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We present a perturbative formalism to deal with linear random positive maps. We generalize the
biological concept of the population growth rate when a Leslie matrix has random elements (i.e.
characterizing the macroscopic disorder in the vital parameters). The dominant eigenvalue of
which defines the asymptotic dynamics of the mean-value population vector state, is presented as
the effective growth rate of a random Leslie model. The problem was reduced to the calculation
of the smallest positive root z̃1 of the secular polynomial appearing in the general expression
for the mean-value Green function 〈G(z)〉. This nontrivial polynomial can be obtained order by
order in terms of a diagrammatic technique built with Terwiel’s cumulants, which have carefully
been identified in the present work. By understanding how this smallest positive root z̃1 = 1/λ̃1

depends on the model of disorder, one can link the asymptotic population dynamics with the
statistical properties of the errors (mutations) in the vital parameters. This eigenvalue has the
meaning of an effective Perron–Frobenious eigenvalue for a random positive matrix. Analytical
(exact and perturbative calculations) results are presented for several models of disorder.

Keywords : Random linear maps; Leslie matrices; population dynamics; Perron–Frobenius; effec-
tive Lyapunov exponent.

1. Asymptotic Analysis of Leslie’s
Dynamics

1.1. General remarks on
age-structured populations

Projection matrix is an increasingly popular tool for
modeling population dynamics. Since the pioneer-
ing work of Leslie [1945] to tackle ecology problems,
population projection matrices have been applied
to a wide array of demographic problems (vegeta-
tive propagation, predator–prey interaction, com-
petition, etc., for a review see [van Groenendael
et al., 1988]). Time fluctuating combinations of pro-
jection matrices have been used to simulate the time
variability of the environment. These studies have
shown the dramatic effects of the stochastic vari-
ations on the asymptotic properties of projection
matrices, as well as the need to modify the concepts

of population growth rate [Cohen, 1979], and the
accuracy in predicting the fate of a population in a
stochastic environment [Tuljapurkar, 1982].

In the work of Leslie, the specific structure of
the projection matrices M is based on age intervals
of the same duration as the time step in the model
[Leslie, 1945]. Then the age-specific fecundity (fer-
tility parameters) fj were placed in the first row,
and age-specific survival probabilities pj on the sub-
diagonal, and zeros elsewhere. However, when the
demographic properties of individuals class (sub-
groups) are not closely related to age, alternative
classifications are needed. The categories into which
individuals are classified should be defined in such
a way that transitions between categories are as
unambiguous as possible [van Groenendael et al.,
1988]. Thus uncertainty in the vital parameters play
a fundamental role in the description of the system
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and the problem that we have to face is to learn how
to handle a matrix random model [Cohen, 1986;
Caswell, 1978, 1983]. For example, the sampling
error in estimating the vital rates is an important
ingredient to be considered in order to improve the
population dynamics description of marine mam-
mals [Brault et al., 1993; Cáceres et al., 2008].

1.2. Green function and Tauberian
asymptotic approach

In this section we will present the analysis of the
stability of population dynamics. Here, we use a
Tauberian theorem to study the stability in the
Leslie model because it is suitable when disorder
is present.

Consider a m × m Leslie matrix where all its
elements are sure quantities (in general, we know
that fj ≥ 0, and pj ∈ (0, 1] because these last ones
are probabilities)

M =




f1 f2 f3 · · · · · · fm

p1 0 0 0 0 0
0 p2 0 0 0 0
0 0 p3 0 0 0
0 0 0 · · · 0 0
0 0 0 0 pm−1 · · ·




. (1)

Due to the positive structure of this matrix,
it is possible to apply the Perron–Frobenius theo-
rem and realize (if it is nonreducible) the existence
of a nondegenerated positive eigenvalue λ1 fulfill-
ing λ1 ≥ |λj | for all j = 2, 3, 4, . . . . This particular
eigenvalue, λ1, is associated with a positive eigen-
vector Ψ1 (the stable population). Thus, it is simple
to prove that the stability of the population dynam-
ics is controlled asymptotically by the behavior λn

1 .
If λ1 < 1 the stable population declines at a con-
stant rate λ1. In a time-continuous representation
we can define a Lyapunov exponent as r = ln λ1. On
the other hand, if λ1 > 1 the stable population Ψ1

grows at a constant rate λ1. For the ordered case,
Perron–Frobenius analysis is powerful to calculate
the asymptotic behavior of the vector state [Arnold
et al., 1994]. Here, we are going to introduce an
alternative approach in order to study the long time
behavior n � 1 of the population vector state. Our
approach will be a useful technique to calculate the
asymptotic behavior of the mean population vec-
tor in the case when the Leslie matrix has random
elements, this will be shown in the next section.

