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Abstract

In this paper, we describe a numerical continuation method that enables har-
monic analysis of nonlinear periodic oscillators. This method is formulated as
a boundary value problem that can be readily implemented by resorting to a
standard continuation package - without modification - such as AUTO, which
we used. Our technique works for any kind of oscillator, including electronic,
mechanical and biochemical systems. We provide two case studies. The first
study concerns itself with the autonomous electronic oscillator known as the
Colpitts oscillator, and the second one with a nonlinear damped oscillator,
a non-autonomous mechanical oscillator. As shown in the case studies, the
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proposed technique can aid both the analysis and the design of the oscilla-
tors, by following curves for which a certain constraint, related to harmonic
analysis, is fulfilled.

Keywords: continuation methods; harmonic analysis; nonlinear oscillator;
boundary value problem.

1 Introduction

Continuation methods provide an efficient tool for analyzing systems of non-
linear algebraic equations whose solutions form a one-dimensional continuum.
When dealing with periodic solutions of systems of ordinary differential equa-
tions (ODEs), we continue solutions by solving a boundary value problem
(BVP). We can either solve this BVP explicitly, when possible, or implicitly,
by using numerical continuation tools.

The BVPs that are used to continue “standard” objects, such as equilib-
rium points, periodic, homoclinic, and heteroclinic orbits and their bifurca-
tions in dynamical systems are well-known (see, for instance, [Kuznetsov, 2004]
for an overview). However, it is often advantageous to formulate new BVPs to
continue “non-standard” objects, such as invariant manifolds [Doedel et al., 2006],
slow manifolds [Desroches et al., 2008], and coherent structures such as spi-
ral waves and other defects in oscillatory media [Bordyugov & Engel, 2007;
Champneys & Sandstede, 2007].

In a recent paper [Cochelin & Vergez, 2009], a combination of harmonic
analysis and continuation techniques (based on the harmonic balance method)
was proposed. The main result is a new numerical continuation tool that
provides standard results of continuation analysis after a preliminary refor-
mulation of the problem in terms of harmonic balance.

In this paper, we show how to define a novel BVP that enables har-
monic analysis by using standard numerical continuation tools. The pro-
posed BVP allows, in the spirit of [Doedel et al., 2006; Desroches et al., 2008;
Bordyugov & Engel, 2007; Champneys & Sandstede, 2007], for “non-standard”
continuations focused on selected harmonic components of a solution without
an ad hoc simulator like the one described in [Cochelin & Vergez, 2009].

The first application in this paper deals with the design of an autonomous
electronic circuit (the Colpitts oscillator). Its aim is to obtain parameter
charts that can be immediately understood by designers of electronic oscil-
lators. In particular, these charts show how the limit cycle corresponding to
a periodic regime changes in a familiar circuit parameter plane. The guide-
lines for the designer are provided, for instance, by curves corresponding to
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solutions with fixed amplitudes of some harmonic components or with a fixed
ratio of two harmonic components.

The second application entails the harmonic analysis of a non-autonomous
mechanical oscillator (nonlinear damped oscillator). In particular, we use the
proposed BVP to analyze the so-called jump phenomenon [Schmidt & Tondl, 1986].

The main advantages of the proposed approach are the following:

• the BVP is formulated in such a way that the public-domain software
package AUTO-07P [Doedel & Oldeman, 2009] can solve it;

• compared to simulations, computation times are generally lower, since
numerical continuation packages operate directly on system invariant
sets;

• the proposed procedure is reasonably easy to use by those who are
familiar with the analysis of nonlinear dynamical systems.

On the other hand, one needs to take care of the following aspects:

• for complex systems, such as a realistic radio-frequency electronic os-
cillator, the procedure is effective only if preceded by a modeling phase
where one defines a suitable model of the oscillator [Bizzarri et al., 2009]
— such a model should be as simple as possible, but able to capture
the essential features of the system;

• those who are not familiar with numerical continuation packages require
a preliminary training.

