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From First Lyapunov Coefficients to Maximal Canards

Christian Kuehn∗

Abstract

Hopf bifurcations in fast-slow systems of ordinary differential equations can be
associated with surprising rapid growth of periodic orbits. This process is referred
to as canard explosion. The key step in locating a canard explosion is to calculate
the location of a special trajectory, called a maximal canard, in parameter space. A
first-order asymptotic expansion of this location was found by Krupa and Szmolyan
[Krupa and Szmolyan, 2001b,a,c] in the framework of a “canard point”-normal-form
for systems with one fast and one slow variable. We show how to compute the coef-
ficient in this expansion using the first Lyapunov coefficient at the Hopf bifurcation
thereby avoiding use of this normal form. Our results connect the theory of canard ex-
plosions with existing numerical software, enabling easier calculations of where canard
explosions occur.

1 Introduction

Our framework in this paper is the theory of fast-slow ordinary differential equations (ODEs):

ǫẋ = ǫ
dx

dτ
= f(x, y, λ, ǫ) (1)

ẏ =
dy

dτ
= g(x, y, λ, ǫ)

where (x, y) ∈ R
m × R

n, λ ∈ R is viewed as a parameter and ǫ is sufficiently small, i.e.
0 < ǫ ≪ 1. The functions f : Rm × Rn × R × R → Rm and g : Rm × Rn × R × R → Rn

are assumed to be at least C3 in this paper. The variables x are fast and the variables y are
slow. An introduction to the theory of fast-slow systems from the geometric viewpoint can
be found in [Arnold, 1994; Jones, 1995; Guckenheimer, 2002], asymptotic methods are devel-
oped in [Mishchenko and Rozov, 1980; Grasman, 1987] and ideas from nonstandard analysis
are considered in [Diener and Diener, 1995]. We will only use geometric and asymptotic
methods here.

In the singular limit ǫ→ 0 the system (1) becomes a differential-algebraic equation. The
algebraic constraint defines the critical manifold:

C0 = {(x, y) ∈ R
m × R

n : f(x, y, λ, 0) = 0}
∗Center for Applied Mathematics, Cornell University

1

http://arxiv.org/abs/1201.6595v1


For a point p ∈ C0 we say that C0 is normally hyperbolic at p if all the eigenvalues of the
m × m matrix Dxf(p) have non-zero real parts. A normally hyperbolic subset of C0 is an
actual manifold and we can locally parametrize it by a map ψ(y) = x. This yields the slow
subsystem (or reduced flow) ẏ = g(ψ(y), y, λ, 0) defined on C0.

Changing in (1) from the slow time scale τ to the fast time scale t = τ/ǫ yields:

x′ =
dx

dt
= f(x, y, λ, ǫ) (2)

y′ =
dy

dt
= ǫg(x, y, λ, ǫ)

Taking the singular limit ǫ → 0 in (2) gives the fast subsystem (or layer equations) x′ =
f(x, y, λ, 0) with the slow variables y acting as parameters. A point p ∈ C0 is an equilibrium
of the fast subsystem. We call a subset S ⊂ C0 an attracting critical manifold if all points p
on it are stable equilibria of the fast subsystem i.e. all eigenvalues of Dxf(p) have negative
real parts. The subset S ⊂ C0 is called a repelling critical manifold if for all p ∈ S at least
one eigenvalue of Dxf(p) has positive real part.

Fenichel’s Theorem [Fenichel, 1979] states that normally hyperbolic critical manifolds
perturb to invariant slow manifolds Cǫ. A slow manifold Cǫ is O(ǫ) distance away from C0.
The flow on the (locally) invariant manifold Cǫ converges to the slow subsystem on the crit-
ical manifold as ǫ→ 0. Slow manifolds are usually not unique for a fixed value of ǫ = ǫ0 but
lie at a distance O(e−k/ǫ0) away from each other for some k > 0; nevertheless we shall refer
to “the slow manifold” associated to subset of the a critical manifold with the possibility of
an exponentially small error being understood.