Consider the linear matrix dynamics (difference
equations) written in the form:

Xn+1 = M · Xn, (2)

where Xn is a state vector of dimension m char-
acterizing the population at the time step n. Each
component j of the population vector, Xn(j), repre-
sents the number of individuals in each recognized
category j. The linear map (2) can be solved by
using a generating function technique. We define
the generating function G(z) associated to the state
vector Xn by

G(z) =
∞∑

n=0

znXn, (3)

multiplying (2) by zn and summing over all n we
get

∞∑
n=0

znXn+1 =
1
z

∞∑
n=1

znXn =
1
z
(G(z) − X0)

= M ·
∞∑

n=0

znXn = M · G(z).

From this equation we can solve G(z) and get
the following expression for the generating function
(vector G(z))

G(z) − zM · G(z) = X0. (4)

Introducing the (m × m) identity matrix 1 we
can define an associated Green function matrix to
Eq. (2) of the form

G(z) = [1 − zM]−1. (5)

It is now clear that the Green function G(z) is a
matrix of dimension (m × m), and the dynamics
information of the recurrence relation (2) is con-
tained in the poles of the G(z). In the nonrandom
case these poles are completely equivalent to the
eigenvalues of the matrix M. The solution of (2)
can be obtained by using the z-inversion technique.
Nevertheless, what is more important here is the
asymptotic value of Xn for large n, this behavior can
be obtained from a Tauberian theorem for power
series [Hardy, 1949].

If the matrix M is irreducible, the matrix G(z)
will have a simple pole of the form (z1 − z), and
each element of the Green function G(z) will have,
in the limit z → z1, the dominant diverging form:
G(z) ∼ (z1 − z)−1, then applying Tauberian’s the-
orem we get asymptotically for large n that (see
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Appendix A, Eq. (A.2))

Xn ∼
(

1
z1

)n

= λn
1 , (6)

where z1 is the smallest positive pole of G(z). This
is the expected result in the ordered case. For the
disordered case, the average of the Green function
〈G(z)〉 characterizes the asymptotic behavior of the
mean-value vector state 〈Xn〉. The new dominant
pole z̃1 (the smallest positive one, which of course
is not the average of z1) characterizes the effective
rate at which the population grows in a random
Leslie model.

2. Average of the Green Function

Consider a Leslie matrix as in (1) but with random
elements. Noting that all the elements of M must
be positives, we adopt the following notation:

fj → fj − αj with (fj − αj) ≥ 0 (7)

pj → pj − βj with 1 ≥ (pj − βj) > 0, (8)

where the quantities αj , βj represent the random
elements in a general Leslie dynamics. In principle,
we are going to work out the problem for arbitrary
random variables {αj , βj}, with the only restriction
that the support of these random variables must ful-
fill conditions (7) and (8) for each sample of the dis-
order (the use or not of the statistical independence
assumption of the set {αj , βj} will be analyzed in
future contributions). Therefore, in what follows we
do not need to emphasize any specific distribution
for these random variables. Using the definition (7)
and (8) we can rewrite vital parameters in the form

fj − αj = fj − 〈αj〉 + 〈αj〉 − αj ≡ f∗
j + ξj (9)

pj − βj = pj − 〈βj〉 + 〈βj〉 − βj ≡ p∗j + ηj , (10)

where 〈αj〉 and 〈βj〉 are mean values, thus it is
clear that f∗

j and p∗j are sure positive numbers, and
{ξj ≡ 〈αj〉 − αj ; ηj = 〈βj〉 − pj} are random num-
bers with mean-value zero. Using these facts we can
write the random equation for the Green function
(5) as:

1
z
(G(z) − 1) = (H + B) ·G(z), (11)

where we have defined H + B≡M. Here H is a sure
Leslie matrix and B a random matrix (not necessar-
ily with positive elements) but with the particular

structure:

B =




ξ1 ξ2 ξ3 · · · · · · ξm

η1 0 0 0 0 0

0 η2 0 0 0 0

0 0 η3 0 0 0

0 0 0 · · · 0 0

0 0 0 0 ηm−1 · · ·




. (12)

Note that by construction 〈B〉 = 0, and H is a sure
Leslie matrix with shifted elements given by:

f∗
j = fj − 〈αj〉, p∗j = pj − 〈βj〉. (13)

In order to calculate the average of the Green func-
tion 〈G(z)〉 we need to find its evolution equation,
this can be done by using a projector opera-
tor technique, see for example [Hernandez et al.,
1990a; Hernandez et al., 1990b; Cáceres et al., 1997;
Cáceres, 2003, 2004]. The average of G(z), i.e. aver-
aging over the random variables {ξj , ηj}, can for-
mally be carried out by introducing the projector
operator P that averages over the disorder, and its
complementary projector Q ≡ (1 − P), i.e.

