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Abstract 
We focus on the "trijunction" between multiscale computations, bifurcation theory and 
social networks.  In particular we address how the “Equation-Free” approach, a recently 
developed computational framework, can be exploited to systematically extract coarse-
grained, emergent dynamical information by bridging detailed, agent-based  models of 
social interactions on networks, with macroscopic, systems-level, continuum numerical 
analysis tools. For our illustrations we use a simple dynamic agent-based model 
describing the propagation of information between individuals interacting under mimesis 
in a social network with private and public information. We describe the rules governing 
the evolution of the agents’ emotional state dynamics and discover, through simulation, 
multiple stable stationary states as a function of the network topology. Using the 
“Equation-Free” approach we track the dependence of these stationary solutions on 
network parameters and quantify their stability in the form of coarse-grained bifurcation 
diagrams. 
 
Keywords: Complex multi-scale systems, Equation-Free approach, Networks, Social 
systems, Nonlinear Dynamics, Bifurcation Analysis 
 
 
1. Introduction 
 

Agent-based models constitute the state-of-the-art in contemporary computer 
simulation of many complex systems ranging from ecology [1-3] and epidemiology [4-6] 
to economics and financial markets [7-11], and from traffic and supply-chain networks 
[12-16] to biology [17,18] and physiology [19,20].  
 
On the other hand, networks are identified as a key feature of the structure of many real-
world systems and recent years’ research on the subject is a part of a broader trend 
towards research on the dynamics of complex systems [21-27]. Within this context there 
has been an immense interest in studying social dynamics using detailed agent-based 
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modelling on networks as they pertain to many complex systems such as epidemiological 
[28,29,5,30,31], economic and financial [32, 8, 33, 34, 9, 35-41], opinion formation and 
voter dynamics [42-48], culture and language dynamics [49-53], traffic and crowd flow 
design and management [54-57], diffusion of news and innovations [58-60].  The rapid 
technological and theoretical progress has dramatically enhanced our knowledge in 
modelling, simulating and analyzing such complex systems and we are getting better on 
it.  

 
However due to the effectively complex, nonlinear, stochastic nature of such systems, 

their behavior at the macroscopic level–where usually the extensive analysis, design and 
optimization requirements arise- cannot be-most of the times-accurately modeled and 
analyzed in a straightforward manner. While one can try to write down a general master 
equation to describe the probabilistic time evolution of the macroscopic quantities, major 
problems arise in trying to find the closures required to bridge the gap between the micro-
scale of the individual-based interactions on the network and the macro-scale at which 
the systems-level analysis and design are required [61, 46]. This lack of accurate, explicit 
macroscopic closures poses a major obstacle to the performance of important systems-
level computational tasks, which rely on the availability of good low-order closed models 
in terms of a few macroscopic (coarse-grained) variables.  

 
To date what is usually done with very detailed multi-agent-based descriptions of 

social networks is simple simulation: set up many initial conditions, for each initial 
condition create a large enough number of ensemble realizations, probably change some 
of the rules and then run the detailed dynamics for a long time to investigate how things 
like stock exchange indices or the spread rate of news change with parameters. However 
this approach is both time consuming and inappropriate for systems-level tasks such as 
stability, bifurcation analysis or control design and optimization since efficient well-
established computational tools for such analysis and design tasks require the availability 
of coarse-grained models in the form of ordinary and/or (integro)-partial differential-
algebraic (PDAEs) equations in a closed form.  

 
In this work we show how the so-called “Equation-Free” approach for multiscale 

computations [62-68] can be exploited to systematically analyze the macroscopic 
behavior of agent-based simulations.  For our illustrations we use a simple model 
describing the emotional state formation and propagation process under private and 
public information on a social network. Actually the model is a simple caricature of a 
society whose members are interested in some specific matter (e.g. a local election 
between two opponents, the trend to invest in a stock fund etc). We start with presenting 
how two important elements of the “Equation-Free’ framework, namely the lifting and 
restricting operators, can be constructed to deal with certain features of the networks 
topology.  We then construct the coarse-grained bifurcation diagrams with respect to 
network degree distribution and analyze the stability of the identified stationary solutions 
branches through coarse-grained eigen-computations. 