This paper is organized as follows. Section 2 summarizes the basic el-
ements that the proposed technique is based on. The BVP formulation is
described in Sec. 3, whereas Secs. 4 and 5 are devoted to two case studies.
Some conclusions are drawn in Sec. 6.

2 Basic elements

Let the following system of ODEs describe an oscillator, which can be either
autonomous or non-autonomous with periodic forcing:

ẋ =
dx

dt
= g(x, t; p), x, g ∈ R

n, p ∈ R
q, t ∈ R. (1)

When this oscillator reaches a periodic regime, it produces signals of generic
period T , that is, frequency f = 1

T
and angular frequency ω = 2πf . The
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Fourier series expansion of each state variable is

xj(t) = a0j +
∞
∑

k=1

[akj sin(kωt) + bkj cos(kωt)] , (2)

where the index j ∈ {1, . . . , n} selects the state variable, a0j is the mean
value of xj(t) over T and we obtain the other coefficients by projecting xj(t)
on the corresponding basis functions

akj =
2

T

∫ t+T

t

xj(τ) sin(kωτ)dτ

bkj =
2

T

∫ t+T

t

xj(τ) cos(kωτ)dτ

(3)

In general, continuation methods show how system invariants (for ex-
ample, equilibrium points or limit cycles) depend on one or more control
parameters. One of the key elements of continuation theory is that invariant
sets and their bifurcations are revealed when so-called test functions equal
zero. Many test functions are included in the most diffused numerical con-
tinuation packages [Doedel & Oldeman, 2009; Dhooge et al., 2003], but, of
course, user-defined test functions can be added. For instance, in this paper
we define test functions of the kind f(Sa, Sb, T,KREF), where Sa and Sb de-
note a subset of na and nb Fourier coefficients {akj} and {bkj}, respectively,
and KREF is a constant reference value.

We can use this formulation to solve different kinds of problems. Firstly
we can continue the amplitude of a harmonic component with respect to a
single parameter. However, of further interest are continuations with respect
to two parameters, adding a further constraint. For instance, iso-harmonic,
iso-ratio, and iso-energy continuations are possible. For iso-harmonic contin-
uations we fix the amplitude of a harmonic component, for iso-ratio continua-
tions the ratio between amplitudes of different harmonics, and for iso-energy
continuations a sum of squares of a limited number of harmonic amplitudes
representing almost the whole power spectrum of the analyzed signal.

In the next section, we set up the BVP that is solved for these continua-
tions.

3 Setup

We start by deriving a simplified model of the oscillator given by a small sys-
tem of ODEs, as is usual when dealing with both the analysis and synthesis

4



of a dynamical system. We call this system the original system. By assuming
some reasonable modeling hypotheses we obtain these equations, which are
expressed in terms of state variables. It is advantageous, but not compulsory,
to normalize these equations and shift the origin of the normalized state space
to a “significant” equilibrium point. Such an equilibrium is stable for some
parameter configuration, and, by varying one parameter, undergoes a super-
critical Andronov-Hopf bifurcation, which marks the appearance of a family
of asymptotically stable periodic solutions evolving around the (unstable)
equilibrium.

3.1 The original system

For autonomous oscillators, the original system is simply the ODE system
modeling the oscillator, given by ẋ = g(x(t); p). For a non-autonomous
oscillator with periodic forcing, we can obtain an equivalent autonomous
oscillator by adding a nonlinear oscillator with the desired periodic forcing
as one of the solution components (see, for instance, the AUTO-07P demo
frc [Doedel & Oldeman, 2009; Alexander et al., 1990]). In particular, for a
sinusoidal forcing we can use the following secondary oscillator (very close to
the normal form of the supercritical Andronov-Hopf bifurcation):

v̇ = αv + βw + v(v2 + w2)

ẇ = −βv + αw + w(v2 + w2),
(4)

which for α < 0 asymptotically converges to the origin and for α > 0 has the
asymptotically stable solution v = sin(βt), w = cos(βt). For instance, if the
first state variable of the original system obeys the differential equation ẋ1 =
g1(x(t); p)+ c cos(ωt) and the state of the original system is x = [x1, . . . , xn],
then in the corresponding autonomous system the equation for the first state
variable is given by ẋ1 = g1(x(t); p) + cw, where β = ω and the state vector
is redefined as x = [x1, . . . , xn, v, w]. Hence, if the original system is a non-
autonomous oscillator with periodic forcing, we can also recast it to the
autonomous system ẋ = g(x(t); p).

