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Abstract 

During quiet standing the human body continuously moves about an upright posture in an erratic fashion. 

Conventional posturographic analyses that ignore structure of postural steadiness time series do not fully 

characterize properties of sway dynamics. Recurrence quantification analysis is a technique that can 

extract the dynamics of postural fluctuations through several variables. In this study standing still sway 

dynamics of intact and deteriorated postural control systems were investigated by recurrence 

quantification of stabilograms. The results indicated that both normal and changed postural fluctuations 

time series, despite erratic and irregular appearance, contain a hidden structure. Although the two 

components of postural sway originate from an integrated control system, they exhibit distinct dynamical 

patterns. More determinism, greater stability and higher degrees of non stationarity were observed in fore-

aft movements. Our findings reveal that decay of postural control mechanism affects dynamical properties 

of postural control system (especially along mediolateral direction because of the type of the impairment). 

Determinism, non stationarity and rigidity of balance program are increased due to deterioration of 

postural control system. These findings imply that these measures not only can be used as the pathologic 

measures to discriminate between groups differences but also provide new openings to understand the 

nature postural sway. 
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1. Introduction 

Balance control during quiet standing is one of the essential activities that human learn in childhood and 

perform at subconscious level. Despite its apparent simplicity, the task of maintaining an upright posture 

involves a complex sensorimotor control system. Various mechanisms and neurophysiologic sensory 

systems including visual, vestibular, and somatosensory systems contribute to our stability during quiet 

standing and respond to internal or external perturbations [Shumway-Cook & Woollacott, 2006].  

The complex behavior of standing still postural control mechanism has been studied using different 

mathematical linear and nonlinear quantifiers. Many researchers have used linear posturographic 

measures and summary statistics of COP1 time series, which by definition ignore temporal structure of 

time series, to characterize postural sway during quiet standing and to study the influences of different 

factors on postural steadiness [Nichols et al., 1995], [DeHaart et al., 2004], [Norris et al., 2005], 

[Raymakers et al., 2005], [Blaszczyk et al., 2007], [Esteki et al., 2009]. Linear measures such as path 

length or sway range can be used to describe how much the COP moves around (quantity of movement), 

but these measures do not give any information about how well coordinated the movement is (quality of 

movement) and provide no means to underlying control structure, so dynamical system analysis seems to 

be useful in this regard. The complex and unpredictable behavior exhibited by sensorimotor control 

system, as illustrated in Fig.1, has been examined from different perspectives. Many literatures suggested 

that this complexity may be instances of deterministic physiological chaos and arises from a low 

dimensional chaotic system [Newell et al. 1993], [Yamada, 1995], [Pascolo et al., 2005], [Roerdink et al. 

2006], [Donker et al. 2007], [Ladislao & Fioretti, 2007] while some others believe that is the blend of 

deterministic and  random processes [Collins & Luca, 1993], [Newell et al. 1997], [Duarte & Zatsiorsky, 

2000], [Amoud et al., 2007].  

*** FIGURE 1 NEAR HERE *** 

 
                                                            
1 Center of pressure 
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Standing posture is still poorly understood and weakness of postural control mechanism certainly plays a 

role in balance control during quiet standing. Knowledge of sway dynamics can provide new insights into 

nature of disease process and rehabilitation effects that may be unattainable using the measures that 

ignore the time varying properties of sway. 

In our previous study we investigated the existence of low dimensional chaos within sway dynamics of 

normal and deteriorated standing still postural control mechanisms. We could not find any evidence to 

document existence of low dimensional attractors in COP dynamics of neither normal nor deteriorated 

postural control mechanisms. We never disprove the possibility of existence of chaos within standing still 

sway dynamics but our findings indicated that none of them may not be modeled as a low dimensional 

chaotic process and if there is any chaos within dynamics of quiet standing postural fluctuations it might 

be of a dimension too high to detect [Ghomashchi et al. 2010]. 

