0 and upper for r(1) = 1) are shown with dotted lines and
are well beyond the optimal bins found for small lags. For this system,I(τ) de-
creases smoothly withτ and therefore the optimalb decreases as well. Forτ = 10,
I(τ) levels off for smalln and thenb ≃ 2 is optimal, but asn increases more bins
give indeed larger values of MI. Thus asn increases weak MI for largeτ becomes
significant and can be distinguished from the plateau of independence only when a
largerb is used for the binning estimator. However, for a fixedb MI converges to
I∞ with n, even for noise-free data (Fig. 7c).

With the addition of noise,I(τ) decreases and the optimal number of bins
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drops, as shown in Fig. 7b and d respectively for20% additive noise on the Henon
time series. The stronger the noise component is, the more the deterministic struc-
ture is masked and the faster the estimated MI levels towardszero with the lag. For
the noisy chaotic data, the pattern of the dependence of the binning estimates of
MI to n andb is closer to the one observed for the linear systems. For example,
the range of optimalb in Fig. 7b is at the level ofb given by the suggested criterion
H11 for r(1) ranging from 0 to 1. The results on EP estimator are similar.

In line with the ED and EP estimators, the AD estimator does not converge
with n to I∞ for the nonlinear systems unless the fine partition is limited by the
presence of noise, as shown in Fig. 8 for the Henon map.
===============================================
Figure 8 *** To be placed here ***
===============================================
The increase ofn directs the algorithm of AD to make a finer partition which
results in a largerI(τ). The effect ofn on the adaptive estimator decreases with
the increase of the noise level.

As pointed earlier, there is a loose relationship between the number of nearest
neighborsk in the KNN estimator and the number of binsb in the binning esti-
mators, i.e. smallk corresponds to largeb. The lower limitk = 1 corresponds
to the finest partition for the given data, and the analogueb could be formidably
large and is not reached in our study asb goes up to 64 (the same stands forb up to
256). Thus direct comparison to binning estimators whenk is very small cannot be
drawn. For noise-free chaotic time series, very fine partitions are sought and this
agrees with the suggestion in Kraskov et al. [2004] to use small k at the order of
3, which was also used in other simulation studies [Kreuz et al., 2007; Khan et al.,
2007]. In Fig. 9a, we show for the noise-free Henon map thatI (τ) increases with
decreasingk.
===============================================
Figure 9 *** To be placed here ***
===============================================
For smalln, a large value ofk gives a poor estimation of the densities and conse-
quently ofI (τ). For a fixedk, MI increases withn (see Fig. 9b). Assuming a fixed
k the effect ofn on the KNN estimator is large similarly to the effect ofn on the
AD estimator as there in no convergence of MI withn, contrary to the fixed-bin
estimators. In agreement to the binning estimators, the MI from the KNN estimator
decreases with the noise level. Therefore the dependence ofKNN estimator onn
is smaller andI(τ) converges faster toI∞ with n (Fig. 9c). Further, for largern
the estimation is the same regardless of the value ofk.

The dependence of the KE estimator on the bandwidthh1 is similar to the
dependence of the KNN estimator onk. As shown in Fig. 10a and b for the noise-
free Henon map,I (τ) increases with the decrease ofh1 ranging from 0.01 to 2.
===============================================
Figure 10 *** To be placed here ***
===============================================
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We note that such extremely large values ofI (τ) for very small bandwidthh1 do
not occur by any other estimator. Given that the KNN estimator for k = 1 sets an
upper limit for the estimatedI (τ) on the given time series, largerI (τ) obtained
by the KE estimator are superficially overflown estimates dueto the use of an
unsuitably smallh1 for the given time series. This systematic bias for very small
h1 is more pronounced with the addition of noise as it persists at the same level
for largerτ (see Fig. 10c). For the noisy data,I (τ) decreases and differences with
respect to the partitioning parameters are smaller, a feature we observed also with
the other estimators (see Fig. 10c and d). Also, the estimated I(τ) is rather stable
to the change ofn.