〈G(z)〉 = PG(z), G(z) = PG(z) + QG(z).

Using this projector technique a closed exact
evolution equation can be obtained. Applying the
operator P to Eq. (11) we obtain

1
z
[PG(z) − 1]

= HPG(z) + PBPG(z) + PBQG(z). (14)

Also, applying the operator Q to Eq. (11) we obtain

1
z
QG(z) = HQG(z) + QBPG(z) + QBQG(z).

(15)

A formal solution of Eq. (15) can be obtained using
the nondisordered Green matrix:

G0 ≡
[
1
z
1− H

]−1

. (16)

Applying G0(z) to Eq. (15) and using the def-
inition given in Eq. (16), results in

QG(z) = G0[QBPG(z) + QBQG(z)]. (17)

This equation can be solved iteratively for QG(z),

QG(z) =
∞∑

k=1

[G0QB]kPG(z). (18)
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Placing this formal solution in Eq. (14) we find a
close exact equation for the function PG(z),

PG(z) − 1
z

= HPG(z) + PBPG(z)

+PB
∞∑

k=1

[G0QB]kPG(z). (19)

This equation can be rewritten in a more friendly
way

〈G(z)〉 =

[
1− z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)]−1

.

(20)

Here, we can see the nontrivial structure that the
average Green function obtained as a consequence
of its evolution in time.

We remark that even in the case when the
random Leslie matrix M is of dimension m,
the number of z-poles in 〈G(z)〉 will depend on
the number of nonnull contributions from the series
expansion appearing in (20). From this solution we
can easily demonstrate that the “naive” approxima-
tion: 〈G(z)〉 	 [1 − zH]−1 corresponds to neglect-
ing all “cumulant contributions” with k ≥ 1. Each
cumulant represents a particular structure of corre-
lation that we need to evaluate carefully.

Remark. The important task is to calculate the dif-
ferent k-contributions from the object (〈B〉 = 0)〈 ∞∑

k=0

[BG0Q]kB

〉
, (21)

as a function of z for a given model of disorder.
In fact, we will prove that the operator (21) can
be studied in terms of statistical objects called Ter-
wiel’s cumulants, that will be defined later [Terwiel,
1974; Hernandez et al., 1990a; Cáceres, 2003], see
Appendix B. In particular, if the intensity of the
random variables {ξj, ηj} can be considered as a
small parameter, we can analyze the behavior of
the dominant pole of the averaged Green func-
tion (20), order-by-order to any contribution that
comes from a different k in Eq. (21). By virtue of
the Tauberian theorem, the long-time behavior of
〈G(z)〉 will be dominated by the smallest strictly
positive root z̃1 of

det

∣∣∣∣∣1 − z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)∣∣∣∣∣ = 0. (22)

Remark. We conclude that the stability of the
mean-value population vector state shall be

characterized as

lim
n→∞〈Xn〉 ∼

(
1
z̃1

)n

= (λ̃1)n. (23)

This formula generalizes (6) in the case when the
dynamics are characterized by a random Leslie
matrix. Note that if the pole z̃1 were degenerated
we can still apply the Tauberian theorem and, of
course, a different asymptotic behavior (n � 1)
to obtain the mean-value population vector state.
In Appendix C, we present an example of stability
analysis for a particular random survival model in
a general m × m Leslie matrix.

3. An Exact 2 × 2 Soluble Case

Consider a 2× 2 Leslie matrix where the fertility of
the subclass 2 has a random element of the form
f2 − α2, then following the previous sections we
see that the problem is completely characterized by
defining the matrices:

G0 =
[
1
z
1− H

]−1

, H =

(
f1 f∗

2

p1 0

)
,

B =

(
0 ξ2

0 0

)
,

(24)

where ξ2 = 〈α2〉 −α2, f
∗
2 = f2 − 〈α2〉. From (24) we

can calculate the Terwiel operator (21). We get for
every k

〈[BG0Q]kB〉 =

(
0 gk

21〈[ξ2Q]kξ2〉
0 0

)
,

here, as before, gjl are the matrix elements of the
ordered Green function G0. Summing all k contri-
butions we obtain

〈 ∞∑
k=0

[BG0Q]kB

〉
=


0

∞∑
k=0

gk
21〈[ξ2Q]kξ2〉

0 0


.

