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On the statistical distribution of first–return

times of balls and cylinders in chaotic systems

G.Mantica∗, and S.Vaienti †

Abstract

We study returns in dynamical systems: when a set of points, initially
populating a prescribed region, swarms around phase space according to
a deterministic rule of motion, we say that the return of the set occurs
at the earliest moment when one of these points comes back to the orig-
inal region. We describe the statistical distribution of these “first–return
times” in various settings: when phase space is composed of sequences of
symbols from a finite alphabet (with application for instance to biological
problems) and when phase space is a one and a two-dimensional man-
ifold. Specifically, we consider Bernoulli shifts, expanding maps of the
interval and linear automorphisms of the two dimensional torus. We de-
rive relations linking these statistics with Rényi entropies and Lyapunov
exponents.

1 Introduction

In this paper we investigate a phenomenon of vast relevance in physics: returns.
Whenever a system evolves according to a deterministic, or even a probabilis-
tic law, along the course of time it may pass close to points previously visited.
We then speak of returns and of return times. Of course, this concept can be
made precise and rigorous: this has been done since the beginning of the theory
of dynamical system, where Poincaré theorem—establishing that in measure
preserving systems returns happen almost surely—is probably the first and cer-
tainly the most celebrated result. Passing via Kac theorem and coming to recent
years, mathematical investigation has flourished and produced beautiful results
relating the statistics of return times, i.e. the collective counting of these values,
to more conventional dynamical indicators, such as generalized dimensions of
invariant measures, Lyapunov exponents and the like. This paper continues in
this ongoing investigation, with a special character: rather than presenting a
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single, thoroughly investigated result, we attempt to provide a heuristic, global
picture of the dynamical phenomena that are at work. This picture will be con-
firmed by numerical experiments. Rigor and detailed proofs will be the matter
for successive publications.

There exist many different alternatives when defining returns: in this paper,
we make specific reference to what is called the first return of a (measurable)
subset A of a compact metric space, endowed with a measure µ defined on the
Borel sigma algebraA. Motion onX is effected by the action of a transformation
T that preserves the measure µ. We thereby define the time of first return of A
into itself as

τ(A) := min{k > 0 s.t. T kA ∩ A 6= ∅} . (1)

As anticipated in the abstract, this is the time of the earliest return to A of one
of its points:

τ(A) = min{k > 0 s.t. ∃x ∈ A; T k(x) ∈ A}. (2)

Two choices will be made for A. Firstly, A will be a ball of radius ε, centered
at a point x ∈ X : Bε(x). Secondly, A will be a dynamically generated cylinder.
Let us suppose that C is a finite partition of X and take the n-join, Cn :=
∨n−1
i=0 T

−iC. We call cylinder of length n around x ∈ X , denoted with Cn(x),
the unique element of Cn containing x. The statistics of return times are then
defined by the collective counting, over different sets, of the values τ(A). The
distribution of return times, p(ε, k) is

p(ε, k) := µ({x ∈ X s.t τ(Bε(x)) = k}); (3)

similarly, p(n, k) is defined replacing Bε(x) by Cn(x). They measure the fraction
of points in the space X whose neighborhood (whether a ball of radius ε, or a
cylinder of length n) first returns to itself after k iterations of the map. We
shall also consider the cumulative distributions (integrated statistics) P (ε, k),

P (ε, k) :=

k∑
j=1

p(ε, j) (4)

and P (n, k). Our aim will be to study the behavior of these distributions in
systems that are simple enough to permit both a theoretical analysis and a
precise numerical simulation.

The time of first return of sets (1) arises in several circumstances. Since
it controls the shortest return time of points in the set, it plays a crucial role
to establish the asymptotic (exponential) distribution of the return times of all
points to the set A, when the measure of the set A goes to zero, a different
and much investigated topic [16, 3, 1, 2, 22, 20, 19]. In addition, it has been
used to define the recurrence dimension, being used as the gauge set function
to construct a suitable Carathéodory measure [5, 25, 7]. Finally, it has been
related to the algorithmic information content [11].

Returns of sets is also relevant in applications, like those of biological interest.
In fact, when the space X consists of sequences of symbols from a finite alphabet
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(think e.g. of DNA sequencing) particular words, or motifs have been found to
be related to biological mechanisms like transcription sites or protein interaction
(see for instance [28]). It is then important to quantify the statistical properties
of these words within the genome. In particular, a typical word of length n
(that is, a finite sequence of n letters) will recur within a time of the order enh,
for large n, where h is the metric entropy of the system, as predicted by the
Ornstein-Weiss theorem [23]. Yet, if we look at the delay of the first recurrence
of the same word, when observed in the whole (possibly infinite) sequence, this
scales as n [29, 6]. This time of first return is precisely the quantity studied in
this paper.