We can analyze equilibria, their Hopf bifurcations and emanating limit
cycles in the possibly recast original system. The original system, together
with some information from the limit cycle close to the Hopf bifurcation, is
then used to construct and initialize the full continuation system defining the
BVP.
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3.2 Initialization

As an initial solution for the BVP problem, we could take a pre-computed
periodic orbit, carry out a signal analysis to find the coefficients of its Fourier
expansion, and substitute that into the system. Another way (which we
describe here) is to use standard continuation techniques provided by AUTO,
following an equilibrium point that undergoes an Andronov-Hopf bifurcation.

In the non-autonomous case with sinusoidal forcing, we can easily find
this bifurcation by varying the parameter α in Eqs. (4) across zero.

The limit cycle that emanates from the Andronov-Hopf bifurcation can
then be continued a small distance away from the bifurcation, where it will
still have the approximate form

x(t) = A sinωt+B cosωt. (5)

Here ω is the purely imaginary part of the corresponding eigenvalue of the
equilibrium, which we can obtain using the period T that AUTO provides:
ω = 2π/T . Now the Fourier coefficients can be trivially derived, comparing
Eqs. (2) and (5):

a0j = 0,

a1j = A = ẋj(0)/ω, b1j = B = xj(0),

akj = 0, bkj = 0, k > 1, j = 1, . . . , n

(6)

3.3 The full continuation system

The full continuation system is given by the following equations:

• Non-autonomous differential equations:

ẋ = Tg(x(t), t; p), x, g ∈ R
n, p ∈ R

q, t, T ∈ R

ṫ = 1
(7)

Here the possibly recast original system Eq. (1) is rescaled so that
a T -periodic solution of Eq. (1) is a 1-periodic solution for the first
equation in Eqs. (7). The non-periodic equation ṫ = 1 is added to
make the system look autonomous to continuation software.

• Boundary conditions that define a periodic orbit on the t-interval [0, 1]:

xj(0) = xj(1), j = 1, . . . , n

t(0) = 0
(8)
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• Integral conditions:

∫

1

0

x(t)ẋold(t)dt = 0

∫

1

0

(2xj(t) sin(2πkt)− akj)dt = 0 for any akj ∈ Sa

∫

1

0

(2xj(t) cos(2πkt)− bkj)dt = 0 for any bkj ∈ Sb

∫

1

0

f(Sa, Sb, T,KREF)dt = 0

(9)

Here the first condition is the standard integral phase condition [Kuznetsov, 2004],
where xold(t) denotes the previous point on a continuation branch,
the second and third conditions compute or fix the Fourier coefficients
{akj} ∈ Sa and {bkj} ∈ Sb, and the fourth condition computes or fixes
KREF given the Fourier coefficients in Sa and Sb.

This gives us a system of n + 1 ordinary differential equations, n + 1
boundary conditions and na + nb +2 integral conditions. Adding a standard
pseudo-arclength condition, this needs to be offset by na+nb+3 continuation
parameters.

A basic choice for the parameters is to continue a periodic orbit in one of
the system parameters, the period T , and the na + nb +1 values in Sa ∪Sb ∪
{KREF}. Note that in this case these last na + nb + 1 values are effectively
measured through integral conditions, where explicit test functions such as

akj =

∫

1

0

(2xj(t) sin(2πkt))dt (10)

would suffice.
However, the integral conditions become more powerful if we like to keep

something fixed: for instance, by fixing KREF and freeing up one more sys-
tem parameter we can continue iso-amplitude curves. Moreover, in existing
continuation software it is easier and arguably more elegant, if a little more
computationally expensive, to stick to one full system with the same inte-
gral conditions, than to switch between test functions and equivalent integral
conditions.
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4 Case study 1: an autonomous electronic os-