Regarding the9 criteria for selectingh1 (and at casesh2, see Table 3), the esti-
mated bandwidths vary with the criterion but within a small range, e.g. forn = 256
they are bounded in[0.13, 0.35] except C3 that always gives larger bandwidths and
in this caseh1 ≃ 0.7). Deviations of the estimated bandwidths hold for largern
but at smaller magnitudes, e.g. forn = 8192, they are bounded in[0.03, 0.18] and
for C3h1 ≃ 0.37). All criteria depend onn in a similar way and estimate smaller
bandwidths asn increases giving largerI (τ) (see Fig. 11a forn = 8192).
===============================================
Figure 11 *** To be placed here ***
===============================================
When noise is added to the time series, the estimatedI (τ) using different band-
width selection criteria converge and are rather stable to the change ofn (see
Fig. 11b).

Contrary to linear systems, for noise-free nonlinear maps,the estimated MI
does not converge to an asymptoticI∞ and even for very large time series the MI
values computed by different estimators vary, as we tested for n = 107. For in-
creasingn, a finer partition gives larger MI regardless of the selectedestimator.
The closest approximation to the finest partition for a largen is succeeded by the
KNN estimator using a very smallk, sayk = 2 for n = 107. This turned out to be
indeed an upper bound of the estimated MI for largen. For the other estimators,
restrictions to the partition resolution, i.e. smallesth1 for KE and largestb for the
binning estimators, bound the estimated MI to smaller values. For example, bins
up tob = 256 for ED and EP estimators underestimate MI forn = 107, meaning
thatb has to increase towards computationally prohibitive largemagnitudes to suc-
ceed an adequately fine partition for this data size. In the same way, the bandwidth
h1 has to decrease accordingly withn and for largen the KE estimator turns out to
be computationally ineffective. The presence of noise setsa lower limit to the par-
tition resolution and allows for an asymptotic MI valueI∞ to which all estimators
converge withn for suitably fine partition.

The results on the different estimators were only given for the Henon map in
order to facilitate comparisons, but qualitatively similar results are obtained from
the same simulations on the Ikeda map.
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4.3 Results on nonlinear flows

When using MI on nonlinear flows the interest is often in extracting the lagτ0 of
the first minimum of MI. We examine the estimate ofτ0 with the different MI es-
timators on the Mackey-Glass system for delays∆ = 17, 30 and100 that regard
increasing complexity of correlation dimension being roughly 2,3 and 7, respec-
tively [Grassberger & Procaccia, 1983].

The simulations using the ED and EP estimators showed that the sameτ0 is
estimated for allb, all n and noise levels, and for∆ = 17 and ∆ = 30. For
∆ = 100 we estimated the lag for which MI levels off and there was somevariation
in the selection ofτ0 (see Fig. 12).
===============================================
Figure 12 *** To be placed here ***
===============================================
AlthoughI (τ) increases withb, τ0 does not vary withb. Moreover, the estimate of
τ0 is stable withn and the addition of noise.

AD estimator is also not affected byn, when computing the lag of the mini-
mum MI τ0 in the Mackey-Glass system (see Fig. 13a).
===============================================
Figure 13 *** To be placed here ***
===============================================
Addition of noise does not affect the meanτ0, as shown in Fig. 13b. From sim-
ulations on the Mackey-Glass system with∆ = 100 we observe that the mean
estimated lag that MI levels off, holds for increasingn (see Fig. 13c) and addition
of noise does not affect it.

The estimation ofτ0 using the KNN estimator on the Mackey Glass systems
varies more withn andk than for the binning estimators, as shown in Fig. 14a and
b.
===============================================
Figure 14 *** To be placed here ***
===============================================
With the addition of noise, the variance of the estimatedτ0 decreases with respect
to k, and the mean is rounded to the same integer for allk. For the Mackey Glass
system with∆ = 100 we observed that there is consistency withk andn, with MI
for all k having the same shape and therefore giving the same lag for levelling off
(see Fig. 14c).

The mean estimatedτ0 using the KE estimator on realizations of each of the
three Mackey-Glass systems is stable against changes in thetime series length and
bandwidth as for the binning estimators.