The plan of the paper is the following: in the next section we review a few
results that are useful for the understanding of the paper. For this reason we
neither need nor claim completeness. In Sect. 3 we consider the case of return
times in cylinders for Bernoulli systems. Quite evidently, this is the simplest
setting where to study return times of sets. We first present a heuristic expla-
nation of the results rigorously proven in [4] and [21] that permit to compute,
via return times, the Rényi entropies. Then, we refine this analysis to obtain
new results on the type of convergence of the conventional quantities and we in-
troduce a new one, for which convergence is much faster. Moreover, our theory
allows us to obtain a description of the different asymptotics of p(n, k) in the
(n, k) plane. In Sect. 4 we leave the symbolic description to enter a geometric
setting by considering expanding maps of the interval. We show how results
proven in the symbolic setting can be adapted to describe the distribution func-
tion p(ε, k). In particular, we obtain a formula for the asymptotic behavior of
this function when k and − log ε grow while keeping a constant ratio, that in-
volves the Lyapunov exponent and the Rényi entropies. While the treatment of
Sect. 4 is tailored on the specific system under investigation, the following Sect.
5 introduces a more general approach, that confirms the results of the previous
section. Following these ideas, in Sect. 6 we consider the case of linear auto-
morphisms of the two-dimensional torus, that can be investigated completely.
We also conjecture a general form for the constant k over − log ε asymptotics
described above. In the Conclusions we review the new results presented in this
paper.

2 Review of known results and definitions

Many facts concerning return times of sets are known. In this section we review
a few of these results that are relevant for the understanding of this paper. If the
dynamical system (X,µ, T ) has positive metric entropy, hµ, it has been proven
[29, 6] that:

lim inf
n→∞

τ(Cn(x))

n
≥ 1 . (5)

The limit of the quantity above exists and is equal to one µ-almost every-
where in certain cases, including irreducible and aperiodic subshifts of finite
type, systems verifying the specification property [6] and even non-uniformly
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hyperbolic maps of the interval [22, 15]. It is therefore of importance to study
the measure of the set of points that deviate from the almost-sure behavior, a
quantity that typically decays exponentially in time. To do this precisely, one
defines the deviation function M(δ),

M(δ) := lim
n→∞

1

n
logµ({x ∈ X s.t

τ(Cn(x))

n
< δ}). (6)

In the language of the previous section this becomes

M(δ) = lim
n→∞

1

n
logP (n, δn) (7)

In [4] it has been proven that, for ψ-mixing dynamical systems with some
restrictions (see the original paper for definition and further specifications) the
limit above exists and is related to the generalized Rényi entropies H of the
invariant measure µ via

M(δ) = (δ − 1)H(
1

δ
− 1), (8)

whenever the latter function exists, being it defined via a summation over all
cylinders C of length n,

H(β) := − 1

β
lim
n→∞

1

n
log

∑
C∈Cn

µ(C)β+1. (9)

Observe that meaningful values of δ in eq. (6) range from zero to one, so that
β = 1

δ − 1 is always larger than zero. For non-integer values of 1
δ , a linear

interpolation of the values provided by eq. (8) applies.
Rényi entropies have been introduced in [27] and they have been extensively

studied for their connections with various generalized spectra of dimensions of
invariant sets, see for instance [18, 9, 14, 10, 17, 13, 24, 31, 32]. The restrictions
in [4] have been removed in [21] and in this last paper the Rényi entropies have
been proved to exist for a weaker class of ψ-mixing measures.

On the other hand, one might try to answer similar questions when balls are
considered in place of cylinders. For instance, if Bε(x) is the ball of radius ε
centered at x ∈ X , the natural generalization of the limit (5) is the quantity

η(x) := lim
ε→0+

τ(Bε(x))

− log ε
. (10)

For a large class of maps of the interval, it has been proved in [29] that η(x)
exists for µ-almost all x and is equal to the inverse of λ, the Lyapunov exponent
of the measure µ. For hyperbolic smooth diffeomorphisms of a compact manifold
a similar result holds, to the extent that

1

Λu
≤ lim inf

ε→0

τ(Bε(x))

− log ε
≤ lim sup

ε→0

τ(Bε(x))

− log ε
≤ 1

λu
, (11)
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where Λu and Λs are the largest and the smallest Lyapunov exponents, while
λu is the smallest positive Lyapunov exponent and λs is the largest negative

Lyapunov exponent, see [30]. In the case of diffeomorphisms in two dimensions,
the above formula leads to the equality

lim
ε→0

τ(Bε(x))

− log ε
=

1

Λu
− 1

Λs
=

1

λu
− 1

λs
=
D1(µ)

hµ
. (12)

The last equality above is Young’s formula, in which D1(µ) is the information
dimension and hµ is the metric entropy of the measure µ. One of the goals of
this paper is to generalize the results (7), (8) in the case of balls.

3 Return times in Bernoulli shifts

In this section we take a close look at Bernoulli processes, that are the simplest,
yet significant, example of ψ-mixing systems. For these, eq. (8) holds and the
function H can be easily computed. In our view, this result is particularly sig-
nificant, because it relates a thermodynamical quantity, the spectrum of Rényi
entropies, to the statistics of return times. Our aim is to investigate the kind
of convergence holding for eq. (7) and more generally the form of the distribu-
tion p(n, k). We shall also introduce a slightly different quantity than P (n, δn),
still based on return times, that also yields M(δ) in the limit, but for which
convergence is much faster.

Let us start from notations: we consider the full shift on the space of se-
quences of M symbols, Σ := {0, . . . ,M − 1}Z+ . Let us stipulate that the
cylinders in Cn can be written as Cσ0,...,σn−1

, where σi ∈ {0, . . . ,M − 1}, for
i = 1, . . . , n− 1. For short, we shall sometimes write σ for the vector of indices
σi, and |σ| will be the length of this vector. σ is also called a “word” in symbolic
language. With a slight abuse of notation, we shall sometimes write τ(σ) and
µ(σ), the return time and the measure of the word σ, in place of τ(Cσ) and
µ(Cσ), the return time and the measure of the cylinder Cσ labeled by the word
σ. Similarly, we shall let Σn := {0, . . . ,M − 1}n indicate the set of words of
length n and Cn the set of the associated cylinders, at times interchangeably.