(25)

Then, we have proved that for this 2 × 2 case and
for any statistics of the random variables ξ2, we only
have to calculate the statistical object

〈[ξ2Q]kξ2〉, k = 1, 2, 3, . . . , (26)

these are in fact Terwiel’s cumulants, see
Appendix B.
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3.1. Binary disorder in the fertility

In order to continue the analysis of our example
(24), suppose now that the random variable α2 can
only take two discrete values ±∆, i.e.

α2 =

{
∆ with probability c

−∆ with probability (1 − c)
. (27)

In order to assure that the random fertility f2 −α2

is a positive quantity for each sample of the dis-
order, we have to assume that 0 ≤ ∆ ≤ f2.
From (27) it is simple to see that (for q = 1,
2, 3, . . .)

〈α2q+1
2 〉 = ∆2q+1(2c − 1); 〈α2q

2 〉 = ∆2q. (28)

It is also possible to prove that Terwiel’s cumulants
of the random variable ξ2 = 〈α2〉−α2 are (for k = 1,
2, 3, . . .)

〈[ξ2Q]kξ2〉 = ∆k+1c(1 − c)(2c − 1)k−12k+1. (29)

From this result, we get the important conclusion
that for a symmetric binary random perturbation
(i.e. with c = 1/2) all Terwiel’s cumulants van-
ish for k ≥ 2. Then in the symmetric case, the
only non-null Terwiel’s cumulant appearing in (26)
will be 〈ξ2Qξ2〉 = ∆2. In order to remark the
difference between Terwiel’s cumulant with the
simple cumulants, we write here the formula for
the usual cumulants corresponding to the random
variable ξ2; using (27) for the symmetric case,
i.e. ξ2 = α2 (when c = 1/2) we get [Cáceres,
2003]

〈〈ξ2q
2 〉〉 =

−22q−1(22q − 1)Bq

i2qq
∆2q,

q = 1, 2, 3, . . . ,

where Bq are the Bernoulli numbers: {Bq} = {1/6,
1/30, 1/42, . . .}. This result shows, for the sym-
metric binary case, the simplicity of Terwiel’s
cumulants against the usual ones.

3.2. The symmetric binary case

From all these previous facts we see that for this
2×2 case we can write the exact solution of the aver-
aged Green function. From model (24) with a sym-
metric binary random variable, using the general

expression (20) and noting that f∗
2 = f2 we get

〈G(z)〉 =

[
1 − z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)]−1

=

[
1 − z

(
f1 f2 + g21∆2

p1 0

)]−1

, (30)

here

g21 =
p1z

2

1 − f1z − p1f2z2
=

p1(
1
z
− λ1

)(
1
z
− λ2

) ,

where λ1,2 are the eigenvalues of the sure matrix H,
in the case when c = 1/2, these eigenvalues coincide
with the 2×2 nonrandom Leslie matrix M, see (11)
and (24), i.e.

λ1,2 =
1
2

(
f1 ±

√
f2
1 + 4p1f2

)
. (31)

In order to find the dominant pole of 〈G(z)〉,
we study (30) introducing the notation z = 1/λ,
then we solve the roots of

(λ2 − λf1 − f2p1) =
(p1∆)2

(λ2 − λf1 − f2p1)
.

This equation implies fourth roots (we adopt 0 ≤
∆ ≤ f2 to assure the positivity of the Perron–
Frobenius eigenvector Ψ1 for each sample of the dis-
order), then

λ̃1,2 =
1
2

(
f1 ±

√
f2
1 + 4p1(f2 + ∆)

)

λ̃3,4 =
1
2

(
f1 ±

√
f2
1 + 4p1(f2 − ∆)

)
.

It is now clear that the largest positive one is

λ̃1 =
1
2

[
f1 +

√
f2
1 + 4p1(f2 + ∆)

]
. (32)

As we mentioned before this effective eigenvalue is
different from the average of λ1.

Remark. The effective finite growth rate of the dis-
ordered Leslie model (24) with a symmetric binary
random perturbation α2 is characterized by λ̃1. This
exact result shows, by using the Tauberian theorem,
that the average of the population grows faster than
in the ordered case (without a random element in
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the fertility f2), i.e.

lim
n→∞〈Xn〉 ∼

(
1
z̃1

)n

= (λ̃1)n

=
(

1
2

[
f1 +

√
f2
1 + 4p1(f2 + ∆)

])n

,

(33)

where ∆2 is the dispersion of α2 (see (28)).
An equivalent analysis can also be carried out
by putting a random element in the survival
parameter p1.