cillator

Increasing demand, in modern communication systems, of high-performance
low-power radio-frequency circuits is driving the development of accurate
simulation tools at the design stage. The simulation is particularly critical
in the case of analog circuits (free-running or voltage-controlled oscillators),
because of time consumption, and in the case of mixed-signal analog-digital
circuits (frequency synthesizers or phase-locked loops), due to the modelling
difficulties. In all cases, the analysis is usually non-trivial and performance
verification requires extensive simulation. This is even more important when
the main goal is to find how changes in circuit parameters (for example,
the amplitude or frequency of an input generator, or a linear-element value)
affect circuit performance.

The main research lines in this field are twofold. Firstly there is the de-
velopment of algorithms that speed up and make circuit simulations more
reliable [Brambilla et al., 2005; Brambilla & Storti-Gajani, 2008]. Secondly
there is the study of methods that, starting from a simplified version of the de-
signed circuit, aim to provide design criteria avoiding brute-force simulations
of complex integrated circuits. Most of these methods are based on well-
established theories such as harmonic balance, Volterra series (for weakly
nonlinear oscillators), and bifurcation analysis of nonlinear dynamical sys-
tems. Harmonic balance is used for an accurate determination of nonlinear-
circuit operation bands [Rizzoli & Neri, 2009; Suarez et al., 2006] and, asso-
ciated with other methods, for calculating the periodic response of nonlinear
dynamical circuits [Buonomo & Lo Schiavo, 2003]. Volterra series are used
for the analysis of nearly sinusoidal nonlinear oscillators [Hu et al., 1989;
Huang & Chu, 1994]. Bifurcation analysis is used to optimize the design
of oscillators [Maggio et al., 1999] and the locking range of injection-locked
frequency dividers [Ghahramani et al., 2007]. A combination of harmonic-
balance simulators and bifurcation control is exploited to obtain bifurcation
control in microwave circuits, thus presetting the operation bands of com-
plex circuits, such as synchronized and voltage-controlled oscillators and fre-
quency dividers [Collado & Súarez, 2005]. This combination is also used to
obtain robust and efficient oscillator analysis techniques (see, for example,
[Bonani & Gilli, 1999; Genesio et al., 1993; Gourary et al., 2000] and refer-
ences therein).

[Figure 1 about here.]

Our case study is the Colpitts oscillator, shown in Fig. 1, whose dynamics
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were analyzed in detail in [Maggio et al., 1999; De Feo et al., 2000; De Feo & Maggio, 2003].
The following simplified model, that we can easily substitute into the system
defined in Section 3, adequately describes this oscillator:































ẋ =
G

Q(1− γ)

[

−αF

(

e−y − 1
)

+ z
]

ẏ =
G

Qγ

[

(1− αF )
(

e−y − 1
)

+ z
]

ż = −
Qγ(1 − γ)

G

(

x+ y
)

−
1

Q
z

, (11)

where the system parameters are initialized as follows:

Q =
ω0L

R
= 0.8; γ =

C2

C1 + C2

; G =
I0L

VTR(C1 + C2)
= 2;

C1 = C2 = 10−6[F ]; L = 10−3[H ].

(12)

Moreover, we assume αF = 1, that is, we assume the CB short-circuit
forward current gain of the BJT transistor to be ideal. The variable z denotes
the inductor current normalized with respect to I0. The variables x and y
are the voltages across C1 and C2 normalized with respect to VT = 25.9 mV
(that is, the thermal voltage at room temperature). Time is normalized with
respect to T0 =

√

LC1C2/(C1 + C2).
Continuing the equilibrium at 0 as the parameter G goes downwards from

2 we find a Hopf bifurcation at G = 1. For G slightly greater than 1 there
then exists a limit cycle for which the Fourier coefficients a12, b12, and KREF

are given by (see Eqs. (6))

a12 = ẏ(0)/(2π/T ) =
Gz(0)

Qγ
/(2π/T ),

b12 = y(0),

KREF =
√

a212 + b212.