In this study we used Recurrence Quantification Analysis (RQA) to evaluate dynamical properties of 

postural fluctuations of normal and deteriorated postural control mechanisms during quiet standing. RQA 

can extract a system’s dynamics by quantifying the system’s repeatability through several variables. It is 

shown that RQA is sensitive to changes in postural sway dynamics in response to variations in 

availability of sensory information used to control balance and optical flow [Riley et al. 1999], to balance 

expertise [Schmit et al. 2005], to balance impairments [Schmit et al. 2006],and also embedding 

parameters [Hasson et al. 2007].    

 

2. Methods 

2.1. Participants and Procedures 

In this study, to extract the dynamics of normal and deteriorated postural control systems, two distinctly 

different groups were considered. Postural control system of healthy young adults is considered as the 

system with normal dynamics and of elderly stroke patients with severe balance disorders is considered as 

the abnormal dynamical system. 32 stroke patients (17 male and 15 female) with a first hemispheric 
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intracerebral infarction or hematoma with less than one year (6.9 ± 4.2 months) post stroke time with the 

age of 60.59±8.64 years old and BMI1 index of 25.01±4.51 and 29 healthy young adults (16 male and 13 

female) with the age of 25.90±3.32 years old and 23.54±2.88 BMI index, without known motor 

impairments or movement-related disorders, participated in the experiment. There was no significant 

difference between BMI indexes of two groups. 

Postural fluctuations were evaluated using a dynamic dual force platform (SOT#1, EquiTest testing 

system, NeuroCom International Inc., Clackamas, OR). The system was equipped with a movable visual 

surround and support surface that could rotate in the AP2 plane. Two 22.9 × 45.7 cm force plates 

connected by a pin joint were used to collect COP coordinates at 100 Hz. 

Participants were instructed to stand in an upright posture in a standardized foot placement on the 

platform based on each subject’s height according to the manufacturer’s protocol [NeuroCom 

Internatinal, Inc., 2001]. Participants stood barefoot with their arms relaxed at their sides, their eyes open 

and look straight ahead fixed on a point in front of them. They were instructed to concentrate on their 

stability, stand freely, and have no other mental tasks. Each participant performed a set of 3 trials each 

lasting 20 seconds. 

2.2. Data Processing 

Prior to all analyses to remove stationarity effects, mean and linear trend of the signals were removed and 

the signals were variance normalized. Spectral analysis was performed and the signals were processed by 

a 2nd order low pass Butterworth filter with cutoff frequency of 15 Hz. 

2.3. RQA Input Parameters 

RQA requires reconstruction of a dynamical system’s state space from a single scalar time series, x(t), 

through the process of embedding the time series in m-dimensional phase space by delayed vectors as 

x(ti), x(ti+τ), x(ti+2τ), …. . 

                                                            
1 Body mass index 
2 Anterior- posterior  
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In order to reconstruct the state space of a dynamical system, two problems will need to be solved. The 

first concerns how to select the time delay (τ). With very small delays, the resulting delayed vectors will 

be nearly the same, and so the trajectories in the embedding space will all be compressed into a long thin 

volume equivalent to a diagonal line in the state space. On the other hand, a large delay may produce 

coordinates which are essentially unrelated. For nonlinear systems one of the favored approaches is 

choosing the delay coincides with the first local minimum of auto mutual information function that 

maximizes independence between state vectors. This value was not repeatable in COP time series of 

neither normal nor deteriorated postural fluctuations but it can be characterized by a mean value ± 

standard deviation in each group of COP time series. So, the average of first local minimums of auto 

mutual information functions of COP time series is considered as the proper time delay. The second 

problem concerns how to determine the embedding dimension (d) of the system. Our approach to this 

problem was to use an analytic method known as False Nearest Neighbors (FNN) algorithm proposed by 

Kennel et al. [1992]. Embedding dimension is chosen when the percentage of false nearest neighbors as a 

function of the embedding dimension drops or closest to zero.  

A constant radius (r) of 2.5% average of mean distances between data points in reconstructed state space 

was chosen based on radius selection method proposed by Riely et al. [1999] and conservative choice of 2 

points was considered as the number of successive points defining a line segment in recurrence plots. 