Now, we show another exact result for the effec-
tive finite growth rate, but in the case of having a
symmetric random perturbation α1 in the fertility
parameter f1 → f1 − α1. As in (24) the problem is
now defined by considering

G0 =
[
1
z
1 − H

]−1

, H =
(

f1 f2

p1 0

)
,

B =
(

ξ1 0
0 0

)
,

(34)

where ξ1 = −α1, f∗
1 = f1 adopting a symmetric

binary random variable for α1. The exact averaged
Green function now looks like

〈G(z)〉 =

[
1 − z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)]−1

=

[
1 − z

(
f1 + g11∆2 f2

p1 0

)]−1

, (35)

where g11 = ((p1/z)/(((1/z)−λ1)((1/z)−λ2))), and
as before λ1,2 are the eigenvalues of the sure matrix
H, see Eq. (31). From the poles of Eq. (35) we
immediately get that the dominant (smallest pos-
itive) pole z̃1 = 1/λ̃1 is (adopting 0 ≤ ∆ ≤ f1)
characterized by the largest positive eigenvalue

λ̃1 =
1
2

[
f1 + ∆ +

√
(f1 + ∆)2 + 4p1f2

]
. (36)

This exact result shows that from the model (34),
the average of the population grows faster than in
the ordered case. In this case, the population vector
state grows as

lim
n→∞〈Xn〉 ∼

(
1
z̃1

)n

= (λ̃1)n

=
(

1
2

[
f1 + ∆ +

√
(f1 + ∆)2 + 4p1f2

])n

.

(37)

It is important to mention that the convexity
of the effective growth rate λ̃1 (36) as a function of
the random intensity ∆, is different when compared
with the previous case (32). Nevertheless, in both
cases the effective eigenvalue λ̃1 is larger than in
the nonrandom case λ1 = (1/2)(f1 +

√
f2
1 + 4p1f2).

In order to quantify this comment we can take the
derivative of λ̃1 with respect to the strength ∆
and evaluate dλ̃1/d∆ at ∆ = 0. In this form, we
can measure the variation of the effective eigen-
value to a small random perturbation and prove
that if the perturbation is symmetric the effec-
tive eigenvalue λ̃1 is always larger than in the
nonrandom case.

For a symmetric binary random perturbation
in the fertility f2, i.e. from (32) we get

λ̃1 	 λ1 +
p1√

f2
1 + 4p1f2

∆. (38)

But for a symmetric binary random perturbation in
the fertility f1, i.e. from (36) we get

λ̃1 	 λ1 +
1
2

(
1 +

f1√
f2
1 + 4p1f2

)
∆. (39)

These simple but interesting results can be of
great use in modeling biological population growth,
for example, using fixed (mean values) Leslie vital
parameters, we see that λ1 < 1. Nevertheless, con-
sidering symmetric fluctuations (sampling error in
estimating the vital rates) we could get λ̃1 larger
than 1, and in this way predict an increasing
population.

One last remark concerning our 2 × 2 model:
suppose now that random elements appear in both
fertilities f1, f2, or simultaneously in the three Leslie
vital parameters f1, f2, p1. Then, it is possible to
see that even if we would have used the statistically
independent assumption for the set {ξ1, ξ2, η1} the
Terwiel operator〈 ∞∑

k=0

[BG0Q]kB

〉
, (40)

would not cut in the second Terwiel’s cumulant!
This is due to the occurrence of a higher order
nontrivial Terwiel’s structure between the different
random variables. For example, in the presence of
random elements in both fertilities f1, f2, it is pos-
sible to see that apart from the simplest second
order contribution: 〈BG0QB〉, higher order sta-
tistical contributions come from non-null Terwiel’s
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cumulants like:

〈ξ1Qξ2Qξ1Qξ2〉; 〈ξ1Qξ2Qξ2Qξ1〉;
〈ξ1Qξ2Qξ2Qξ2Qξ2Qξ1〉; 〈ξ1Qξ2Qξ1Qξ2Qξ1Qξ2〉,
etc.

These cumulants lead to the occurrence of a non-
trivial structure in the calculation of the dominant
pole of the mean-value Green function.