 
The paper is organized as follows: in Section 2 we give a short description of the 

Equation-Free approach and the procedure for deriving the lifting and restricting 

 
 



operators. In Section 3 we describe the agent-based model as well as the algorithm we 
used to create random connected networks with degree sequences sampled from a 
specific probability distribution. More details are given in the appendix. In Section 4 we 
present and discuss the simulation results and finally we conclude in Section 5. 
 
2. The Equation-Free Framework for Complex/ Multiscale Computations 

The concept of the coarse timestepper is the key element in the “Equation-Free” 
framework [62-68], an efficient methodology for extracting systems-level information 
from microscopic (detailed, fine scale, atomistic, agent-based) simulations. For the 
approach to be applicable we must know –or have good reason to believe- that predictive 
coarse-grained models of the detailed process can be written in terms of (can “close” 
with) a reduced number of “coarse-grained variables” or “observables”. Knowing such 
good variables through experience with the problem or through data-mining techniques 
[69, 70] is an important prerequisite. One might hypothesize, for example, that the 
average state (over several network realizations and over all nodes of a given degree) for 
each degree may constitute a good set of coarse-grained observables for our problem. 
Given this knowledge, the coarse timestepper consists of the following fundamental steps 
(see also figure 1): 

 
(a) Prescribe a coarse-grained initial condition (e.g. values of the average state for 

each connectivity degree in the network) ( )0u t ; 
 
(b) Transform the coarse-grained initial conditions through a lifting operator, say μ, to 

consistent microscopic ensembles, i.e. get ( ) ( )00  tutU μ= ; 
 
(c) Evolve these microscopic distributions in time with the detailed simulations and 

report their values after an appropriately chosen short macroscopic time T (time-horizon). 
    
(d) Compute the corresponding coarse-grained variables by restricting the resulting 

microscopic distributions using a restricting operator, say M, i.e. compute 
. ( ) ( )TUMTu  =

 
The above procedure can be considered as a “black box” coarse timestepper of the 

coarse-grained system observables: a map that, using the detailed simulations, and given 
an initial coarse-grained state  at time will report the result of the evolution after a 
given time-horizon T, i.e.: 

u 0t

 
( ) ( ) ) ,( 00 ptuΦTtu T=+ , where p denotes the systems parameters. 

 
At this point one can 
 
(e) Utilize computational superstructures like the Newton’s or Newton- GMRES 

method [71, 72] as a shell “wrapped around” the coarse timestepper to compute and 
trace branches of coarse-grained equilibria or periodic solutions (even unstable 
ones) [73]; other computational superstructures (other “wrappers”) e.g. iterative 

 
 



eigensolvers such as Arnoldi’s algorithm [74, 75] can also be used to extract 
information about the stability of the coarse-grained system dynamics.  For example 
coarse-grained (macroscopic) equilibria can be obtained as fixed points of the 
mapping :  ΤΦ

 
     ( ) 0 =− pu,Φu T  
 

The tracing of solution branches past turning points in one parameter space can be 
obtained by augmenting the above system with the linearized pseudo arc-length 
condition: 

 
 ( ) ( ) ( ) 011 =−−+−⋅= Δsppβuuαu, μ, μN , 
 
where  
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and  is the pseudo arc-length continuation step. sΔ ( )00 , pu  and ( )11, pu , represent two 
already computed solutions. The pseudo arc-length condition constrains the consequent 
solution  to lie on a hyperplane perpendicular to the tangent of the bifurcation 
diagram at ( , approximated through 

(u, p

1u
)

)1, p ( )a, β  and at a distance  from it. The 
computation of the fixed points can now be obtained using an iterative procedure like the 
Newton-Raphson technique. The procedure involves the iterative solution of the 
following linearized system: 

sΔ

 

 
( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∂
∂

−
∂
∂

−
u, pN

u, pΦu
 

δp
δu

βa
p
Φ

u
Φ

I Τ
ΤΤ

  

 

Note that for the calculation of both the Jacobian 
u
ΦΤ

∂
∂ and the derivative 

p
ΦΤ

∂
∂

, no 

explicit macroscopic evolution equations are required. They can be approximated 
numerically by calling the black-box coarse timestepper at appropriately perturbed values 
of the corresponding unknowns ( )u, p . Hence, the above framework enables the 
microscopic simulator to converge to both coarse-grained stable and unstable solutions 
and trace their locations, i.e. to fulfill tasks that the simulator was not explicitly designed 
for. 