Our simulations showed that all estimators identify sufficiently τ0 as the shape
of the MI function is not affected significantly byn or by the addition of noise. ED
and KE estimators are the estimators of choice for this task,as they give smaller
variation in the estimation ofτ0 compared to the other estimators.

15



5 Discussion

MI estimators are sensitive to their free parameter, with binning estimators (ED and
EP) being the most affected. There is a loose correspondenceamong the different
free parametersb, k andh1 depending also on the time series length. Thus the
differences in the performance of the estimators can be explained to some degree by
the coarseness of the partition as determined by the free parameter. The choice ofb
for the binning estimators determines the bin size of the partition. The analogue of
the bin size for the KNN estimator is the size of neighborhoods given by the number
of neighborsk and for the KE estimator is the size of the efficient support ofthe
kernel approximation given by the bandwidthh1 (andh2). The simulation results
have quantified the correspondence of the different free parameters and showed that
for large time series, a suitable refined partition can be easily accommodated by a
very smallk or h1, whereas for the binning estimators the requirement for a very
largeb renders the binning estimator computationally ineffective. To this respect,
the KNN estimator adapts easily to a refined partition by setting, say,k = 2, as
does the adaptive binning estimator (AD) that has no free parameter, whereash1

has to be further investigated at ranges of small values.
The optimization of the parameters of the estimators is verycrucial, even more

than the choice of the estimator. Therefore, we focused on estimating the opti-
mal free parameter of each estimator in order to fairly evaluate the estimators. For
linear systems, we evaluated also different selection criteria for the optimal free
parameter and based on the simulation study we proposed for the fixed-binning
estimators the optimalb as a function of the autocorrelation and the time series
lengthn. The parameter-free AD estimator tends to overestimate MI compared to
the other estimators, indicating that the in-build partition algorithm of AD termi-
nates at a very fine partition. The KNN estimator turns out to be the least sensitive
to its free parameter. For example,k = 2 that gives a very fine partition does not
deviate much for smaller time series where largerk are more appropriate. Our
simulation results on the linear systems have shown that theKE estimator depends
less than the binning estimators on the free parameter for the selected ranges ofh1

andb, respectively.
For noise-free nonlinear systems, all estimators lack consistency, i.e. the es-

timated MI does not converge withn to an asymptotic value. Therefore, optimal
parameter cannot be derived for these systems. The optimal parameter values found
for the linear systems tend to give conservative estimates of MI for the nonlinear
systems, for which a finer partition is required. This is accommodated by a smallk
in the KNN estimator. Indeed the simulation study on the different chaotic systems
has shown that the KNN estimator has the least variance with the free parameterk
than all other estimators. For noisy nonlinear systems, theMI from all estimators
converge withn to an upper limit set by noise and KNN estimator fork = 2 turned
out to reach this limit faster.

For the computation of the lagτ0 of the first minimum of MI, the binning
estimators ED and EP as well as the KE estimator seem to perform best. For
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the Mackey-Glass system, we observed that althoughI(τ) may vary with the free
parameter of the estimator andn, τ0 is rather stable. The addition of noise does not
seem to effect the estimation ofτ0.

The KE estimator has the highest computational cost and the fixed-binning es-
timators become computationally intractable whenb has to be very large, as for
long chaotic time series. On the other hand, the KNN estimator is rather fast for
long time series that require smallk for which neighbor search is faster. The com-
putation efficiency of the AD estimator is comparable to thatof KNN and these
two estimators seem to be the most appropriate for all practical purposes in terms
of computational efficiency, parameter selection (smallk for KNN and no free pa-
rameter for AD) and accuracy of estimation (with KNN scoringbetter than AD).