The Bernoulli invariant measure on Σ is induced by the set of probabil-
ities {πj}, j = 0, . . . ,M − 1. For simplicity, in the numerical simulations,
we shall consider the two-symbols (coin toss) Bernoulli game of parameter q:
π0 = q, π1 = 1− q.

Fig. 1 depicts the function p(n, k) for q = 0.3. Two features are evident:
the first, is the slow decay of p(n, 1) with increasing n. The second is the much
faster decay of p(n, 2). Both these features, and more, can be explained by
computing the asymptotic behavior of p(n, k) for k fixed and large n.

The case k = 1 follows immediately from the observation that the only words
σ for which τ(σ) = 1 are composed of a single symbol: σi = j for all i, where
j ∈ {0, . . . ,M − 1}. The measure of the associated cylinders is πn

j , so that
p(n, 1) is the sum of these quantities over all j, and behaves asymptotically as
an, where a = max{πj}.
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Figure 1: Distribution function p(n, k) for the Bernoulli game with q = 0.3.

Let now Tn,k the set of words of length n with first return time k:

Tn,k = {σ ∈ Σn s.t. τ(σ) = k}. (13)

The first observation is that for any σ ∈ Tn,k the symbols σi repeat periodically
with period k:

σk+j = σj , j = 0, . . . , n− k. (14)

Define the periodic replication operator Pn,k as that which takes any word σ of
length k into the word σ′ = Pn,k(σ) of length n ≥ k, that satisfies eq. (14). It
is of relevance now to consider the set of words Wn,k defined implicitly by

Tn,k = Pn,k(Wn,k). (15)

The meaning of this definition is simple: words in Wn,k have length k and are
all and the only periodic “roots” of words of Tn,k:

Wn,k = {σ ∈ Σk s.t. τ(Pn,k(σ)) = k}. (16)

Controlling Wn,k is then the same thing as controlling Tn,k.
It is not difficult to prove that for any k

Tk,k = Wk,k ⊂ Wk+1,k ⊂ . . .W2k,k = W2k+1,k = . . . = W2k+j,k, (17)

for any j ≥ 0. Therefore, when n ≥ 2k the set of “roots” Wn,k is constant in n.
Define

m(k) = max
σ∈W2k,k

{#{j s.t. σj = 0}}. (18)
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This is the maximum number of zeros in a word in W2k,k. Since all sets Wn,k

are invariant for permutation of the symbols {0, . . . ,M − 1}, m(k) is also the
maximum number of any other symbol in a word in W2k,k. Suppose now that
only one symbol in {0, . . . ,M − 1} has probability a, so that the probability of
all other symbols is less than a. For simplicity, let us only consider the case of
M = 2. Then, the probability of the word for which m(k) is obtained gives the
leading term in the asymptotic of p(n, k):

log(p(n, k)) ∼ n

k
[m(k) log a+ (k −m(k)) log(1− a)]. (19)

It is also rather easy to see that m(k) = k − 1. In fact, m(k) = k is possible
only for k = 1, and σk−1 = 1, σj = 0 for j = 0, . . . , k − 2 is a word in W2k,k.
Then,

1

n
log(p(n, k)) ∼ (1− 1

k
) log a+

1

k
log(1 − a). (20)

This formula gives the decay rates of p(n, k). They are increasing functions of
k ≥ 2, the most negative being precisely that of p(n, 2), and tend to log(a) when
k goes to infinity.

Let us now consider the asymptotic behavior of p(n, k) over the line k = δn,
where 0 < δ < 1. Firstly, it is clear that Wn,k 6= Σk, since some words of length
k may be associated with shorter return times than k, and one the technical
achievements of refs. [4, 21] is to deal properly with this issue. This fact
notwithstanding, we may begin by assuming heuristically that among all words
σ in Σk, those associated with return times smaller than k and therefore not
in Wn,k, are statistically negligible, in some limit. More refined arguments will
follow later in this section. Under this assumption, the probability p(n, k) can
be approximated by a sum over all words of length k:

p(n, k) =
∑

σ∈Wn,k

µ(Pn,k(σ)) ≃
∑
σ∈Σk

µ(Pn,k(σ)). (21)

Formula (21) can be further developed by estimating the cylinder measure µ(σ′),
where σ′ = Pn,k(σ). Since |σ| = k, |σ′| = n, and since σ′ satisfies eq. (14),

log µ(σ′) =
n

k
logµ(σ), (22)

exactly whenever n
k is an integer (and approximately in the other cases) so that

p(n, k) =
∑
σ∈Σk

µ(Cσ)
n/k. (23)

If we now set k = δn, with 0 < δ ≤ 1 and δ the inverse of an integer, we can
estimate

lim
n→∞

1

n
log p(n, δn) = δ lim

k→∞

1

k
log(

∑
σ∈Σk

µ(Cσ)
1/δ). (24)
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If we now compare this equation with the definition of Rényi entropies, eq. (9),
we easily obtain that

M(δ) = lim
n→∞

1

n
log p(n, δn) = (δ − 1)H(

1

δ
− 1). (25)

Observe that this heuristic result has been derived for p(n, k) rather than
P (n, k), for which it is known to hold rigorously–modulo the linear interpola-
tion required for non-integer values of 1/δ. Indeed, numerical experiments on
Bernoulli schemes with two symbols (coin toss) show that formula (25) holds.
For instance, Figure 4 shows the logarithm of both p(n, δn) and P (n, δn) versus
n, for q = 0.3 and δ = 0.5, compared with a straight line gδ(n) = an + b with
slope a = (δ − 1)H(1δ − 1). Both quantities are well fitted by a function of the
kind gδ(n) + cedn.