(13)

We focus on the state variable y since it corresponds to the voltage used as
output of the oscillator. Moreover, we focus on its first harmonic component
since we want the generated oscillation to be nearly sinusoidal. Thus we need
to verify that higher order harmonics have small amplitudes when compared
with the first harmonic component.

We then follow the periodic orbits as a boundary value problem in (G, T, a12,
b12, KREF) with user-defined labels for the following values of KREF: 1, 4, 7,
10, 13, 16, 19, 22, 25. Using these values as starting points we can find

9



iso-harmonic curves in (G, γ)-parameter plane for fixed values of KREF by
continuing in (Q,G, T, a12, b12).

[Figure 2 about here.]

We carried out the continuation in the parameter space (Q,G, T, a12, b12),
but show the results in Fig. 2 on the plane (R, I0), according to the defini-
tions of Q and G, to simplify the interpretation of the results from a circuit
point of view. We excluded the parameter space region characterized by
the presence of complex dynamics [Maggio et al., 1999; De Feo et al., 2000]
from our analysis and focused on the region characterized by the presence of
a stable “simple” harmonic cycle.

In the upper panel, along the black dashed curves the period (normalized
with respect to T0) is constant: 6.3 for the lower curve, and 8.7 for the
upper curve, with a step of 0.3. In the lower-left panel, along the black
solid curves the amplitude A1 (normalized with respect to VT ) of the first
harmonic component of y is constant (1 for the lower curve, 25 for the upper
curve, step of 3), whereas along the black dashed curves the amplitude A2

(normalized with respect to VT ) of the second harmonic component of y is
constant (1, 5, 10, and 15 from the lower curve to the upper one).

In the left-right panel, we follow the periodic orbits as a boundary value
problem in (G, T, a12, b12, a22, b22, KREF). Along the black solid curves the
ratio A1

A2

(= KREF) is constant: 3 for the upper curve, 5 for the lower curve,
with a step of 1. The interpretation of these results is straightforward: for
instance, if we want to fix both circuit parameters to have an oscillation fre-
quency f = T0/6.3, and ensure low values of R to increase the quality factor
Q, we can just properly adjust I0 along the lower curve in the upper panel of
Fig. 2. The results shown in the lower panels provide useful information if a
periodic signal whose first harmonic component is predominant with respect
to the second one is of interest.

Of course, we can obtain other iso-curves besides those shown in Fig. 2.
For example, we may chose values of I0 and R ensuring a desired ratio Ap

Aq

for given p and q.
Figure 3 shows the obtained iso-harmonic (with constant A1) curves in

the parameter subspace (R, I0, T ). Of course, the projection of the curves on
the plane (R, I0) gives the black solid curves displayed in the lower-left panel
of Fig. 2.

[Figure 3 about here.]
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5 Case study 2: a non-autonomous mechanical

oscillator

The nonlinear damped oscillator is a model widely used to represent shock
absorbers [Lang et al., 2006] and is given by the following system (with di-
mensionless variables and parameters):

ẋ =
A

m
cos(ωt)−

1

m
(c1x+ c2x

2 + c3x
3 + ky)

ẏ = x
(14)

where m = 240, c1 = 296, c2 = 3000, c3 = 800, and k = 240(4π)2. The
reference angular frequency of the system is ω0 =

√

k/m = 4π.
We can easily recast the non-autonomous system as an autonomous sys-

tem by adding the auxiliary oscillator (4) to Eqs. (14). For α < 0, the
resulting system has a stable equilibrium at the origin, which undergoes a
Hopf bifurcation for α = 0. For small positive α there then exists a limit
cycle for which the Fourier coefficients a12, b12, and KREF are approximately
given by, and determined numerically as (see Eqs. (6))

a12 = ẏ(0)/(2π/T ) = x(0)/(2π/T ),

b12 = y(0),

KREF =
√

a212 + b212.

(15)

We focus on the state variable y since it represents the position of the
mechanical oscillator.