We note that the consistency of estimators of MI on linear systems is not indica-
tive of the behavior of the estimators on nonlinear systems.Although consistency
of estimators is claimed in some recent works, this might be due to the use of only
linear systems or noisy real data, such as EEG.
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Table 1: The simulation systems and their parameters. The input white noise for
the linear systems (rows 4 to 7) and the observational white noise for the nonlin-
ear systems (rows 8 to 10) have zero mean and standard deviation one. Gamma
noise is skewed withγ = 0.5.The parameter notations areµ for the mean,σ for
the standard deviation andγ for the skewness coefficient,ϕ for the coefficient of
the autoregressive part for AR(1) and ARMA(1,1) andϑ for the coefficient of the
moving average part of ARMA(1,1),τs for the sampling time andδ for the dis-
cretization time for the Mackey-Glass system. The noise levels considered for the
nonlinear systems are20% and40%.
Systems Parameters Noise
Gaussian white noise µ = 0, σ = 1
Gamma white noise µ = 0, σ = 1, γ = 0.5

AR(1) ϕ = 0.5, 0.9,−0.5,−0.9 Gaussian
AR(1) ϕ = 0.5, 0.9,−0.5,−0.9 Gamma
ARMA(1,1) ϕ = 0.9, ϑ = 0.6 & ϕ = 0.7, ϑ = 0.3 Gaussian
ARMA(1,1) ϕ = 0.7, ϑ = 0.3 & ϕ = 0.3, ϑ = 0.1 Gamma
Henon a = 1.4, b = 0.3 Gaussian
Ikeda a = 1.0, b = 0.9, κ = 0.4, η = 6.0 Gaussian
Mackey-Glass ∆ = 17, 30, 100, τs = 17, δ = 0.1 Gaussian
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Table 2: Criteria for the selection of the number of bins. Theparameters in the
expressions are the time series lengthn, the standard deviations, the interquartile
range IQR, the range of the dataR and the standardized skewnessγ2 as defined in
[Doane, 1976]. The exact expressions for criteria H8 and H9 can be found in the
in the corresponding references, given in the third column.

.

Criteria Number of bins Reference
H1 1 + log2 n [Sturge, 1926]
H2 1.87(n − 1)0.4 [Bendat & Piersol, 1966]
H3 1 + log2 n + log2 γ2 [Doane, 1976]
H4

√
n [Tukey & Mosteller, 1977]

H5 Rn1/3

3.49s [Scott, 1979]

H6 Rn1/3

2(IQR) [Freedman & Diaconis, 1981]

H7 3
√

2n [Terrell & Scott, 1985]
H8 min. of stochastic complexity [Rissanen, 1992]
H9 mode of log of marginal posterior pdf [Knuth, 2006]
H10

√

n/5 [Cochran, 1954]
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Table 3: Criteria for the selection of bandwidths for one (h1) and two (h2) dimen-
sions. The parameters in the expressions area = 1.8 − r(1) if n < 200 and
a = 1.5 if n ≥ 200, wherer(1) is the autocorrelation at lag1, R = 1/2

√
π, s

is the standard deviation and IQR is the interquartile rangeof the data. The exact
expressions for the last four criteria can be found in the corresponding references,
given in the third column.
Criteria h1 h2 Reference

C1 (4/3n)1/5 (1/n)1/6 [Silverman, 1986]
C2 (4/3n)1/5 (4/5n)1/6 [Silverman, 1986]
C3 1.06an−1/5 an−1/6 [Harrold et al., 2001]
C4 h1 [Silverman, 1986]
C5

(8
√

πR
3n )1/5 min(s, IQR

1.349 ) √
2h1 [Wand & Jones, 1995]

C6 h1

C7
L-stage direct plug-in √

2h1
[Wand & Jones, 1995]

C8 h1

C9
Solve-the-equation plug-in √

2h1
[Sheather & Jones, 1991]
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Table 4: Ranking and scoreS of the 5 criteria for b scoring lowest for theED
andEP estimators for varying lengths of time series from white noise and linear
systems.
Criteria S for ED Criteria S for EP

H11 0.25 H9 0.61
H7 0.94 H7 0.62
H8 1.16 H8 0.65
H5 1.20 H10 0.67
H9 1.41 H11 0.72
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Figures captions

Figure 1: MeanI(1) as a function ofb from 1000 realizations of AR(1) with coef-
ficient ϕ = r(1) = 0.5 and additive Gaussian noise for (a) the ED and (b) the EP
estimator and for data sizes as given in the legend.