To validate this picture, confirmed by numerical experiment on other values
of q and δ (for δ not equal to the inverse of an integer, a linear interpolation
formula applies [4, 21]) we plot in Fig. 5 the logarithm of the difference between
data and the straight line in Fig. 4. An exponential decay is clearly observed.

In conclusion, numerical experimentation support the hypothesis that the
asymptotic behavior in eq. (25) is attained with a decaying exponential term
parameterized by the constants c and d < 0, together with a slowly decaying
contribution arising from the constant b:

1

n
log p(n, δn) ≃M(δ) +

b

n
+
c

n
edn. (26)

We shall introduce momentarily a new quantity to improve on this kind of
convergence.

The same heuristic arguments imply an approximate form for the behavior
of the distribution function for different n and k. Carrying out the computations
of eq. (23) together with eq. (9) we obtain

log(p(n, k)) ∼ (k − n)H(
n

k
− 1). (27)

We can test this approximation in the case of the Bernoulli scheme with
q = 1/2. Here, trivially the approximation (27) becomes log(p(n, k)) ∼ (k −
n) log(2)). This function fits almost perfectly the numerical data in Fig. 2.

A less favorable case is offered by the Bernoulli scheme with q = .3. In Fig. 3
we plot P (n, k) and p(n, k) versus k for n = 30, together with the approximation
provided by eq. (27) We notice that this latter fits well both functions at k = 1
(quite obviously, being this behavior associated with the measure of the cylinder
of unity return time, see above), while approximation stays reasonable only for
P (n, k) at small values of k > 1. Then, in the intermediate region the slope
of both curves agrees with the interpolation while the numerical value only for
p(n, k).

Certainly, the agreement observed in the last figure is far from satisfactory.
The reason is to be found in the approximation made in eq. (21). The same

8



 0 5 10 15 20 25 30

 5
 10

 15
 20

 25
 30

-20

-15

-10

-5

 0

log p(n,k)

k

n

log p(n,k)

Figure 2: Distribution function p(n, k) (crosses, red lines) and the approximation
function in eq. (27) (x, green line) versus n and k in the case of a Bernoulli
game with q = 1/2.

fact is at the origin of the slow convergence observed in eq. (26). We con-
clude this section unveiling these reasons and providing a more rigorous and
insightful treatment of the problem. This improvement is inspired by the idea
of summation over prime periodic orbits in dynamical systems.

As we mentioned, the approximation in eq. (21) above is based on the idea
that the roles of Σk and Wn,k can be interchanged, the effects of their difference
being negligible in the limit. The price to pay in this procedure is the slowly
decaying term in the asymptotics (26). We can be more careful: indeed, we
can show that Σk can be rigorously partitioned into the periodic repetition of
different sets Wn,k′ . The lemma is the following: for any n ≥ 2k

Σk =
⋃
k′|k

P k,k′

(Wn,k′), (28)

where the union is over all integer k′ that divide k and where the sets P k,k′

(Wn,k′)
are the full completion of k

k′
cycles of the word of length k′. These sets are pair-

wise disjoint.
On the basis of this lemma, we can reverse the ordering in eq. (21) to get:

∑
σ∈Σk

µ(Pn,k(σ)) =
∑
k′|k

∑
σ∈Wn,k′

µ(Pn,k ◦ P k,k′

(σ)). (29)
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approximation function in eq. (27) (green line) versus k for n = 30, in the case
of a Bernoulli process with q = 0.3

Since k′ divides k, Pn,k ◦ P k,k′

= Pn,k′

and therefore the chain of equalities
continues with

∑
σ∈Σk

µ(Pn,k(σ)) =
∑
k′|k

∑
σ∈Wn,k′

µ(Pn,k′

(σ)) =
∑
k′|k

∑
σ∈Tn,k′

µ(σ), (30)

where we have used eq. (15). Finally,

∑
σ∈Σk

µ(Pn,k(σ)) =
∑
k′|k

∑
σ∈Tn,k′

µ(σ) =
∑
k′|k

p(n, k′). (31)

On the other hand,
µ(Pn,k(σ)) = (µ(Cσ))

n
k , (32)

exactly when n
k is an integer, and approximately otherwise, so that choosing

k/n = δ, so that δn = k is an integer, and defining the new quantity

Zp(δ, n) :=
∑
k′|δn

p(n, k′), (33)

we find that

Mp(δ) = lim
n→∞

1

n
log(Zp(δ, n)) = (δ − 1)H(

1

δ
− 1). (34)
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Figure 4: Distribution function p(n, δn) for a Bernoulli process with q = 0.3,
δ = 0.5 (X) and cumulative distribution function P (n, δn) of the same process
(crosses). The first function has been shifted upwards by a fixed quantity to
match the latter. Both sets of data are consistent with the behavior described
in the text: The straight blue line has indeed slope (δ − 1)H(1δ − 1), and the
green fitting curve (which becomes asymptotically tangent to the blue line) is
given by eq. (26).