 
The main assumption behind the coarse timestepper is that a coarse-grained model for 

the microscopic-scale dynamics exists and closes in terms of (relatively few) coarse-
grained variables which serve as the system observables. These are usually some low-
order moments of the microscopically evolving distributions. The assumption about the 
existence of a coarse-grained model implies that the higher order moments of the 

 
 



microscopic distributions become, relatively quickly over the macroscopic time scales, 
functionals of (become “slaved to”) the few lower ones. What a coarse time-stepper does, 
in fact, is a model reduction “on demand”. 

The above methodology essentially sidesteps the derivation of a closed form 
macroscopic description: relatively short and appropriately initialized short runs of the 
microscopic simulation provide the necessary closure (refer to [63, 66, 67] for more 
detailed discussions). The construction algorithms of the lifting and restricting operators 
for networks that can be described by the degree distribution are introduced in the 
following section. 
 
3.1 Lifting and Restriction operators for a certain class of Social Networks under 
the Equation-Free Approach  
 
Here we consider the case of undirected graphs for which their connectivity structure is 
described according to the degree distribution. 
 
Let  denote the distribution function of the microscopic variables over the set of 
microscopic coordinates x. The key idea underlying coarse-graining and model reduction 
is that certain “fast” system observables (e.g. higher-order moments of the evolving 
microscopic distributions U) become rapidly (say, over a few characteristic interaction 
times in an individual-based simulation) slaved to the “slow” observables (e.g. the lower 
order moments) u. This functional relation can be stated in a general form as 

( )U x

 
( )  u h U x d⎡ ⎤= ⎣ ⎦∫ x

≤

. 
  
Assuming the existence of a separation of time scales (and an associated slaving) in the 
overall system dynamics, we can proceed to constructing our restriction and lifting 
operators. We first start by describing the restriction procedure. For the sake of clarity of 
the presentation we will illustrate both procedures by considering the average value over 
the microscopic state.  
 
Let the overall network ensemble assembled by M social networks, 

. ( , ),  where 1j j jG V E j M= ≤

We start by averaging the values of the microscopic variables ( )U x over each degree and 
for all networks in the ensemble. We subsequently sort each individual according to its 
degree and we assign to it the average value of the microscopic variables. Having all 
individuals sorted and assigned the “new-averaged” values of the microscopic variable, 
we proceed to the computation of the coarse-grained variables as follows:  let m be the 
number of coarse-grained variables and K be the total number of agents, over our entire 
network ensemble simulation; then each coarse-grained variable is defined as the average 
microscopic state over each  fraction of the overall agent population, sorted by the 
degree.  

/K m

 

 
 



We define the superset of the vertices of all created networks, .  Given V we 

proceed to construct the subsets of V containing only vertices of the same degree: 
; the cardinality of each such set is

1

M

j
j

V V
=

=U

( )deg , iv D V v i v V∈ ⊆ ⇔ = ∀ ∈ i id D= . 
 
Each agent v has a microscopic state ( )vU x . For each degree i we calculate the average 

value of the microscopic state ( )xiU  as  
 

( ) ( ) /
i

i v
v D

U x U x d
∈

= ∑ i  

 
The total agent population size is K MN= .  We define a new set containing all the agents 
sorted by their degree { } ( ) ( ) ...,  ,  deg deg ,  K i lS V S v v v i l⊆ = ≤ <1 2, ,  ,v v  
 
If m is the number of the coarse-grained variables, each coarse-grained variable 
represents  agents. Thus the restriction of the microscopic distribution(s) to the 
coarse-grained variables (observables) reads: 

mK /

( ) ( )
( )

/

deg
1 / 1

, 1 :  / /
q

iK m

i v
q i K m

i N i m obs U K m
= − +

∀ ∈ ≤ ≤ = ∑ , qv S∈  

The lifting operation consists of the inverse actions. The inputs to the lifting subroutine 
are the network parameter value (such as the probability p in the discrete geometric 
distribution) and the instantaneous values of the m coarse-grained variables.  We first 
create a graph by sampling over the probability distribution. Then we sort its N agents 
based on their degree. Finally, we assign to each agent in the sorted list the microscopic 
state given by the corresponding coarse-grained variable value.  
 
