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1 Introduction

Nonlinear science had experienced an unprecedented and vigorous development particu-
larly during the second half of the 20th century, and it was considered “the third revolution”
in natural science in the history. The main subjects in the study of nonlinear science include
chaos, bifurcation, fractals, solitons and complexity. Because of the important significance to
unveil the essence of chaos and wide potential application prospects of chaos theory in many
fields, research on chaos always carries a heavy weight in nonlinear science. H. Poincaré [1]
and C. Maxwell [2] both had some vague concepts of chaos in their times. In the earlier
1960s, E. N. Lorenz [3] discovered the now-famous Lorenz system, which actually produces
visible chaos. Lorenz system is the first mathematical and physical model of chaos, thereby
becoming the starting point and foundation stone for later research on chaos theory. Since
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the 1960s, particularly with this model, mathematicians, physicists and engineers from var-
ious fields have thoroughly studied the essence of chaos, characteristics of chaotic systems,
bifurcations, routes to chaos, and many other related topics [4]. There are also some chaotic
systems of great significance that are closely related to the Lorenz system, where a partic-
ular example in point is the Chen system. Since the Chen system was first found in 1999
[5,6], hundreds of papers have been published on this new chaotic system with deep and
comprehensive results obtained. A monograph on the Lorenz systems family including the
Chen system has also been published [7]. To further understand the interesting Chen system,
one fundamental question has to be answered: are the Chen system and the Lorenz system
non-equivalent, either topologically or smoothly? The purpose of this paper is to prove that
the Lorenz system and the Chen system are indeed non-equivalent smoothly.

2 Results and Proofs

The dynamical system φabc
t defined by























dx

dt
= a(y − x),

dy

dt
= cx− xz − y,

dz

dt
= xy − bz,

(2.1)

is called the Lorenz system with parameters a, b, c.

The dynamical system ψabc
t defined by























dx

dt
= a(y − x),

dy

dt
= (c− a)x− xz + cy,

dz

dt
= xy − bz,

(2.2)

is called the Chen system with parameters a, b, c.

It is clear that system (2.1) has 3 equilibrium points if b(c− 1) > 0, i.e.,

P1 = (0, 0, 0),

P2 = (−
√

b(c− 1),−
√

b(c− 1), c− 1),

P3 = (
√

b(c− 1),
√

b(c− 1), c− 1),

and system (2.2) has 3 equilibrium points if b(2c− a) > 0, i.e.,

Q1 = (0, 0, 0),

Q2 = (−
√

b(2c− a),−
√

b(2c− a), 2c− a),

Q3 = (
√

b(2c− a),
√

b(2c− a), 2c− a).
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Denote the coordinates of Pi by (xi, yi, zi), i = 1, 2, 3, and the coordinates ofQi by (x
′

i, y
′

i, z
′

i),i =

1, 2, 3, and denote the vector fields on the right sides of (2.1) and (2.2) by ~U(x, y, z) and
~V (x, y, z), respectively. It is clear that their Jacobians are:

D~U(x, y, z) =





−a a 0
c− z −1 −x
y x −b



 ,

D~V (x, y, z) =





−a a 0
c− a− z c −x

y x −b



 ,

and their determinants are:

detD~U(P1) = ab(c− 1),

detD~U(P2) = detD~U(P3) = −2ab(c− 1),

detD~V (Q1) = ab(2c− a),

detD~V (Q2) = detD~V (Q3) = −2ab(2c− a).

In general, let f(x) and g(x) be vector fields on R
n, and

ẋ = f(x), x ∈ R
n (2.3)

ẏ = g(y), y ∈ R
n (2.4)

be two systems of differential equations on R
n.

Definition 2.1 If there exists a diffeomorphism h on R
n such that

f(x) =M−1(x)g(h(x)), (2.5)

whereM(x) is the Jacobian of h at the point x, then (2.3) and (2.4) are said to be smoothly

equivalent.

Remark 2.2 If (2.3) and (2.4) are smoothly equivalent, and suppose that x0 and y0 = h(x0)
are the corresponding equilibria of f(x) and g(x), A(x0) and B(y0) are the Jacobians of f(x)
and g(x), respectively, then A(x0) and B(y0) are similar, i.e., their characteristic polynomials
and eigenvalues are the same.

Theorem 2.3 The Chen system and the Lorenz system are not smoothly equivalent, i.e.,
there exists a Chen system ψa′b′c′

t which is not smoothly equivalent to any Lorenz system φabc
t .
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Proof Since M(x) 6= 0,M−1(x) 6= 0 and due to (2.5), we have

f(x) = 0 ⇔ g(h(x)) = 0,

that is, the equilibria x of f(·) correspond to the equilibria h(x) of g(·), therefore a Chen
system is smoothly equivalent to a Lorenz system with the same number of equilibria. It
suffices to prove that a Chen system with 3 equilibria can not be smoothly equivalent to a
Lorenz system with any 3 equilibria.