This formula is valid for all 0 < δ ≤ 1
2 that are the inverse of an integer. For the

other values, the linear interpolation between the values at the nearest inverses
of an integer applies.

Numerical verification follows: in Fig. 6 we plot the logarithm of P (n, δn),
p(n, δn) and of the period summation function Zp(δ, n) versus n for the Bernoulli
process with q = 0.3. The line gδ(n) =M(δ)n fits almost perfectly the last set of
data. On the other hand, the other two functions display the slow convergence
discussed above. To further appreciate the improvement brought about by using
Zp consider Fig. 7, where we plot the difference between successive values of the
logarithm of the above functions, and these logarithms divided by n. All these
quantities have limitM(δ). We compute this value from the linear interpolation
of (δ−1)H(1δ−1) to get the value tabulated. The distributions p and P converge
slowly, while Zp gives a numerically exact result. In conclusion, the term b > 0
plaguing the convergence in eq. (26) was due to approximate counting and does
not show up for the newly introduced quantity.
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Figure 5: Logarithm of the difference between the logarithm of the cumulative
distribution function P (n, δn) of the Bernoulli process with q = 0.3, δ = 0.5
and the straight line gδ(n) in Fig. 4. The fitting straight (green) line implies
the exponential decay used in the fit in Fig. 4.

4 Expanding maps of the interval

In this section, we study a family of one-dimensional dynamical systems for
which we can derive both a formula for the asymptotic distribution and a gen-
eralization of the deviation result. This family will also serve to begin to under-
stand the dynamical phenomena occurring when considering ball, rather than
cylinder, return times: one has to match geometry and dynamics. Further detail
will be added in the following section.

We start by constructing a family of measures supported in [0, 1] by means
of an affine iterated function system: given a set ofM non-overlapping intervals
Ij = [aj , bj ] ⊂ [0, 1] j = 0, . . . ,M − 1, define the lengths δj = bj − aj, and
construct the affine maps

φj(x) := δjx+ aj , j = 1, . . . ,M. (35)

Each map φj takes [0, 1] into [aj , bj ]. Consider then the set action Φ that maps

the set A ⊂ [0, 1] into Φ(A) :=
⋃M−1

j=0 φj(A). Repeated action of Φ on [0, 1]
defines a Cantor set S in [0, 1]:

S :=

∞⋂
k=1

Φk([0, 1]). (36)
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logZp(δ, n) (large crosses, light blue) and the line gδ(n) =M(δ)n (magenta) for
the Bernoulli process with q = 0.3, δ = 0.4

We can then construct a family of measures whose support is this set S:
let us choose real numbers {πj}j=1,...,M such that πj > 0,

∑M
j=1 πj = 1, and

consider the unique measure µ for which

∫
f(s)dµ(s) =

M−1∑
j=0

πj

∫
(f ◦ φj)(s)dµ(s), (37)

holds for any continuous function f . It is then easy to show that, for any choice
of the set of real numbers {πj}, the measure µ is mixing for the piece-wise linear
transformation T defined on S by:

T (x) =
1

δj
(x− aj), if x ∈ Ij = [aj , bj ]. (38)

In fact, the maps {φj} turn out to be the inverse branches of T . As such, they
can be employed to build the cylinders Cn of this dynamical system: letting
σi ∈ {0, . . . ,M − 1}, for i = 1, . . . , n− 1 these latter can be labelled as

Cσ0,...,σn−1
= (φσ0

◦ · · · ◦ φσn−1
)([0, 1]). (39)
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Figure 7: Various functions for of the Bernoulli process with q = 0.3, δ = 0.4.
Start with log(p(n, δn))/n: black curve, circles; log(p(n, δn))− log(p(n−1, δ(n−
1)): blue curve, stars; log(P (n, δn))/n open squares, magenta; log(P (n, δn)) −
log(P (n − 1, δ(n − 1))): crosses, red curve; log(Zp(n, δ))/n: yellow squares;
log(Zp(n, δ))− log(Zp(n− 1, δ)): crosses, green curve. The last two set of data
sit to numerical precision on the line h = −0.307795889757108 that is obtained
by the interpolation formula.

Following eq. (35), the geometric length ℓ(Cσ) is easily computed:

ℓ(Cσ0,...,σn−1
) =

n−1∏
i=0

δσi
. (40)

Equally easily, because of eq. (37), the measure µ(Cσ) is

µ(Cσ0,...,σn−1
) =

n−1∏
i=0

πσi
. (41)

Therefore, this dynamical system is metrically equivalent to a Bernoulli shift
on M symbols, with probabilities πi, i = 1, . . . ,M − 1, that we have discussed
in section 3. Yet, when examining the distribution of ball return times, we
must investigate is the geometrical relation between balls of a fixed radius and
cylinders of different symbolic length.

In order to analyze this relation, we observe that any ball Bε(x) can be
written as a union over cylinders of an appropriate (fixed) length n: that is, for
all x and ε there exist n and a collection of indices σ ∈ I, |σ| = n such that
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Figure 8: Distribution function p(ε, k) for for the dynamics of the two map IFS
with δ1 = 0.3, δ2 = 0.2, π1 = 0.3 and π2 = 0.7.

Bε(x) =
⋃
σ∈I

Cσ. (42)

This is a consequence of the fact that these measures are singular w.r.t.
Lebesgue and their support have gaps of positive length. Therefore, for suffi-
ciently large n, the two boundary points of the ball end up in the closure of a
gap in the support of µ.