Suppose the critical manifold can be divided into two subsets Sa and Sr where Sa is
attracting and Sr is repelling so that C0 = Sa ∪ L ∪ Sr. Here L denotes the part of C0 that
is not normally hyperbolic. We assume that for p ∈ L the matrix Dxf(p) has a single zero
eigenvalue with right and left eigenvectors v and w and that w ·Dxx(p)(v, v) and w ·Dyf(p)
are non-zero. In this case points in L are called fold points. We can use the flow of (2) to
extend the associated slow manifolds Sa,ǫ and Sr,ǫ but the extensions might not be normally
hyperbolic. The key definition used in this paper is that a trajectory γ in the intersection
of Sa,ǫ and Sr,ǫ is called a maximal canard; note that this definition requires the extensions
of the slow manifolds under the flow. Observe that γ ⊂ Sr,ǫ despite the fact that Sr,ǫ is
repelling in the fast directions.

We are interested in the case when a fast-slow system undergoes a Hopf bifurcation and
a maximal canard is formed close to this bifurcation. The periodic orbits resulting from the
Hopf bifurcation grow rapidly in a λ-interval of width O(e−K/ǫ) for some k > 0. The rapid
orbit growth is usually referred to as canard explosion and the bifurcation scenario is called
singular Hopf bifurcation.

The paper is organized as follows. In Section 2 we describe results on singular Hopf
bifurcation and canard explosion obtained by Krupa and Szmolyan [Krupa and Szmolyan,
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2001b]. In Section 3 we clarify the different definitions of the first Lyapunov coefficient of
a Hopf bifurcation. In Section 4 we present the main results on the relation between the
location of the maximal canard and the first Lyapunov coefficient. We describe which terms
will contribute to the first order approximation using a rescaled Hopf bifurcation normal
form. Then we show explicitly how to compute a first order approximation to the location of
the maximal canard avoiding additional center manifold reduction and normal form trans-
formations. In Section 5 we locate the maximal canards in two examples: a two-dimensional
version of van der Pol’s equation and a three-dimensional version of the FitzHugh-Nagumo
equation.

Note that we do not give a detailed description of dynamics associated to a singular Hopf
bifurcation and refer the reader to the previous extensive literature e.g. [Baer and Erneux,
1986, 1992; Braaksma, 1998; Krupa and Szmolyan, 2001b; Guckenheimer, 2008].

2 Canard Explosion

We describe the main results about canard explosion in fast-slow systems with one fast and
one slow variable from [Krupa and Szmolyan, 2001b]. Consider a planar fast-slow system of
the form

x′ = f(x, y, λ, ǫ)

y′ = ǫg(x, y, λ, ǫ) (3)

where f, g ∈ Ck(R4,R) for k ≥ 3, λ ∈ R is a parameter and 0 < ǫ ≪ 1. Denote the critical
manifold of (3) by C0. We assume that C0 is locally parabolic with a minimum at the origin
(x, y) = (0, 0) independent of λ so that (0, 0) is a fold point; more precisely

f(0, 0, λ, 0) = 0, fx(0, 0, λ, 0) = 0, fxx(0, 0, λ, 0) 6= 0, fy(0, 0, λ, 0) 6= 0 (4)

In addition, we assume that g(0, 0, λ 6= 0, 0) 6= 0; under these conditions the fold point at
the origin is generic for λ 6= 0. We assume without loss of generality that fxx(0, 0, λ, 0) > 0
so that C0 is locally a parabola with a minimum at the origin. Using (4) and the implicit
function theorem we have that C0 is the graph of a function y = φ(x) for φ : U → R where
U is a sufficiently small neighbourhood of x = 0. Assume that C0 splits into an attracting
and a repelling curve C = Cl ∪ {(0, 0)} ∪ Cr where

Cl = {x < 0, fx < 0} ∩ C0, Cr = {x > 0, fx > 0} ∩ C0

The situation is shown in Figure 1(a). Differentiating y = φ(x) with respect to τ = tǫ
we get that the slow flow on C0 is defined by

dx

dτ
= ẋ =

g(x, φ(x), λ, 0)

φ′(x)

Note that the slow flow is singular for λ 6= 0 at (0, 0) since φ′(0) = 0 and g(0, 0, λ, 0) 6= 0.
Assume that at λ = 0 we have a non-degenerate canard point (see Figure 1(b)) so that in
addition to the fold conditions we have

g(0, 0, 0, 0) = 0, gx(0, 0, 0, 0) 6= 0, gλ(0, 0, 0, 0) 6= 0
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Figure 1: (a) A generic fold for λ 6= 0. (b) A nondegenerate canard point for λ = 0. The
slow flow is indicated by single and the fast flow by double arrows.