Remark. Note that even in the case when the random
variables ξ1, ξ2 are statistically independent these
cumulants do not cancel. Terwiel’s cumulants can
easily be evaluated using diagrams, but we will
leave this discussion for a future contribution, see
Appendix B for details. In order to calculate the
averaged Green function we have to introduce a cri-
terion to cut the Terwiel cumulant series. A possi-
ble way is to invoke an expansion in the intensity
of the random perturbation. For example, if ∆ is
a small parameter, it is clear that higher Terwiel’s
cumulants are of lower order, then we can approx-
imate (40) up to some O(∆q) in order to calculate
the mean-value Green function. From this approxi-
mated (truncated) function 〈G(z)〉 we can estimate
the effective finite growth rate of the mean-value
population vector state. An example in that direc-
tion will be shown in future contributions consid-
ering the presence of uniformly distributed random
variables perturbing all the vital rates.

4. Conclusions

The main concern of this paper is to relate the char-
acteristics of disorder (sampling error in estimating
the vital rates) appearing in a Leslie matrix M with
the dynamics of the population. The focus was on
the effects that fluctuations have on the dominant
eigenvalue λ̃1 (the largest positive one) associated
to the mean-value Green function of the random
matrix problem. A general approach, to get this
effective eigenvalue, was described. We calculate the
dynamics of the mean-value population vector state
under the assumption that the random variables,
appearing in the Leslie matrix, are described with
arbitrary distributions. The problem was reduced to
the calculation of the smallest positive root z̃1 of the
secular polynomial appearing in the general expres-
sion for the mean-value Green function 〈G(z)〉. This
nontrivial polynomial can be obtained order by
order in terms of a diagrammatic technique built
with Terwiel’s cumulants, which have carefully been
identified in the present work. By understanding

how this smallest positive root z̃1 = 1/λ̃1 depends
on the model of disorder one can link the asymptotic
population dynamics with the statistical proper-
ties of the errors in the vital parameters. Partic-
ular examples were presented using binary random
variables affecting the survival parameters in Leslie
matrices of dimensions 2× 2. It was shown that the
effective growth rate λ̃1 has a nontrivial response to
the perturbation. In particular, it was proved that
if the random variables are symmetric, the effective
positive eigenvalue is enlarged with respect to the
mean-value growth rate. On the other hand, it is
possible to prove that even when fluctuations (due
to the presence of random variables) always reduce
the vital parameters of the model, the effective
eigenvalue is always larger than the naive approx-
imation associated to the mean-value of the Leslie
matrix 〈M〉 = H. This result teaches us that fluctu-
ations increase the final effective growth rate. In the
present paper, we have worked out an exact 2 × 2
model with symmetric fluctuations, but an equiv-
alent analysis can also be done for nonsymmetric
disorder. Here, we would like to remark:

(a) By using a Green function technique we have
studied the time evolution of the mean-value
population vector 〈Xn〉 (this is the so-called
z-transform technique).

(b) The long-time asymptotic limit (n � 1) of
the mean-value population vector is 〈Xn〉 ∼
(λ̃1)n (we prove this fact using the Tauberian
theorem).

(c) The effective eigenvalue λ̃1 can be calculated,
order-by-order, by solving the smallest positive
root (z̃1 = 1/λ̃1) of the secular polynomial (22),
which is written in terms of all the correlations
coming from B.

(d) Our approach is independent of the statis-
tics chosen for the random variables that may
appear in B.

(e) If the dimension of the Leslie matrix is small,
there is hope that an analytical approxima-
tion can be found (see our examples in dimen-
sion 2 × 2). For large dimension analysis our
method is constructive, i.e. the calculation of
the root z̃1 can be done numerically and the
error can be computed from the neglected terms
in Eq. (21).

(f) The present perturbation theory can be applied
to any random Leslie’s matrix of arbitrary
dimension with or without the statistical inde-
pendent assumption.
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Appendix A
The Tauberian Approach

The Tauberian theorem is as follows [Hardy, 1949].
Let U(y) be defined by

U(y) =
∞∑

n=0

an exp(−ny), (A.1)

where an > 0. Let U(y) have the asymptotic form,
as y → 0, U(y) ∼ ϕ(y−1) = y−γL(y−1), where L(x)
is a slowly varying function, and xγL(x) is a posi-
tive increasing function of x for sufficiently large x.
Then as n → ∞

a0 + a1 + a2 + · · · + an ∼ ϕ(n)
Γ(γ + 1)

,

where Γ(γ + 1) is the gamma function. If an are
monotonic and ϕ(x) is differentiable, it follows that

an ∼
dϕ(x)

dx
Γ(γ + 1) x=n

.

This is the important result that we use to study
the asymptotic behavior of Xn for large n.

In order to apply the Tauberian theorem to
our problem, we introduce the change of variable
z → z1e

−y, where z1 = 1/λ1, then from the gener-
ating function (3) of Sec. 1 we get

G(z = z1e
−y) =

∞∑
n=0

exp(−yn)zn
1 Xn.