Furthermore, since both n and I depend on the ball under consideration, we
define the symbolic length of Bε(x) as

Nε(x) = n−max{j ∈ Z s.t. M j ≤ #(I)}, (43)

where #(I) is the cardinality of the set I and whereM , as before, is the number
of inverse branches of T . The idea behind this definition is to measure a sort
of effective length of the cover of Bε(x). For instance, if eq. (42) would require
#(I) = 4 cylinders of length n = 3 with M = 2 we would effectively consider
this union as if it were a single cylinder of length Nε = 1.

This definition is instrumental in formulating a working hypothesis: we sur-
mise that the statistical distribution of return times of boxesBε(x) characterized
by the same symbolic length Nε(x) = n will scale as that of cylinders (again,
of that given length n) in a Bernoulli shift. This hypothesis is confirmed by
numerical computation. At a fixed radius ε, we compute the return time dis-
tribution for all points x with a fixed symbolic length, computed via eq. (43)
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Figure 9: Distribution function p(n, τ) for return times of balls of radius ε =
8.989 10−12 and n = Nε = 20 (red line, crosses), for the dynamics of the two
map IFS described in Fig. 8. It is compared with the distribution function
p(n, τ), n = 20 of the Bernoulli process with q = 0.3 (green line, X’s). See text
for details.

and we compare it with the discrete distribution of the corresponding symbolic
Bernoulli process. Data reported in Figure 9 are obtained for a two map I.F.S.
dynamics. Accordance is significant.

Therefore, to obtain the distribution of return times of balls of fixed radius ε
we must know the cylinder return time distribution, p(n, k), discussed in Sect 3,
but also the measure of center points whose balls have a given symbolic length:

Ψ(ε, n) = µ({x s.t. Nε(x) = n}). (44)

In fact, from this information, we obtain

p(ε, k) =
∑
n

Ψ(ε, n)p(n, k). (45)

To estimate Ψ(ε, n), we consider, this time at fixed n, the distribution of the
geometric lengths of cylinders, ℓ(Cσ): let z = log(ε), and define

ψ(z, n) :=
d

dz
µ({x s.t. log(ℓ(Cn(x))) ≤ z}). (46)

When n is sufficiently large, this can be approximated by a continuous dis-
tribution, precisely, by a normal distribution N−λn,S

√
n(z) of mean −λn, and
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variance S2n, where λ is the Lyapunov exponent of µ, and S the standard de-
viation of the multiplicative process. Both quantities can be easily computed in
this case:

λ = −
M−1∑
j=0

πj log(δj), (47)

and

S2 = −λ2 +
M−1∑
j=0

πj(log(δj))
2. (48)

We now conjecture that we can exchange the role of z and n in this derivation,
so that Ψ(ε, n) (with ε fixed) be approximated by the distribution ψ(z, n) (with
z = log(ε) fixed) when properly normalized and, in turn, with N−λn,S

√
n(z),

with z = log(ε) fixed, and properly normalized via the constant A to yield the
discrete distribution Dε(n)):

Dε(n) = A N−λn,S
√
n(log ε),

∑
n

Dε(n) = 1. (49)

k
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Figure 10: Distribution function Ψ(ε, n) (red lines, points) and N(z, n) (blue
lines) compared (for definitions, see text), in the case of Fig. 8.

This conjecture is validated numerically in Figure 10, that reports Dε(n)
and Ψ(ε, n) for the same case of Figs. 8, 9. Indeed, for our purposes we do not
need the exact form of the limit distribution, but only its scaling behavior in n
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and ε. In conclusion, we can write the distribution function p(ε, k) as

p(ε, k) =
∑
n

Dε(n)p(n, k), (50)

where Dε(n) has mean n̄ = −z/λ and standard deviation s = λ−3/2S
√−z,

sharply localized in the interval [n − s, n + s]. This explains the shape of the
graph reported in Fig. 8, that is to be compared with that of Fig. 1 in Section
3: the Gaussian smoothing is particularly evident near the line k = − log(ε)/λ.

Finally, eq. (50) is the basis to derive formulae akin to those of Sect. 3. In
particular, it validates the analogue of formula (25) that becomes the fundamen-
tal result of this section. For one dimensional expanding maps, the following
asymptotic formula holds, that links the asymptotic of return time distributions
to the Lyapunov exponent and to Rényi entropies:

lim
ε→0

log p(ε,−δ log(ε)/λ)
log ε

=
1− δ

λ
H(

1

δ
− 1). (51)

The same observations about the convergence speed of this limit detailed in
Sect. 3 apply here.

5 A second approach to expanding maps

In this section, we present a second, more general approach to the statistics of
first returns in balls for one-dimensional piecewise linear expanding maps of the
type studied in the previous section. This approach can be fruitfully extended to
more general situations and, informal as it is now, clearly points to the direction
where rigor can be achieved.

Recall the theory of Sect. 3: the word labelling each cylinder of length k
was continued periodically to length n to single out a cylinder of length n and
return time k. Geometrically, for the kind of maps studied in Sect. 4, each
cylinder σ of length k contains a periodic point of the map, xσ , of period k.
Balls of radius ε centered at a point x located in the vicinity of such fixed point
have a non-empty intersection with their k-th iterate if the distance between x
and xσ is less than sk+1

2(sk−1)ε, where sk is the derivative of T k at the fixed point

xσ. Observe that sk grows geometrically as k grows, so that when k is large
sk+1
sk−1 ≃ 1. In conclusion, all points x in the interval Bε/2(xσ) are such that their

ε-neighborhood returns after time k: T k(Bε(x)) ∩ Bε(x) 6= ∅. Of course, not
all of these intervals, labelled by σ, are disjoint among themselves, both with
the same and different length of σ. Therefore, two conditions are to be met to
assess a genuine first–return.