Suppose that h is a diffeomorphism on R
3 such that ψa′b′c′

t and φabc
t smoothly equivalent

under h. Because detD~U(P1) and detD~V (Q1) are positive, P1 corresponds to Q1 under h.
Because

D~U(P1) =





−a a 0
c −1 0
0 0 −b



 ,

D~V (Q1) =





−a′ a′ 0
c′ − a′ c′ 0

0 0 −b′



 ,

the characteristic equation of D~U(P1) is:

λ3 + (a + b+ 1)λ2 + (a+ ab− ac + b)λ− ab(c− 1) = 0,

and the characteristic equation of D~V (Q1) is:

λ3 + (a′ + b′ − c′)λ2 + (a′2 + a′b′ − 2a′c′ − b′c′)λ− a′b′(2c′ − a′) = 0.

Let

u = a′ + b′ − c′, (2.6)

v = a′2 + a′b′ − 2a′c′ − b′c′, (2.7)

w = −a′b′(2c′ − a′). (2.8)

By Remark 2.1, we must have

a+ b+ 1 = u, (2.9)

a+ ab− ac+ b = v, (2.10)

−ab(c− 1) = w. (2.11)

By (2.9), we have a = u− 1− b, so that in combining with (2.11),

c = 1−
w

ab
= 1−

w

b(u− 1− b)
.
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Substituting a, c in (2.10), we have

b3 − ub2 + va− w = 0. (2.12)

It is clear thatD~U(P2) andD~U(P3) have the same characteristic equations, andD~V (Q2) and

D~V (Q3) have the same characteristic equations. Hence, we may assume that P2 corresponds
to Q2. By comparing the coefficients of their first-order terms, we have

ab+ bc = b′c′.

Substituting them into the formulas of a, c, we get

b(u− 1− b) + b

(

1−
w

b(u− 1− b)

)

= (u− 1)b− b2 + b−
w

u− 1− b
= b′c′,

and
b3 − (2u− 1)b2 + [(u− 1)2 + u− 1 + b′c′]b− w − (u− 1)b′c′ = 0.

Subtracting this from (2.12), we obtain

(u− 1)b2 + (u+ v − u2 − b′c′)b+ (u− 1)b′c′ = 0. (2.13)

By resultant elimination [8], a necessary and sufficient condition for (2.12) and (2.13) to have
same roots is

M0(a
′, b′c′)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −u v −w 0
0 1 −u v −w
u− 1 u+ v − u2 − b′c′ (u− 1)b′c′ 0 0
0 u− 1 u+ v − u2 − b′c′ (u− 1)b′c′ 0
0 0 u− 1 u+ v − u2 − b′c′ (u− 1)b′c′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (2.14)

Substituting u, v, w in the above equation by (2.6), (2.7) and (2.8), we get an algebraic
equation of a′, b′, c′, as

b′(a′ − 2c′)2(1 + c′)(a′3 − a4 + a′5 + a′2b′ − a′3b′ + a′b′2 − 2a′2b′2 − 2a′b′3 + a′2b′3 + a′b′4

−2a′2c′ + 3a′3c′ − 4a′4c′ − 3a′b′c′ + 4a′2b′c′ − 5a′3b′c′ − b′2c′ + 5a′b′2c′ − 2a′2b′2c′ + 2b′3c′

−2a′b′3c′ − b′4c′ − 2a′2c′2 + 4a′3c′2 − 3a′b′c′2 + 6a′2b′c′2 − b′2c′2 + 4a′b′2c′2 + b′3c′2)

= 0, (2.15)
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and its solution is given by the union of the following four surfaces:

b′ = 0,

a′ − 2c′ = 0,

1 + c′ = 0,

a′3 − a4 + a′5 + a′2b′ − a′3b′ + a′b′2 − 2a′2b′2 − 2a′b′3 + a′2b′3 + a′b′4 − 2a′2c′ + 3a′3c′

−4a′4c′ − 3a′b′c′ + 4a′2b′c′ − 5a′3b′c′ − b′2c′ + 5a′b′2c′ − 2a′2b′2c′ + 2b′3c′ − 2a′b′3c′

−b′4c′ − 2a′2c′2 + 4a′3c′2 − 3a′b′c′2 + 6a′2b′c′2 − b′2c′2 + 4a′b′2c′2 + b′3c′2 = 0.

Denote the point set of all solutions of (2.14) by C. It is clear that C is a Borel subset of R3

and its Lebegue measure is 0. So, there are many points not belonging to C, for example, the
values of a′ = 45, b′ = 5, c′ = 28 give b′(2c′ − a′) = 55 > 0,M0(45, 5, 28) = 2.919× 1011 6= 0,
i.e., (45, 5, 28) /∈ C. This means that the Chen system ψ45,5,28

t is not smoothly equivalent to
the Lorenz system φabc

t with any values of a, b, c, while ψ45,5,28
t is chaotic according to [5, 6

or 7 (p.39)].
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