Calculation of first local minimums of auto mutual information functions and mean distances between 

data points in embedding space were performed in MATLAB® (Matworks ,Inc.) and to calculate 

embedding dimension of the time series Chaos Data Analyzer (CDA) software package (Physics 

Academic Software, by J.C. Sprott and G. Rowlands) was used which follows FNN algorithm [Sprott & 

Rowlands, 2003]. RQA software package [Webber, 2009] was used to compute dynamical properties of 

postural sway. Detailed description of RQA output parameters can be found in Riely et al. [1999] and 

Riley & Van Orden [2005]. 
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2.4. Statistical Analyses 

All statistical analyses were performed using SPSS software package version 11.5 (SPSS Inc., Chicago, 

IL, USA). Normality of the results were checked, independent samples T tests with 95% level of 

confidence were used to evaluate between groups differences and paired samples T tests with 95% level 

of confidence were used to evaluate statistical differences between AP and ML1  variables in each group. 

 

3. Results 

The results of calculating RQA input parameters are listed in table 1. Since the differences between input 

parameters’ values affect RQA measures, constant time delay of 11 data points ( average of first local 

minimums of auto mutual information functions), constant embedding dimension of 2 and constant radius 

of 0.04 (2.5% average of mean distances) were used in the analysis. 

 

*** TABLE 1 NEAR HERE *** 

 

Determinism, maximum diagonal line length, information entropy and trend of each group of COP time 

series were calculated from recurrence plots (Fig.2) and the results are shown in Figs. 3-6. Since there 

was a large number of COP time series, in this study we have focused on quantitative measures derived 

from recurrence plots rather than qualitative features from texture analysis. 

 

*** FIGURE 2 NEAR HERE *** 

 

Marked differences were found between dynamical properties of normal and deteriorated postural 

fluctuations and also between AP and ML components of COP time series in each group. 

 

                                                            
1 Mediolateral 
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*** FIGURE 3 NEAR HERE *** 

 

*** FIGURE 4 NEAR HERE *** 

The results indicate that in both groups the determinism as well as the information entropy of postural 

fluctuations along AP direction is significantly higher than ML direction. In normal postural control 

system the trend and the maximum diagonal line length along AP direction are significantly greater than 

ML counterparts.    

 

*** FIGURE 5 NEAR HERE *** 

 

*** FIGURE 6 NEAR HERE *** 

 

Postural fluctuations of deteriorated control mechanism are more deterministic than normal one, 

especially along ML direction. The similar, information entropy of postural steadiness time series of 

deteriorated postural control system, particularly ML, is higher than normal control system. Maximum 

diagonal line lengths of both AP and ML COP time series of changed control system are greater than 

intact postural control system, whereas only the trend along ML direction is significantly different 

between two groups.    

    

4. Discussion 

Analyzing of COP time series of normal postural control system reveals that although the two 

components of COP trajectories are the outputs of an integrated control system, they have different 

appearances. The determinism shows that postural fluctuations along AP direction are more repeatable or 

more structured than ML. Since determinism can readily discriminate between directions differences, 

information entropy which defines the complexity of deterministic structure may not give us additional 



9 

 

useful information. In normal control system in addition to repeatability (and/or complexity) other 

dynamical characteristics of postural control system (i.e. the maximum diagonal line length and the trend) 

are significantly different along AP and ML directions. The length of largest diagonal line, which 

inversely is related with largest Lyapunov exponent, is a measure local dynamic instability and the less 

line length indicates more chaos in the system. Since there is no chaos (at least low dimensional) within 

dynamics of postural sway, this result should be interpreted in this way:  the nearby trajectories of 

embedded ML COP time series diverged more rapidly comparing to embedded AP COP time series that 

leads to less determinism along ML direction. The trend is a measure of the degree of non stationarity of 

embedded COP time series and ML COP time series are more stationary than AP counterparts in normal 

postural control system.  