Therefore the slow flow is well-defined at (0, 0) for λ = 0 and we assume without loss of
generality that ẋ > 0 in this case. Near a non-degenerate canard point (3) can be transformed
into a normal form [Krupa and Szmolyan, 2001c]:

x′ = −yh1(x, y, λ, ǫ) + x2h(x, y, λ, ǫ) + ǫh3(x, y, λ, ǫ)

y′ = ǫ(xh4(x, y, λ, ǫ)− λh5(x, y, λ, ǫ) + yh6(x, y, λ, ǫ)) (5)

where the functions hi are given by:

h3(x, y, λ, ǫ) = O(x, y, λ, ǫ)

hj(x, y, λ, ǫ) = 1 +O(x, y, λ, ǫ), j = 1, 2, 4, 5

We define several computable constants, abbreviating (0, 0, 0, 0) = 0 in the definitions:

a1 = (h3)x(0), a2 = (h1)x(0), a3 = (h2)x(0), a4 = (h4)x(0), a5 = (h6)x(0)

Note that all ai for i = 1, 2, 3, 4, 5 only depend on partial derivatives with respect to x. Next
we define another constant:

A = −a2 + 3a3 − 2a4 − 2a5

Theorem 2.1. ([Krupa and Szmolyan, 2001b]) For 0 < ǫ < ǫ0, |λ| < λ0 and ǫ0 > 0, λ0 > 0
sufficiently small and under the previous assumptions in this section there exists a unique
equilibrium point p for (5) in a neighbourhood of (x, y) = (0, 0). The equilibrium p undergoes
a Hopf bifurcation at λH with

λH = −a1 + a5
2

ǫ+O(ǫ3/2) (6)

The slow manifolds Cǫ,l and Cǫ,r intersect/coincide in a maximal canard at λc for

λc = −
(

a1 + a5
2

+
A

8

)

ǫ+O(ǫ3/2) (7)

The equilibrium p is stable for λ < λH and unstable for λ > λH . The Hopf bifurcation is
non-degenerate for A 6= 0, supercritical for A < 0 and subcritical for A > 0.
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Remark: The asymptotic expansions for λH and λc are asymptotic series with asymptotic
sequence {ǫk/2}∞k=0 and Theorem 2.1 implies that the first two coefficients of the expansion
are zero and the third coefficient can be computed explicitly.

Note that currently no standard bifurcation software such as AUTO [Doedel, Champneys, Dercole, Fairgrieve, Kuznetsov, Oldeman, Paffenroth, Sandstede, Wang, and Zhang,
2007] or MatCont [Govaerts and Kuznetsov, 2008] computes the constants ai and A auto-
matically. Nevertheless bifurcation software can detect Hopf bifurcations so that given a
fixed ǫ we can approximate λH numerically. Hence the numerical problem that remains is
to compute A since

λH − λc =
A

8
ǫ+O(ǫ3/2)

To simplify the notation we define K = A/8. If we know K we can easily approximate the
location of the maximal canard by λc = λH −Kǫ+O(ǫ3/2). The maximal canard organizes
the canard explosion [Krupa and Szmolyan, 2001b] and indicates where the rapid amplitude
growth of the small orbits generated in the Hopf bifurcation occurs. Our goal is to avoid
any additional normal form transformations and center manifold reductions to compute K.
The key point to achieve this is to observe that K is just a rescaled version of “the” first
Lyapunov coefficient of the Hopf bifurcation at λH .

3 The First Lyapunov Coefficient

We review and clarify the interpretation, computation and conventions associated with the
first Lyapunov coefficient of a Hopf bifurcation. Consider a general N-dimensional ODE at a
non-degenerate Hopf bifurcation point. We assume that the equilibrium has been translated
to the origin so that

z′ =Mz + F (z), for z ∈ R
N (8)

with F (z) = O(‖z‖2) and M = (mij). Taylor expanding F yields

z′ =Mz +
1

2
B(z, z) +

1

6
C(z, z, z)

where the multilinear functions B and C are given by:

Bi(u, v) =
N
∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣

∣

∣

∣

ξ=0

ujvk

Ci(u, v, w) =

N
∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣

∣

∣

∣

ξ=0

ujvkwl

The matrix M has eigenvalues λ1,2 = ±iω0 for ω0 > 0. Let q ∈ CN be the eigenvector of λ1
and p ∈ CN the corresponding eigenvector of the transpose MT i.e.