We may approximately assume that the first condition (non-overlapping of
the interval Bε/2(xσ) with other intervals associated with the same period, |σ| =
k), is met when sk+1

sk−1ε is less than the geometrical size, ℓ(Cσ), of the cylinder
that contains the fixed point. More simply, because of our previous observation,
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we may just require ε < ℓ(Cσ). Let again Σk := {0, . . . ,M − 1}k be the set of
all words of length k. Within this set we therefore define the subset

Lε,k := {σ ∈ Σk s.t. ε < ℓ(Cσ)}. (52)

The second condition (non-overlapping of Bε/2(xσ) with intervals of smaller
periods |σ|) is more subtle, and can be resolved by considering, among all fixed
points xσ of period k, only the primitively periodic ones. We so define the set
Wk:

Wk := {σ ∈ Σk s.t. there is no j < k s.t. σ is periodic of period j}. (53)

Summing up, we can write

p(ε, k) =
∑

σ∈Lε,k∩Wk

µ(Bε(xσ)), (54)

where xσ is the periodic point in the cylinder Cσ. This last expression can
be further simplified, using a similar approximation to that employed in Sect.
3. In fact, we can write µ(Bε(xσ)) ≃ εαµ(xσ), where αµ(xσ) is the local di-
mension of the measure µ at xσ. This last quantity can then be extrapo-
lated from the measure and the geometric length of the cylinder Cσ: αµ(xσ) ≃
log(µ(Cσ))/ log(ℓ(Cσ)). As a consequence, eq. (54) becomes:

p(ε, k) =
∑

σ∈Lε,k∩Wk

εlog(µ(Cσ))/ log(ℓ(Cσ)). (55)

We have compared numerically the function p(ε, k) for the case of Fig. 8 of
the previous section and its approximation, eq. (55), in Fig. 11. Agreement is
rather satisfactory.

Eq. (55) can also be written

p(ε, k) =
∑

σ∈Lε,k∩Wk

µ(Cσ)
log(ε)/ log(ℓ(Cσ)). (56)

This last equation is particularly meaningful. Observe first that this generalizes
eqs. (21) and following and can be used to the same scope. Secondly, put
λσ := − log(ℓ(Cσ))/|σ|. Then, µ almost surely, when |σ| tends to infinity, λσ
converges to the Lyapunov exponent, λ, of the measure µ. Therefore,

p(ε, k) =
∑

σ∈Lε,k∩Wk

µ(Cσ)
− log(ε)/λ|σ|. (57)

Suppose now to choose ε and |σ| such that −δ log ε = |σ|λ, with 0 < δ < 1. This
choice has two effects. First, the exponent in the previous equation becomes 1

δ .
Second, the measure of the set Lε,k tends to one, when ε tends to zero, because
µ almost surely − log(ℓ(Cσ))/|σ| tends to λ, so that almost surely ℓ(Cσ) > ε.
Hence,

p(ε,−δ log ε
λ

) ≃
∑

σ∈Wk

µ(Cσ)
1
δ . (58)
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Figure 11: Distribution function p(ε, k) (green lines) from the original data in
Fig. 8 and approximation from formula eq. (55) (red lines)

If we now let k to be a prime number, the set Wk contains all words except
the “fixed points” σi = a, for i = 0, . . . , k − 1, where a ∈ {0, . . . ,M − 1}. In
general, one should also subtract all words of shorter periods that divide k, as
done above. Call this set of words Fk. Then,

p(ε,−δ log ε
λ

) ≃
∑
σ∈Σk

µ(Cσ)
1
δ −

∑
σ∈Fk

µ(Cσ)
1
δ . (59)

It could be shown that, in systems with sufficiently fast decay of correlations like
Bernoulli or Markov, the first term is dominant in the limit, so that discarding
the second when taking logarithms and dividing by log ε, one gets

1

log ε
log p(ε,−δ log(ε)

λ
) =

1

log ε
log(

∑
σ∈Σk

µ(Cσ)
1
δ ) =

δ

λ

1

k
log(

∑
σ∈Σk

µ(Cσ)
1
δ ).

(60)
Taking the limit, we obtain a new verification of eq. (51):

lim
ε→0

1

log ε
log p(ε,−δ log(ε)

λ
) =

(1 − δ)

λ
H(

1

δ
− 1). (61)

In the next section, we shall see a generalization of this equation.
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6 Linear automorphisms of the two-dimensional

torus

The general framework presented in the last section can be easily extended to
treat the case of linear automorphisms of the two-dimensional torus, of which
the Arnol’d cat map is the most celebrated example. For convenience, we choose
a metric in the torus such that balls of radius ε are euclidean squares of side 2ε
with sides oriented along the stable and unstable directions and for simplicity
we consider the case when these directions are orthogonal. Then, one can easily
show that around any fixed point of the k-th iteration of the map there exists
a rectangle, with sides oriented in the stable and unstable directions, of points
x whose ε-balls intersect their image after k iterations. Letting λ− and λ+ the
(increasingly ordered) eigenvalues of T , the sides of this rectangle have length

ε(1+
2λk

−

λk
−
−1

) and ε(1+ 2
λk
+
−1

). As it turns out, for the Arnol’d cat and other area-

preserving maps, these quantities are equal (since λ+λ− = 1) and the rectangle
of initial conditions just described is a square. Figure 12 draws these squares at
a fixed value of ε.