Thus, we can derive from (A.1) that an = zn
1 Xn. On

the other hand, if the Leslie matrix M is irreducible,
the matrix G(z) (Sec. 1, Eq. (5)) will have a simple
pole of the form (z1 − z), thus the Green function
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G(z) will have in the limit z → z1 the dominant
diverging form

G(z) → 1
(z1 − z)

G,

where the m × m matrix G remains finite in the
limit z → z1. Using U(y) = G(z = z1e

−y) ∼
(z1 − z1e

−y)−1, and in the limit of y → 0 we get
U(y) ∼ ϕ(y−1) ∼ y−γ/z1, where γ = 1, L(x) = 1.
For n → ∞, and using the Tauberian theorem we
obtain asymptotically that an ∼ ϕ′(n)/Γ(2) ∼ 1.
Going back to the old variable we obtain in the
limit n � 1

Xn ∼
(

1
z1

)n

= λn
1 , (A.2)

which is the asymptotic behavior of the vector state
in the ordered case.

Remark. The Tauberian approach teaches us that if
we want to tackle the random case we should first
calculate the average of the Green function 〈G(z)〉,
then from its poles we can infer which is the asymp-
totic behavior of the average of the vector state
〈Xn〉. The smallest positive pole z̃1 = 1/λ̃1 char-
acterizes the rate at which the population grows in
a random Leslie model.

Appendix B
Terwiel’s Cumulants

The calculations of Terwiel’s cumulants are not so
complex [Terwiel, 1974]. Here we recall some general
properties of these cumulants. Consider the general
situation when we have a set of random variables
{ξj}, then a Terwiel cumulant of order q can be
written in terms of the moments of the variables
{ξj} by using the following formula

〈ξ1Qξ2Qξ3Q· · · ξq−1Qξq〉

=
q−1∑
r=0

(−1)r
∑

1≤l1≤···≤lr≤q

〈ξ1 · · · ξl1〉〈ξl1+1 · · · ξl2〉

× · · · 〈ξlr+1 · · · ξq〉, (A.3)

where as before Q is the projection operator (1−P).
Explicit examples of this formula are:

〈ξ1Qξ2〉 = 〈ξ1ξ2〉 − 〈ξ1〉〈ξ2〉
〈ξ1Qξ2Qξ3〉 = 〈ξ1ξ2ξ3〉 − 〈ξ1〉〈ξ2ξ3〉 − 〈ξ1ξ2〉〈ξ3〉

+ 〈ξ1〉〈ξ2〉〈ξ3〉

〈ξ1Qξ2Qξ3Qξ4〉 = 〈ξ1ξ2ξ3ξ4〉 − 〈ξ1〉〈ξ2ξ3ξ4〉
− 〈ξ1ξ2〉〈ξ3ξ4〉 − 〈ξ1ξ2ξ3〉〈ξ4〉
+ 〈ξ1〉〈ξ2〉〈ξ3ξ4〉 + 〈ξ1ξ2〉〈ξ3〉〈ξ4〉
+ 〈ξ1〉〈ξ2ξ3〉〈ξ4〉
− 〈ξ1〉〈ξ2〉〈ξ3〉〈ξ4〉. (A.4)

In the particular case when the random variables
{ξj} have zero mean-value, Terwiel’s cumulants
simplify notably, for example:

〈ξ1Qξ2〉 = 〈ξ1ξ2〉
〈ξ1Qξ2Qξ3〉 = 〈ξ1ξ2ξ3〉

〈ξ1Qξ2Qξ3Qξ4〉 = 〈ξ1ξ2ξ3ξ4〉 − 〈ξ1ξ2〉〈ξ3ξ4〉
〈ξ1Qξ2Qξ3Qξ4Qξ5〉 = 〈ξ1ξ2ξ3ξ4ξ5〉

− 〈ξ1ξ2〉〈ξ3ξ4ξ5〉
− 〈ξ1ξ2ξ3〉〈ξ4ξ5〉

〈ξ1Qξ2Qξ3Qξ4Qξ5Qξ6〉 = 〈ξ1ξ2ξ3ξ4ξ5ξ6〉
− 〈ξ1ξ2〉〈ξ3ξ4ξ5ξ6〉
− 〈ξ1ξ2ξ3〉〈ξ4ξ5ξ6〉
− 〈ξ1ξ2ξ3ξ4〉〈ξ5ξ6〉
+ 〈ξ1ξ2〉〈ξ3ξ4〉〈ξ5ξ6〉.

(A.5)

These formulae are general for any kind of random
distribution.