Consider the j-th lifting attempt, giving rise to the social network   in our 
ensemble of networks. We then construct the set that contains all the nodes of the set 

( , )j j jG V E=

jV  
sorted by their degree: 
 

{ } ( ) ( )1 2,  ,  ,  ...,  ,  deg deg ,  j j j N i lS V S v v v v v i⊆ = ≤ l<

)

 
 
Finally we assign to each agent in the j-th network a microscopic state according to the 
following relation:  
 

( ) ( )1 / / 1:   ( )
ii j v floor i N mv S U x obs ⎡ − ⎤+⎣ ⎦

∀ ∈ =  

where ( /floor h b  is the integer part of the division . /h b
 
Alternative ways of constructing the lifting and restricting operators based on the 
cumulative distribution function of the degree distribution [26] can be also considered. 
 

 
 



 
3. The Agent-Based Model 
   For our illustrations we used a simple dynamic agent-based model inspired by the work 
presented in [36]; we altered their basic model to include a social network structure -
whose construction is presented in the following section- and to implement a kind of 
information propagation through agent interactions. Our model consists of N agents that 
“live” in our artificial social system caricature and a graph that describes the connections 
between these individuals. 
The agents are characterized by a single real variable which quantifies their emotional 
state, denoted by x , where . Agents receive information at discrete time 
instances (Poisson-distributed in time) from the external environment (public 
information) as well as from their links in their social environment (private information) 
changing their state according to the following rules:  

[ 1,1]x∈ −

 (1) In the absence of any public or private information arrival during a time interval tΔ , 
an agent’s state decays exponentially towards zero in time as ( ) ( ) [ ]0 expx t x tγ= − Δ , 

where γ is the decay rate (here constant, a model parameter) and ( )0x  is the state at the 
beginning of the time interval.  Time intervals in our model are defined in terms of the 
time unit of our system, tim . eUnit
(2) Public information arrives to each agent as “good” or “bad” news, each type 
according to a Poisson distribution with arrival rates and v v+ −  respectively. When an 
agent receives good (bad) external news then its emotional state instantaneously jumps by 
a finite (typically small and constant, a parameter of the model) positive (negative) 
amount denoted by ε +  (ε − ). 
(3) Private information is defined as information obtained through the agent’s social 
environment. The arrivals of such information also follow a Poisson distribution but with 
rate equal to , where α is a scalar (constant, a parameter of our model) 
denoting the frequency of “encounters” that an agent initiates with another one of its 
“environment”. When an agent initiates an  “encounter” with another one the information 
received (the change in its emotional state) is considered “good” or “bad” (results in a 
positive change  or a negative change e

( )*degk a i=

e+ −  respectively) based on a comparison of its 
current emotional state with the emotional state of the agent encountered as recorded at 
the previous observation time step (see below). If the initiating agent is at a worse 
(algebraically smaller) emotional state than the encountered one, then the incoming 
information to him/her is classified as “good” news; if he/she has a better (algebraically 
bigger) emotional state, it is classified as “bad” news.  
 
(4) If during the simulations the emotional state of an agent reaches or exceeds one of the 
boundary values (-1 and 1) then its state “locks” there for the remaining fragment of the 
reporting horizon tδ , independently of the arrival of new information. By this we wanted 
to simulate situations where the emotional state “saturates” – the agent has “made up 
his/her mind”.  
 
 
 

 
 



3.1 The construction of the social network 
Consider a graph , where V is the set of vertices - which in our model 
correspond to the N individuals {

( , )G V E=
| 1,..., }iv i N=  - and E is the set of edges, the links 

between the individuals.  An edge e is defined by {  where  are the nodes 
connected by the edge, and will be referred to as . The graph is undirected so that 

; multiple edges and self-loops are precluded, i.e., 

, }i jv v

i jv ve
,i jv v V∈

i j j iv v v ve e≡  where
i j

e E  vv v i jv∃ ∈ = . We 
considered random connected graphs whose degree sequences are sampled from a 
slightly altered (in terms of the range of k) discrete geometric distribution† with 
parameters p and maximum degree : max Deg
 

max

1
( ; ) (1 ) / (1 )