We can then repeat a two-dimensional generalization of the arguments of
the previous section. This we will do elsewhere, but we will provide the result
below. In fact, an even simpler argument can be sketched. We have seen above
that a square of area ε2(1 + 2

λk
+
−1

)2 exists at each fixed point of T k and is

characterized by return times k, or less. This area quickly becomes ε2 to a good
approximation. Moreover, the number of periodic points of T k grows like λk+.
Then, when ε is “small” with respect to k, neglecting all other considerations,
we can write

p(ε, k) ≃ ε2λk+. (62)

Of course, we have to make precise what we mean by “small”. This is when
ε2λk+ ≤ 1. Equality holds for kε = − 2 log ε

log(λ+) . Indeed, following the results

reported in Sect. 2, 2
log(λ+) is the almost sure limit of τ(Bε(x))

− log ε , since it coincides

with 1
log(λ+) − 1

log(λ−) , see eq. (12). Moreover, in this case D1(µ) = 2, the

invariant measure being the Lebesgue measure and the entropy hµ is equal to
the Lyapunov exponent λ = log(λ+). Figure 13 draws the distribution function
p(ε, k) for a different toral automorphism, just chosen to increase variety: that
associated with the matrix (1, 2; 2, 5). The logarithmically flat approximation
in eq. (62) fits the data almost perfectly in the region ε2λk+ ≤ 1.

If we now turn our consideration to the line k = δkε in the (k, log ε) plane,
with 0 < δ ≤ 1, we can prove that the quantity p(ε, δkε) verifies in this two-
dimensional case the analogue of eq. (26):

lim
ε→0

1

log ε
log p(ε,−δ log(ε)

λ/2
) =

(1 − δ)

λ/2
H(

1

δ
− 1). (63)

The detailed proof, obtained along the lines of Sect. 5 will be reported elsewhere.
We simply compute here the two sides of the equality (63), showing that they
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are equal. From eq. (62) we can compute the l.h.s., obtaining

lim
ε→0

1

log ε
log p(ε,−δ log(ε)

λ/2
) = 2(1− δ). (64)

On the other hand, the Rényi entropies for the Lebesgue measure and the
Arnol’d cat dynamics are all equal to λ = log(λ+), so that also the l.h.s. of
eq. (63) is equal to 2(1− δ).

We conclude this section by taking inspiration from eq. (63) to put forward

a conjecture. We believe that, letting η be the almost sure limit of τ(Bε(x))
− log ε ,

see eq. (10), and letting kε = −η log ε as before, under sufficient hypotheses of
mixing, one has the following asymptotic behavior:

lim
ε→0

1

log ε
log p(ε, δkε) =

(1 − δ)

η
H(

1

δ
− 1). (65)

Quite evidently, further investigation is required to confirm this conjecture. We
can now turn to conclusions.
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Figure 12: Initial conditions x in the two-dimensional torus color coded accord-
ing to the return time of the ball Bε(x) of radius ε = 0.15 for the Arnol’d cat
map. (τ = 1 red, 2 green, 3 blue, 4 magenta, 5 light blue)

7 Conclusions

We have studied in this paper various aspects of the statistics of return times
of sets in dynamical systems.
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Figure 13: Distribution function p(ε, k) for the toral automorphism associated
with the matrix (1, 2; 2, 5).

We have first reviewed known results for symbolic ψ-mixing systems, that
link return times and Rényi entropies. We have established new “counting
rules”, embodied in the sets Wn,k and in the lemma of eq. (28) that have per-
mitted us to explain the slow convergence of the quantities studied in previous
works. At the same time, these results have lead to the definition of a new
“partition function” Zp(δ, n), eq. (33), that best achieves the goal of extracting
Rényi entropies from return times statistics.

When considering return times for balls, we have established a general re-
lation holding for one-dimensional expanding maps, eq. (51), that links the
asymptotic of return times with Rényi entropies and the Lyapunov exponent.
This relation has been obtained developing two different approaches. The former
is a quantitative comparison between balls and dynamical cylinders especially
developed for this case. The second is a more general argument that well de-
scribes the full behavior of the statistics p(ε, k), comprised in eq. (55).

We have finally considered linear automorphisms of the two dimensional
torus, like the Arnol’d cat map, for which a “quick and dirty” analysis is capable
of describing the correct behavior of the distribution function p(ε, k). This has
permitted us to write the formula in eq. (63) that links return times statistics
and Rényi entropies with η, the almost-sure value of the limit in eq. (10). This
formula is an extension of that obtained for one-dimensional systems and we
have conjectured that it should hold in much more general situations than the
one presented in this paper.
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As stated in the Introduction, the character of this paper is tailored to the
audience expected for this volume, that comprises both specialists in dynamical
systems and in other disciplines. We have therefore tried to present our results
in the most transparent form, while renouncing at times to full rigor in favor of
clarity. We are nonetheless convinced that most of the theory developed here
touches upon new ideas and approaches, and presents more than valuable hints
to where a rigorous treatment will be developed, as we plan to do in forecoming
publications.
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