Once the initialization is completed, we work with the full continuation
system and continue the limit cycle with respect to (α, T, a11, b11, KREF) until
we reach α = 1, corresponding to the correct sinusoidal forcing.

In this case, we monitor the amplitude of the first harmonic with re-
spect to one of the parameters ω and A (properly normalized), besides
(T, a11, b11, KREF), to provide evidence for the presence of a “jump phe-
nomenon”. The “jump phenomenon” is a characteristic feature of many non-
linear oscillators, where the response amplitude changes suddenly at some
critical value of the excitation frequency [Schmidt & Tondl, 1986]. Many
widely used methods such as the Harmonic Balance (HBM) and Nonlinear
Output Frequency Response Function (NOFRF) [Peng et al., 2008] barely
capture this phenomenon. Figure 4 shows the amplitudes of the first three
harmonics as functions of the normalized frequency ω/ω0 (upper panels) and
of the normalized amplitude A/m (lower panels). The results perfectly match
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the reference diagrams reported in [Peng et al., 2008].

[Figure 4 about here.]

We remark that the proposed continuation method does not require any
approximation, thus providing excellent accuracy. Moreover, it is based on
tools (such as AUTO) that are reliable and widely tested.

Finally, by performing continuations similar to those shown for the Col-
pitts oscillator, we can also obtain simulations pertaining to the design of
mechanical oscillators, that is, we obtain the values of parameters that en-
sure a desired behavior.

6 Conclusions

We proposed a technique, based on numerical continuation, that enables
harmonic analysis of a given nonlinear oscillator without resorting to any ap-
proximation. Moreover, a designer can choose some oscillator parameters to
obtain a desired behavior, by analysing some of the curves that are obtained
by this technique. More realistically, since the model is an approximation of
the real system, the proposed method provides at least reference values of
the bifurcation parameters. More accurate simulations focused on restricted
portions of the parameter space can then refine these values.

The main advantage of this technique is that it enables the analysis of
even relatively complex oscillators (both autonomous and forced) by using
software tools that are reliable and optimized. This makes the development of
ad hoc software for this kind of analysis unnecessary and ensures an excellent
accuracy of the results.

The main limit of this technique is that it requires a thorough knowledge
of continuation methods and/or software packages for numerical continua-
tion. Moreover, for oscillators forced by non-sinusoidal periodic signals, it
can be non-trivial to define the auxiliary equations needed to make the sys-
tem autonomous. In these cases, it may be more convenient to use the results
of a signal analysis carried out on a pre-computed periodic orbit. The coef-
ficients of the thus obtained Fourier expansion can be substituted into the
system, which can then be used as an initial solution for the BVP problem.
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Figure Captions

1 The considered Colpitts oscillator. VCC = 3 V, C1 = C2 = 1
µF, L = 10 mH. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Charts for the Colpitts oscillator on the parameter plane (R, I0).
The grey line is the Hopf bifurcation curve in all panels. Iso-
period curves (upper panel), iso-A1 (solid) and iso-A2 (dashed)
curves (lower-left panel), and iso-ratio A1

A2

(lower-right panel). . 18
3 Iso-harmonic curves in the parameter subspace (R, I0, T ). . . . 19
4 Amplitudes of the first (first column), second (second column)

and third (third column) harmonics with respect to ω/ω0 (up-
per panels) and to A/m (lower panels). . . . . . . . . . . . . . 20
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Figure 1: The considered Colpitts oscillator. VCC = 3 V, C1 = C2 = 1 µF,
L = 10 mH.
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Figure 2: Charts for the Colpitts oscillator on the parameter plane (R, I0).
The grey line is the Hopf bifurcation curve in all panels. Iso-period curves
(upper panel), iso-A1 (solid) and iso-A2 (dashed) curves (lower-left panel),
and iso-ratio A1

A2

(lower-right panel).
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Figure 3: Iso-harmonic curves in the parameter subspace (R, I0, T ).
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Figure 4: Amplitudes of the first (first column), second (second column) and
third (third column) harmonics with respect to ω/ω0 (upper panels) and to
A/m (lower panels).
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