Mq = iω0q, Mq̄ = −iω0q̄, MT p = −iω0p, Mp̄ = iω0p̄

where the the overbar denotes componentwise complex conjugation. We can always normal-
ize p so that the standard complex inner product with q satisfies p̄T q =

∑N
j=1 p̄jqj = 1. The
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first Lyapunov coefficient of the Hopf bifurcation can then be defined by ([Kuznetsov, 2004],
p.180):

lKu
1 =

1

2ω0

(

p̄TC(q, q, q̄)− 2p̄TB(q, L−1B(q, q̄)) + p̄TB(q̄, (2iω0IN −M)−1B(q, q))
)

(9)

In the case of a two-dimensional vector field F = (F 1, F 2) the formula (9) can be expressed
in the simpler form ([Kuznetsov, 2004], p.98):

lKu
1 =

1

2ω2
0

Re(ig20g11 + ω0g21) (10)

where
g20 = p̄TB(q, q), g11 = p̄TB(q, q̄), g21 = p̄TC(q, q, q̄)

It is important to note that lKu
1 is not uniquely defined until we choose a normalization of the

eigenvector q. We adopt the convention using unit norm q̄T q = 1. A slight modification of the
formula (9) is used to evaluate the Lyapunov coefficient lMC

1 numerically in the bifurcation
software MatCont [Govaerts and Kuznetsov, 2008]. Using the current MatCont convention1

we note that
ω0l

Ku
1 = lMC

1

Other expressions for the first Lyapunov coefficient can be found in the literature. We
consider only the planar case using simpler notation (z1, z2) = (x, y):

(

x′

y′

)

=

(

F 1(x, y)
F 2(x, y)

)

=:M

(

x
y

)

+

(

f(x, y)
g(x, y)

)

(11)

Then another convention for l1 is ([Chow, Li, and Wang, 1994], p.211):

lCLW
1 =

m12

16ω4
0

[ω2
0[(fxxx + gxxy) + 2m22(fxxy + gxyy)−m21(fxyy + gyyy)]

−m12m22(f
2
xx − fxxgxy − fxygxx − gxxgyy − 2gxy)

−m21m22(g
2
yy − gyyfxy − gxyfyy − fxxfyy − 2f 2

xy) (12)

+m2
12(fxxgxx + gxxgxy)−m2

21(fyygyy + fxyfyy)

−(ω2
0 + 3m2

22)(fxxfxy − gxygyy)]

where all evaluations in (12) are at (x, y) = (0, 0). Next, assume that we have applied a
preliminary linear coordinate change

(

x
y

)

= N

(

u
v

)

where N : R2 → R
2

to the system (11) to transform M into Jordan normal form. Then we look at:
(

u′

v′

)

=

(

0 −ω0

ω0 0

)(

u
v

)

+N−1

(

f(u, v)
g(u, v)

)

=

(

0 −ω0

ω0 0

)(

u
v

)

+

(

f ∗(u, v)
g∗(u, v)

)

(13)

1MatCont version 2.5.1 - December 2008
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In this case the Lyapunov coefficient formula simplifies ([Guckenheimer and Holmes, 1983],
p.152):

lGH
1 =

1

16
[f ∗

xxx + f ∗

xyy + g∗xxy + g∗yyy] +
1

16ω0
[f ∗

xy(f
∗

xx + f ∗

yy)

−g∗xy(g∗xx + g∗yy)− f ∗

xxg
∗

xx + f ∗

yyg
∗

yy] (14)

Note that the linear transformation N is not unique. We adopt the convention that

N =

(

2Re(q1) −2Im(q1)
2Re(q2) −2Im(q2)

)

where q = (q1, q2) is the normalized eigenvector of the linearization L that satisfies Lq = iω0q.
Another common definition for (13) is ([Perko, 2001], p.353):

lPe
1 =

3π

4ω2
0

([f ∗

xyf
∗

yy + f ∗

yyg
∗

yy − f ∗

xxg
∗

xx − g∗xyg
∗

xx − g∗xyg
∗

yy + f ∗

xyf
∗

xx]

+ω0[g
∗

yyy + f ∗

xxx + f ∗

xyy + g∗xxy]) (15)

The Hopf bifurcation theorem holds for any version of l1 as only the sign is relevant in this
case:

Theorem 3.1. (see e.g. [Guckenheimer and Holmes, 1983; Kuznetsov, 2004]) A non-degenerate
Hopf bifurcation of (8) is supercritical if l1 < 0 and subcritical if l1 > 0.