To end these remarks, note that Terwiel’s
cumulants preserve the order of the random vari-
ables {ξj}. There is another very important prop-
erty of any Terwiel cumulant

〈ξ1Qξ2Q· · ·QξkQξk+1 · · · Qξm〉,

if it is possible to split it into two sets {ξ1ξ2 · · · ξk}
and {ξk+1 · · · ξm} without altering the order of
the ξ′s in such a way that the variables in
one of the sets are statistically independent of
those in the other set, the cumulant vanishes
(this is, the partition property of Terwiel’s cumu-
lants). Terwiel’s cumulants are different from the
simple cumulants that naturally appear in a
Taylor expansion of the logarithm of the char-
acteristic function of a random variable [Cáceres,
2003].
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Appendix C
Stability, Up to 2nd Order, in a
Random Leslie Matrix Model

Here we apply the general formula:

det

∣∣∣∣∣1− z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)∣∣∣∣∣ = 0, (A.6)

to calculate the dominant pole z̃1. Then, from the
asymptotic behavior:

lim
n→∞〈Xn〉 ∼

(
1
z̃1

)n

,

we can analyze the mean-value population stabil-
ity in a concrete biological case. We chose here a
particular model of disorder in an arbitrary m ×
m Leslie matrix. Following the notation given in
Sec. 2, we define a random survival model. Then
the matrix B will have the particular structure
(with 〈ηl〉 = 0):

B =




0 0 0 0 · · · 0

η1 0 0 0 0 0

0 η2 0 0 0 0

0 0 η3 0 0 0

0 0 0 · · · 0 0

0 0 0 0 ηm−1 · · ·




, (A.7)

The random fertility model can also be worked
in an analogous way. From this matrix B, we con-
sider now the cumulant structure given in Eq. (A.6);
using 〈B〉 = 0 the first non-null contribution
in (A.6) is of the form

〈BG0QB〉. (A.8)

This cumulant is of O(B2) in the random pertur-
bation and has the structure of a second Terwiel
cumulant.

There are some special cases that can be solved
in an exact way, but in general, we have to invoke a
perturbation approach to keep only a few cumulants
in order to arrive at some analytical calculation.
In solid state physics, this technique is the starting
point to introduce a self-consistent approximation
to tackle the problem of transport in random media
[Hernandez et al., 1990a; Hernandez et al., 1990b;
Pury et al., 2002]. A self-consistent approximation
is a good technique to tackle enlarged Leslie’s matri-
ces with transition rates between spatial locations

[Caswell, 1983], this will be the subject of a future
work.

Using the definition of G0 ≡ [(1/z)1 − H]−1in
terms of the sure m×m Leslie matrix H and using
(A.7), we get up to O(B2), for example, for the ele-
ments {j, 2}, j = 1, 2, 3, . . .

〈BG0QB〉j2 =




0

〈η1Qη2〉g13

〈η2Qη2〉g23

〈η3Qη2〉g33

〈η4Qη2〉g43

· · ·




. (A.9)

This expression is the exact contribution consider-
ing all the correlations up to second order. Here gjl

are the matrix elements of the ordered Green func-
tion G0, this formula can easily be handled in a
computer. Thus, we see that our approach is not
restricted to the assumption of statistically inde-
pendent random perturbations.

A great analytical simplification arises if we
consider that all the random variables are statisti-
cally independent, in this case and using that the set
{ηj} has mean-value zero, we get for the elements
{j, 2}, j = 1, 2, 3, . . .

〈BG0QB〉j2 =




0

0

〈η2Qη2〉g23

0

0
· · ·




. (A.10)

In this case, it is now clear that up to O(B2) the
only statistical objects that we need to calculate
are:

〈ηjQηj〉, j = 1, 2, . . . ,m − 1.

These numbers depend on the statistical properties
that we chose for the set of random variables {ηj}.
In total analogy, if we want to study the perturba-
tion up to O(B3), we have to calculate the Terwiel
operator:

〈BG0QBG0QB〉.
This object looks much more complex, but if
we use the statistical independence assumption,
the corresponding expression can also be handled
analytically.
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Remark. Up to O(B2) in the random perturba-
tion and by virtue of the Tauberian theorem, the
long-time behavior of the averaged Green function
will be dominated by the smallest positive root
z̃1(= 1/λ̃1) of

det |1 − z(H + 〈BG0QB〉)| = 0. (A.11)

Following [Boyce, 1977] we consider λ̃1 as the
effective finite growth rate in a disordered Leslie’s
population model. So in a time-continuous repre-
sentation, we can consider the number r = ln λ̃1 as
the effective Lyapunov exponent.
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