Figure 2: (a) Optimal number of bins for differentn for AR(1) systems with
lag one autocorrelationr(1) as in the legend. (b) Graph of the optimalb for a range
of log2(n) andr(1). The results in both panels regard the ED estimator.

Figure 3: Mean estimated MI with AD estimator as a function ofn from 1000
realizations of (a) normal white noise and (b) AR(1), withr = 0.5 and normal
input white noise.

Figure 4: (a) Mean estimated MI with the KNN estimator as a function of n
from 1000 realizations of AR(1) withr(1) = 0.5 and normal input white noise for
k as in the legend. The dotted line stands forI∞. (b) Graph of the optimalk for a
range oflog2(n) andr(1).

Figure 5: Mean estimated MI with the KE estimator as a function of h1 from
1000 realizations ofAR(1) with r(1) = 0.5 and normal input white noise for (a)
h1 = h2, and (b)h1 =

√
2h2, andn as in the legend. (c) Graph of the optimalh1

for a range oflog2(n) andr(1).

Figure 6: (a) Mean estimated MI vsn for the estimators given in the legend
from simulations on AR(1) withr(1) = 0.5 and normal input white noise. For
each estimator the optimal free parameter is considered, i.e. H11 for ED, H9 for
EP,k = 2 for KNN and C1 for KE. (b) As (a) but forr(1) = 0.9.

Figure 7: (a) Optimal number of binsb as a function of the time series length
n for the ED estimator from 1000 realizations of the Henon map for different lags,
as given in the legend. (b) Same graph as in (a) but for the Henon map with20%
additive noise. In both plots the dotted lines give the optimal number of binsb from
the suggested criterion in (6) assuming r(1)=0 and r(1)=1, as given in the plot. (c)
Mean estimated MI with ED estimator as a function ofτ from 1000 realizations of
the Henon map forb = 32, andn as in the legend. (d) As (c) but for Henon map
with 20% additive noise.

Figure 8: Mean estimated MI with AD estimator as a function ofτ from 1000
realizations of the Henon map with no noise in (a) and with20% noise in (b).

Figure 9: (a) Mean estimated MI with KNN estimator as a function of τ from
1000 realizations of the Henon map, forn = 256 andk as in the legend. (b) As in
(a) but fork = 2 andn as in the legend. (c) As in (a) but for Henon map with20%
additive noise.

Figure 10: (a) Mean estimated MI with KE estimator as a function of τ from
1000 realizations of the Henon map, forn = 512 and bandwidths as in the legend.
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(b) As in (a) but forn = 4096 and bandwidths as in the legend. (c) and (d) are the
same as (a) and (b) respectively but for the Henon map with20% additive noise.

Figure 11: (a) Mean estimated MI with KE estimator as a function of τ from
1000 realizations of the noise-free Henon map withn = 8192 and nine bandwidth
selection criteria as given in the legend. (b) As (a) but for20% additive noise.

Figure 12: (a) Mean estimatedτ0 and standard deviation as error bar as a func-
tion of b from all time series lengths using the ED estimator on the Mackey-Glass
system with∆ = 17, 30, 100, as given in the legend. (b) As in (a) but for the EP
estimator.

Figure 13: (a) Mean estimatedτ0 and standard deviation as error bar as a func-
tion of n using the AD estimator on 1000 realizations of the Mackey-Glass system
with ∆ = 17, 30, as given in the legend. (b) As in (a) (without standard devi-
ations) for additive noise with levels20, 40%, as given in the legend. (c) Mean
estimated MI with the AD estimator as a function ofτ from 1000 realizations of
the Mackey-Glass with∆ = 100, for n as in the legend.

Figure 14: Mean estimatedτ0 as a function ofn using the KNN estimator on
1000 realizations of the Mackey-Glass system with (a)∆ = 17, and (b)∆ =
30. (c) Mean estimated MI with the KNN estimator as a function ofτ from 1000
realizations of the Mackey-Glass with∆ = 100, for k as in the legend andn =
2048.
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