Since we need not only a qualitative result such as Theorem 3.1, but a quantitative one
relating the Lyapunov coefficient to canard explosion, it is necessary to distinguish between
the different conventions we reviewed above.

4 Relating l1 and K

Krupa and Szmolyan consider a blow-up [Krupa and Szmolyan, 2001b,c,a] of (5) given by
Φ : S3 × I → R4 in a particular chart K2:

x = rx2, y = r2y2, λ = rλ2, ǫ = r2ǫ2 (16)

where r ∈ I ⊂ R and (x2, y2, λ2, ǫ2) ∈ S3. Using (16) the resulting vector field can be
desingularized by dividing it by

√
ǫ. We shall not discuss the details of the blow-up approach

and just note that this transformation and the following desingularization are simply a
rescaling of the vector field given by:

x2 = ǫ−1/2x, y2 = ǫ−1y, λ2 = ǫ−1/2λ, t2 = ǫ1/2t (17)

Using the formula from Chow, Li and Wang [Chow, Li, and Wang, 1994] in the rescaled
version of (5) Krupa and Szmolyan get the following result:

Proposition 4.1. In the coordinates (17) the first Lyapunov coefficient l1 has asympototic
expansion:

l̄CLW
1 = K

√
ǫ+O(ǫ) (18)

where the overbar indicates the first Lyapunov coefficient in coordinates given by (17).
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First, we want to explain in more detail which terms in the vector field (5) contribute to
the leading order coefficient K. The main problem is that the Lyapunov coefficient is often
calculated after an ǫ-dependent rescaling, such as (17), has been carried out. This can lead to
rather unexpected effects in which terms contribute to the Lyapunov coefficient, as pointed
out by Guckenheimer [Guckenheimer, 2008] in the context of singular Hopf bifurcation in R3.

To understand how the rescaling (17) affects the Lyapunov coefficient we consider the
Hopf normal form case. We start with a planar vector field with linear part in Jordan form
(13). Assume that the equilibrium is at the origin (x, y) = 0 and Hopf bifurcation occurs for
λ = 0. Applying the rescaling (17) we get:

(

dx2/dt2
dy2/dt2

)

=

(

0 −ω0/
√
ǫ

ω0/
√
ǫ 0

)(

x2
y2

)

+

(

1
ǫ
f ∗(

√
ǫx2, ǫy2)

1
ǫ3/2

g∗(
√
ǫx2, ǫy2)

)

(19)

In a fast-slow system with singular Hoof bifurcation we know that g∗(., .) = ǫ(. . .) and that
ω0 = O(

√
ǫ). Setting kω = ω0/

√
ǫ the Lyapunov coefficient can be computed to leading order

by (14):

l̄GH
1 =

1

kω

(

f ∗

x2x2
(0, 0)[g∗x2x2

(0, 0) + f ∗

x2y2
(0, 0)] + kωfx2x2x2

(0, 0)
)√

ǫ+O(ǫ) (20)

Equation (20) explains the leading-order behaviour more clearly and shows that due to the
rescaling certain derivative terms in the Lyapunov coefficient for a singular Hopf bifurcation
are non-leading terms with respect to ǫ → 0. The point is that the rescaling modifies the
order with respect to ǫ of the linear and nonlinear terms. Also, applying the chain rule to
the nonlinear terms to calculate the necessary derivatives can affect which terms contribute.