Deg
k i

i
y y k p p p p p

=

= = − −∑  

 
where y is the probability of a vertex with degree . 1k ≥
 
Here  is set to 140; this choice was based on the so-called Dunbar’s number 
(see [77, 49, 78]); 1  so that the degree 

max Deg
140k≤ ≤ ( )deg iv  of each node  lies between 

.  At this point we should note that for our illustrations we used a 
geometric distribution in order to create a right-hand skewed degree of vertices as this 
characteristic pertains to most real-world networks [26]. In fact we could use any other 
distribution, skewed or not.  

iv
1 deg( ) 140iv≤ ≤

 
Our main goal is to examine the dynamic behavior of the system described above as the 
graph topology (in terms of the parameter p) varies. 
 
More details on the construction of a connected random graph with a given degree 
probability distribution are given in the Appendix. 
 
 
4. Simulation Results and Discussion 
 
4.1 Model Dynamics 
 
Simulation results were obtained with the following parameter values:  

0.25,  1,  20,  20,  2,  0.075,  0.072,  0.033,
0.035,  20000.

t v v a e
e N
δ γ ε ε+ − + − +

−

= = = = = = = =

= =

 
 

Figure 2 depicts the temporal evolution of the averaged (over 1920l =  different network 
realizations over all nodes with the same degree, and over all degrees) emotional state at 
each reporting time-instant. Depending on the value of the probability p of the geometric 
discrete distribution, our network is capable of exhibiting interesting nonlinear behavior. 

                                                 
† From now on we will refer to it as geometric discrete distribution. 

 
 



For large values of p the average emotional state of the social network converges to a 
single stationary point, independently of the initial conditions of the emotional state of 
our agents (see figures 2a-b).  As the value of p decreases (making our graph denser, as 
far as the number of edges is concerned) - and now depending on the initial conditions - a 
second stable stationary point is revealed (figure 2c). Further decrement of the value of p 
- depending again on the initial conditions - brings up a new stationary point (figure 2d) 
making the number of stable stationary average states of the network equal to three. 
Eventually, when p decreases beyond a critical value, the middle stable stationary point 
disappears (figure 2e-f). The above results are indicative of the existence of several 
critical parameter values (values of the discrete geometric distribution parameter p) 
marking qualitative transitions in the dynamic behavior of our system - and as the 
bifurcation theory dictates - the onset of unstable coarse-grained states. Based on the 
results of our temporal simulations, these three critical values lie in the ranges: 

1 20.084 0.089, 0.079 0.084,  0.03 0.04
critical critical critical

p p p< < < < < <3    
The temporal simulations shown at figure 2 indicate that networks with the same degree 
distribution (and even further, networks with degrees sampled from the discrete 
geometric distribution with the same probability p) can have one, two or even three stable 
stationary states and unstable ones (which are unreachable through long-temporal 
simulations). To systematically study the nonlinear behavior of the system we employed 
the “Equation-Free” approach to construct the coarse-grained bifurcation diagram.  
 
As we noted in the previous sections the key idea underlying the Equation-Free approach 
is that the higher-order moments of the evolving distribution evolve very fast, compared 
to the macroscopic time-horizon T, becoming quickly functionals of a few lower-order 
moments. In other words, the system evolves quickly to a low-dimensional, attracting 
slow manifold. In order to provide computational support for this slaving we performed 
various temporal runs near the stationary solutions of all three apparently stable solution 
branches involving the first moments of the underlying microscopic distribution, namely 
the overall network average emotional state x and the norm s  of the vector of variances 
of the average emotional state for each degree.  
 
These variances are computed as follows: assume that we have created l consistent 
networks: with N agents per network and a maximum 
degree equal to .  Based on the sets 

( , ),  where 1j j jG V E j=

max Deg
l≤ ≤

jV for each social network j we create the 
following new sets: 

 where  if deg( )   ij j j ijD V v V v i v D⊆ ∀ ∈ = ⇔ ∈  
Each agent has an emotional state is denoted by ( )x v , where v denotes the individual. For 
each network j and each degree i the average emotional state and the corresponding 
variance are  and ij ijx s  respectively. These are computed by the following relations: 

( ) / , where 
ij

ij ij ij ij
v D

x x v d d D
∈

= =∑ and  

2( ( ( ) ) ) /
ij

ij ij ij
v D

s x v x
∈

= −∑ d .  