To make Proposition (4.1) more useful in an applied framework we have computed all
the different versions of the Lyapunov coefficient defined in Section (3) up to leading order
for equation (5) in original non-rescaled coordinates. The computer algebra system Maple
[Inc., 2008] was used in this case:

lKu
1 =

4K√
ǫ
+O(

√
ǫ)

lMC
1 =

4Kω0√
ǫ

+O(ω0

√
ǫ)

lGH
1 = K +O(ǫ) (21)

lCLW
1 = K +O(ǫ)

lPe
1 =

3πK

64ω0
+O(ǫ/ω0)

Using the results (21) we now have a direct strategy how to analyze a canard explosion
generated in a singular Hopf bifurcation.

1. Compute the location of the Hopf bifurcation. This gives λH .

2. Find the first Lyapunov coefficient at the Hopf bifurcation, e.g. we get lMC
1 ≈ 4Kω0/

√
ǫ.

8



3. Compute the location of the maximal canard, and hence the canard explosion, by
λc ≈ λH −Kǫ. For example, using MatCont we would get

λc ≈ λH − lMC
1

4ω0
ǫ3/2 (22)

Observe that the previous calculation may require calculating the eigenvalues at the Hopf
bifurcation to determine ω0 but does not require any center manifold calculations nor addi-
tional normal form transformations; these have basically been encoded in the calculation of
the Lyapunov coefficient.

5 Examples

The first example is a version of van der Pol’s equation [der Pol, 1920, 1926; Krupa and Szmolyan,
2001b] given by:

x′ = y − x2 − x3

3
y′ = ǫ(λ− x)

We have to reverse time t→ −t to satisfy the assumptions of Section (2). This gives:

x′ = x2 +
x3

3
− y

y′ = ǫ(x− λ) (23)

The critical manifold is given by C0 = {y = x2 + x3/3} with two fold points at (0, 0) and
(−2, 4/3). The fold points split the critical manifold into three normally hyperbolic parts:

Cl = C0 ∩ {x < −2}, Cm = C0 ∩ {−2 < x < 0}, Cr = C0 ∩ {0 < x}

We only study the fold point at the origin which becomes a canard point for λ = 0. The
unique equilibrium point p = (xe(λ), ye(λ)) of (23) lies on C0 and satisfies xe(λ) = λ. It is
easy to check that subcritical Hopf bifurcation occurs for λ = λH = 0. Matching terms in
(23) and the normal form (5) we find:

h1 = h4 = h5 = 1, h2 = 1 +
1

3
x, h6 = 0

Therefore K = 1/8 and we find analytically that the location of the maximal canard repre-
senting the intersection of Cm,ǫ and Cr,ǫ is

λc = −(1/8)ǫ+O(ǫ3/2) (24)

A numerical continuation calculation using a bifurcation software tool - we used MatCont
[Govaerts and Kuznetsov, 2008] - gives that the first Lyapunov coefficient for the Hopf bi-
furcation at λ = λH = 0 for ǫ = 0.05 is

lMC
1 ≈ 0.4762

9



An easy calculation2 yields that ω0 ≈ 0.2236. Using (22) we compare this to the result in
equation (24) with ǫ = 0.05. Dropping higher-order terms we have:

λc(analytical) = −0.0063, λc(numerical using l1) = −0.0060 (25)

The coincidence of the values of the location of the maximal canard is already quite good
but this is expected since we have only compared the asymptotic formula to the Lyapunov
coefficient formula derived from it which was evaluated numerically using continuation. A
simple direct test to compare (25) to the location of the maximal canard is to use continua-
tion of periodic orbits from the Hopf bifurcation point. The results are shown in Figure 2.

−2 −1 0 1

0

1

x

y

C0

y

x

C0

Figure 2: Continuation of periodic orbits emanating from the Hopf bifurcation at λ = 0.
The parameter values for the red orbits are λ = −0.001, −0.0025, −0.004, −0.005, −0.006,
−0.0065 and for all the green orbits the parameter value is λ ≈ −0.006509 indicating a
canard explosion near this parameter value.

Remark: Depending on the bifurcation software used, direct continuation of periodic
orbits can fail for small values of ǫ. In this case special methods are needed to con-
tinue periodic orbits having canard segments; see e.g. [Guckenheimer and LaMar, 2007;
Guckenheimer and Kuehn, 2009b; Desroches, Krauskopf, and Osinga, 2010]. Note that lo-
cating Hopf bifurcations and calculating Lyapunov coefficients works well even for very small
values of ǫ as we require only local algebraic calculations.