 
 



For each j we compute the network average emotional state jx , reading 

( ) /
j

j j
v V

x x v V
∈

= ∑ . 

 Over the set of networks the resulting overall network average emotional state is 

1
( ) /

l

j
j

x x l
=

= ∑ . 

We construct a vector 1 2 max{ , ,..., }Degs s s s= where 

1
( ) / , where 1 max

l

i ij
j

s s l i D
=

= ≤ ≤∑ eg  

which is the average variance of the emotional state for each degree over the entire set of 
social networks that we have created and simulated.  
 
All the phase portraits (see figure 3 a-f) depict four transients, each initialized with all 
individuals with the same initial emotional state (thus having a zero variance for each 
degree). A fifth transient simulation, initialized based on the statistics of a stable 
stationary point of a different set of networks - sampled with different p from the discrete 
geometric distribution - is also depicted. Initialization of this transient involves 
application of the restriction and then of the lifting operations.  Clearly, as is shown in all 
phase portraits, after a relatively short transient, the norm s  of the vector of variances 
becomes a function of x : it evolves quickly towards, and subsequently on a slow 
manifold parameterized by the first-order moment x  of the underlying distribution. The 
alternatively initialized fifth transient is the middle one in each panel; it evolves (even 
faster) to the same slow manifold. 
 
 4.2 The coarse-grained bifurcation diagram and the associated stability analysis 
Having described the choice of coarse-grained variables as well as our restriction and 
lifting operations, we are ready to proceed to the construction of the coarse-grained 
bifurcation diagram for our system. The stationary states on the coarse-grained 
bifurcation diagram have been obtained as fixed points of the agent-based timestepper 
averaged over 1920 realizations (this particular number, 6 x 320, was dictated by our six-
node cluster), by wrapping Newton-GMRES [71], as a shell, around the coarse 
timestepper. Continuation around the coarse-grained turning points is accomplished by 
coupling the fixed point algorithm with pseudo-arc-length continuation. The critical 
eigenvalues are computed by implementing an Arnoldi iterative eigensolver which was 
again wrapped around our coarse timestepper. In our computations we used eighty 
coarse-grained observables ( 80m =  in restriction and lifting operators) and the time 
horizon T was set to seven tsδ . The coarse-grained bifurcation diagram constructed 
through this approach is shown in figure 4. Two sets of branches (which we will refer to 
as the “upper” and the “lower” ones) are found. The five insets show the average 
emotional state for each degree at the five stationary points (marked a-e) coexisting at 
approximately same p value. The insets above the bifurcation diagram depict 
representative connectivity degree probability distributions at four different values of p. 
As it is shown, steeper distribution curves (indicating that the majority of the nodes in the 
network have a rather small number of links) drive the system to unique stable stationary 

 
 



states. On the other hand, looser distribution curves (indicating that a large percentage of 
nodes have a large number of links) result to the emergence of multiple stationary states; 
depending on the initial conditions the system reaches one of them. 
To perform linearized stability analysis of the obtained coarse-grained solutions we 
numerically approximated the dominant/critical eigenvalues of the macroscopic dynamics 
using the Arnoldi iterative eigensolver. Figure 5 shows the variation of the largest 
eigenvalue as the bifurcation parameter p varies along the upper solution branches in the 
coarse-grained bifurcation diagram. Figure 6 shows the five largest coarse eigenvalues at 
two points, just before (figure 6a) and just after (figure 6b) the “1” saddle-node 
bifurcation, in the complex plane. Figure 7 shows the largest eigenvalue of the coarse-
grained linearization as the bifurcation parameter p varies along the lower part of 
branches of the coarse-grained bifurcation diagram. Figure 8 shows the five largest 
eigenvalues at four points, just before (figure 8a,c) and just after (figure 8b,d) the two 
saddle-node bifurcations marked as “2” and “3” respectively. 
The obtained state distributions and coarse-grained stability results are consistent with 
temporal agent-based simulations. 
 
5. Discussion and Conclusions 

We showed how the so called “Equation-Free” approach for complex/multiscale 
computations can be exploited to systematically analyze the coarse-grained dynamics of a 
certain class of social networks. This was accomplished through the design of 
computational experiments using the detailed, agent-based simulation as a black-box 
coarse timestepper. For our illustrations we used a computational caricature of a mimesis-
like propagation process in a simple social network of individuals. The agent-based 
simulations show some interesting non-linear behavior including apparent phase 
transitions and multiplicity of stationary states. We constructed coarse-grained 
bifurcation diagrams with respect to a parameter dictating the degree distribution of the 
networks and analyzed the (coarse) stability of the stationary solutions.  At this point we 
should note that the identification of multiple stable equilibria is in agreement with 
empirical evidence and studies of behavioral and financial processes as well as other 
instances of complex systems (such as information propagation in networks and 
neuroscience)   [79, 23, 80]. 

Further research could proceed along several directions including the study of 
“rare event” transitions at the neighborhood of coarse-grained bifurcation points, and the 
use of Diffusion Map techniques [70, 81] that can be used to both extract the right 
variables and to efficiently extract information from more complicated and thus more 
realistic agent-based social network simulations.  

One can also envision using such coarse-grained techniques to enhance the study 
the dynamics of complex network/population models which incorporate decision making 
based on agent-based sociological models (econophysics [82, 83]), to explore strategy 
formation, formulate optimal control policies, and more generally, in order to 
prescribe/control the system (network) dynamics. Traditional numerical tools for 
performing such tasks in continuum models are, in principle, not applicable when the 
model is a detailed agent-based one. “Equation-Free” techniques hold the promise of 
linking agent-based codes with traditional continuum numerical analysis; the 
compactness of the coarse descriptions and the fast and quantitative extraction of 

 
 



macroscopic information from realistic fine scale codes may well enhance the use of 
agent-based models for understanding, analyzing and even controlling certain social 
phenomena. 
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Appendix: The construction of a connected random graph with a given degree 
probability distribution without self-loops and multiple edges 
We constructed the graph using a modified version of the algorithm described in [84] in 
order to create a network which precludes the presence of self-loops, multiple edges and 
ensures that there is at least one path connecting any two nodes of the network. We 
should note that the algorithm as described in [84] does not guarantee a connected graph 
and the occurrence of self-loops and multiple edges is not ruled out. The modified 
algorithm reads as follows:  
The degree  of a vertex of a simple graph  is defined as  ( )ivdeg iv ( , )G V E

deg( )   ,       or 
l j l ji v v i v v j i lv e v V where e E and v v v v= ∀ ∈ ∈ = = i . 

 
a) For each node choose randomly a degree according to the given discrete geometric 
distribution. In an undirected graph the sum of the node degrees should be even, since the 

number of edges is an integer equal to . To satisfy this constraint we may 

need to repeatedly randomly select the degree of the last node so that the sum becomes 
even. An undirected connected graph has a minimum of 

1
( deg( )) / 2

N

i
i

v
=
∑

1N −  edges, where is the 
number of vertices. If by sampling there are less than the minimum needed edges we 
resample the probability distribution. 

N

 
b) We then randomly connect the vertices of our graph in such a way that there are no 
two vertices connected by more than one edge and no self - loops.  
 
c) After that, as we want to construct a one component graph, we identify the components 
of our graph, count them, we identify the edges that participate in circuits‡ of the 
components, and we finally link these components. The first two steps are achieved using 
a modified breadth-first search algorithm with “Last In First Out” buckets, for efficiency, 
in order to create the spanning trees, thus identifying the components and registering 
those edges that are not part of the spanning trees (these edges belong to circuits). We list 
the graph components in descending order of the number of registered edges of each 
component. Knowing the edges that are part of circuits, we can use them in order to 
progressively link components without causing any sub-component to become 
disconnected (the structure of the spanning tree created from each component that has at 
least a circuit remains unaltered). The steps of the linking algorithm are then: 
 

a. Register all components in descending order of the number of circuits in a 
components vector, component[], set componentCounter:=1 and set 
numOfComponents equal to the number of the components of the graph; 

b. Insert all edges that create a circuit (the edges not used in the spanning tree) of the 
component[componentCounter] into the circuit_vector; 

c. Select one of the edges randomly and remove it from the circuit_vector; 

                                                 
‡ A circuit is a walk starting from a node x and ending at the same node without having visited any other node more 
than once or used any edge more than once. 