We conclude from Figure 2 that our estimates in (25) are very good indicators to deter-
mine where the canard explosion exists since they are already decent for a relatively large
ǫ = 0.05. In many standard fast-slow systems values of ǫ ≤ 0.01 are commonly considered.

2Using MatCont 2.5.1. we can modify the file /matcont2.5.1/MultilinearForms/nf H.m to return the
variable omega= ω0 or to return lK

1
= lMC

1
/ω0.
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In higher dimensions the analytical calculations will be very difficult to carry out. As a
second example consider a version of the FitzHugh-Nagumo equation [Champneys, Kirk, Knobloch, Oldeman, and Sneyd,
2007; Guckenheimer and Kuehn, 2009a, 2010]:

x′1 = x2

x′2 =
1

5
(sx2 − x1(x1 − 1)(0.1− x1) + y − I) (26)

y′ =
ǫ

s
(x1 − y)

where I and s are parameters. Equation (26) has two fast and one slow variable and a
unique equilibrium point p(I) = p. For a detailed fast-slow system analysis describing the
bifurcations we refer the reader to [Guckenheimer and Kuehn, 2009a, 2010]. We only note
that the critical manifold is cubic curve given by

C0 = {(x1, x2, y) ∈ R
3 : x2 = 0 and y = x1(x1 − 1)(0.1− x1) + I}

It is normally hyperbolic away from two fold points x1,± given by the local minimum and
maximum of the cubic. The equilibrium p passes through the fold points under param-
eter variation; O(ǫ) away from these points the equilibrium undergoes Hopf bifurcation
[Guckenheimer and Kuehn, 2009a, 2010]. We shall just compute a particular case applying
our result (21). We fix s = 1.37 and observe that I plays the same role as λ in our previous
calculations. We calculated the location of the maximal canard for several values of ǫ. The
results are shown in Table 1.

ǫ Ic Ic(Lyapunov)
10−2 ≈ 0.0582046 ≈ 0.06308

5 · 10−3 ≈ 0.0545535 ≈ 0.05629
10−3 ≈ 0.0517585 ≈ 0.05196

5 · 10−4 ≈ 0.0514108 ≈ 0.05150

Table 1: Comparison between the actual location of the maximal canard (canard explo-
sion) Ic and the first-order approximation Ic(Lyapunov) computed using the first Lyapunov
coefficient at the Hopf bifurcation.

The second column of Table 1 shows the actual location Ic of the maximal canard (canard
explosion) obtained from continuation of periodic orbits using AUTO [Doedel, Champneys, Dercole, Fairgrieve, Kuznetsov, Oldeman, Paffenroth, Sandstede, Wang, and Zhang,
2007]. The third column shows the approximation obtained by using the first Lyapunov coef-
ficient. The Lyapunov coefficient has been computed using MatCont [Govaerts and Kuznetsov,
2008]. The error E(ǫ) of this calculation is of order O(ǫ3/2) as expected from (18). Obviously
the approximation improves for smaller values of ǫ.

In the case of ǫ = 0.01 it has been shown in [Guckenheimer and Kuehn, 2009a, 2010] that
there is an intricate bifurcation scenario involving homoclinic orbits in a parameter interval
near Ic. The first order approximation of the maximal canard is not sufficient to relate
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it to the homoclinic bifurcation. This shows that the magnitude of ǫ and other relevant
bifurcations in the system have to be taken into account carefully when applying the results
we presented here.

6 Discussion

We have investigated the relation between the first Lyapunov coefficient at a singular Hopf
bifurcation and the associated maximal canard orbit. The major result is that no additional
algorithms are needed to compute a first order approximation to the location of the maximal
canard. Standard bifurcation software packages compute the Lyapunov coefficient and our
results can be used to approximate the maximal canard location from this numerical calcu-
lation.

We also pointed out that there is no “standard definition” of the first Lyapunov coef-
ficient of a Hopf bifurcation. This is not surprising since classical qualitative bifurcation
theory only requires the sign of the Lyapunov coefficient. We hope that the comparison in
Section 3 will help the reader to adapt their own numerical algorithms and software packages
to support the calculation of maximal canard locations.

Open questions which we leave for future work include the extensions to multiple slow
variables, higher-order asymptotic expansions and the relation between the Lyapunov coef-
ficient and blow-up transformations.
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