 
 



d. If  the number of the circuits of the component[componentCounter+1] are greater 
than zero then 

i. select one of the edges that create a circuit and insert all the other 
edges to the circuit_vector; 

ii. Delete the two selected edges and using the four vertices involved 
create (randomly among the two options available)  two new edges,  
different than the deleted ones; 

iii. Insert one of the new edges (chosen randomly) to the circuit_vector; 
else 

i. select one of the edges of the component randomly; 
ii. Delete the two selected edges, randomly create two other between the 

four vertices (different than the deleted ones) 
 endif; 

e. Set componentCounter:= componentCounter +1; 
f. If componentCounter < numOfComponents then 

goto c, 
 endif; 
g. Terminate. 

 
The nature of the problem makes the linking-part of the algorithm simple, in the sense 
that linking components does not violate - by construction - certain constraints (no self-
loops, no multiple edges between nodes) of our graphs. The two largest components of 
the graph have been constructed randomly and thus a direct connection of them does not 
insert any bias into the algorithm. Moreover all rewiring parts of the algorithm maintain 
the degree chosen for each vertex at the first step of the algorithm. 
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Captions of Figures 
 

Figure 1. A schematic of the Equation-Free approach. 
 
Figure 2.  Temporal simulations depicting the evolution of the network average (over 
1920 independent realizations) emotional state starting from different initial conditions as 
the value of the parameter p decreases: (a) p = 0.094, (b) p = 0.089, (c)  p = 0.084, (d) p = 
0.079, (e) p = 0.03, (f) p = 0.02. A maximum of three stable stationary solutions is 
possible. 
 
Figure 3. Phase portraits in terms of x  (the overall average network emotional state, the 
first moment) and the norm  s  of the vector of variances of the average emotional state 
for each degree (a higher-order feature) for (a) p = 0.0197, (b) p = 0.0384, (c) p = 0.0589, 
(d) p = 0.0572, (e) p = 0.0585, (f) p = 0.0316. Notice the fast evolution of all plotted 
transients to a one-dimensional slow manifold, apparently well-parameterized by x . 
 
Figure 4. Coarse-grained bifurcation diagram, plotted in terms of the overall network 
average emotional state x vs. p. It has been obtained by wrapping a Newton-GMRES 
iterative solver around the coarse timestepper; five coexisting stationary states, for 
approximately same p value, are marked (a)-(e). The insets show the average emotional 
state ( ix , ordinate) for each degree (abscissa) at each of these stationary points, whether 
stable or unstable. Representative degree probability distributions at four distinct values 
of p are included above the bifurcation diagram. 
 
Figure 5. The leading eigenvalue of the linearized coarse-grained dynamics vs. the 
bifurcation parameter p; it was computed by implementing Arnoldi’s algorithm around 
the coarse timestepper along the “upper” solution branches of figure 3. 
 
Figure 6. Five largest eigenvalues of the linearized coarse-grained dynamics along the 
upper solution branches of the coarse-grained bifurcation diagram (figure 3). (a) just 
before the “1” saddle-node bifurcation, on the stable branch of coarse-grained equilibria 
for p= 0.0804 and (b) just after the “1” saddle-node bifurcation on the lower-lying, 
unstable branch for p= 0.0801. The blowup in (a) is included to clearly show the four 
eigenvalues forming an inner “cluster”. 
 
Figure 7. The leading eigenvalue of the linearized coarse-grained dynamics vs. the 
bifurcation parameter along the lower solution branches of the coarse-grained bifurcation 
diagram (figure 3). 
 
Figure 8. Five largest eigenvalues of the linearized coarse-grained dynamics along the 
lower solution branches of  the coarse-grained bifurcation diagram (figure 3): (a) just 
before the “2” saddle-node bifurcation on the branch of coarse-grained stable equilibria 
for p= 0.0305, (b) just after the “2” saddle-node bifurcation on the branch of coarse-
grained unstable equilibria for p= 0.0303 , (c) just before the “3” saddle-node bifurcation 
on the branch of coarse-grained unstable equilibria for p= 0.0861, (d) just after the “3” 
saddle-node bifurcation on the branch of coarse-grained stable equilibria for p= 0.0857. 

 
 