It is generally believed that in case of postural control impairments both AP and ML postural movments 

are changed in a same manner and this may be the reason that many researchers concentrated only on a 

component of COP trajectories (especially AP) to study postural control behavior during quiet standing 

[Nichols et al., 1995], [Ladislao & Fioretti, 2007], [Esteki et al., 2009] but in this study we found different 

results. Degradation of postural control system causes that the differences between dynamical 

characteristics (except repeatability) of AP and ML COP time series be lost. Our findings also shown that 

there are no significant differences between dynamical characteristics of normal and changed postural 

control systems along AP direction (except maximum diagonal line length) but they are all significantly 

different along ML direction. It implies that the neurological impairment (hemiplegia) more affected on 

ML direction and significantly increased the determinism, local stability as well as non stationarity of ML 

movements and made them comparable with AP counterparts. Due to the reduced ability of symmetrical 

weight distribution between load bearing limbs, side to side load shifting causes more repeatable (more 

deterministic) ML sway patterns, similar to AP ones,  for the patients. Lower ability of loading the paretic 

side and load shifting from non paretic to paretic side provide greater non stationarity for postural 

fluctuations along ML direction. However local instability and somehow the determinism along AP 
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direction were also sensitive enough to distinguish intact and deteriorated postural control systems.  But it 

should be noted that if the trajectory is to remain in a bounded region in the state space, the length of 

largest diagonal line quantifies how long two nearby trajectories stay close together. So, it is not 

equivalent to clinical measures of postural stability and it is better to say that it quantifies the rigidity (or 

flexibility) of balance programs.  

These results of this study are well consistent with the results of many other literatures which indicate loss 

of complexity in elderlies, and in neurological and physiological diseases [Kaplan et al. 1991], [Lipsitz & 

Goldberger, 1992], [Pincus & Goldberger, 1994], [Lipsitz, 2004], [Kunhimangalam et al. 2007] because 

according to definitions, loss of complexity is consistent with increasing of regularity or determinism. 

This makes sense; in deteriorated postural control system, less complex (more deterministic) and more 

rigid programs are utilized to maintain balance during quiet standing. 

 

5. Conclusion 

In this study we investigated sway dynamics of normal and abnormal postural control mechanisms using 

Recurrence Quantification Analysis method. Appropriate parameter selection methods from mathematical 

theory of nonlinear dynamical systems are utilized to select suitable input parameters. RQA measures not 

only can be used as the pathological discriminating criteria for balance disorders, but also they provide 

useful information about underlying control mechanism and its hidden dynamics. It is important to 

recognize that there are orderly patterns within these outwardly unorganized and noisy looking 

fluctuations which are the outcomes of distinguishable different postural control programs. The results 

justify the inclusion of RQA quantifiers in clinical assessment of postural fluctuations to understand the 

disease process and the effects of rehabilitation on patients who receive physical therapy interventions.  
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Captions 

Figure 1. Left panel: a typical 20 seconds COP trajectory where x and y respectively correspond to 

mediolateral and anterior posterior directions. Right panel: corresponding time series. 

Figure 2. Recurrence plot of a sample ML COP time series 

Figure 3. % Determinism of embedded AP and ML COP time series of both normal and 

deteriorated postural control systems. 

Figure 4. Maximum diagonal line lengths of embedded AP and ML COP time series of normal and 

deteriorated postural control systems. 

Figure 5. Entropy of embedded AP and ML COP time series of normal and deteriorated postural 

control systems. 

Figure 6. Trends of embedded AP and ML COP time series of normal and deteriorated postural 

control systems. 

Table 1. Descriptive statistics of first local minimums of auto mutual information functions of 

COP time series, embedding dimensions and mean distances between data points in 

reconstructed space.  
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Fig. 1. Left panel: a typical 20 seconds COP trajectory where x and y respectively correspond to 

mediolateral and anterior posterior directions. Right panel: corresponding time series. 

 

 

 

 

 

 

(FIGURE 1) 
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Fig. 2. Recurrence plot of a sample ML COP time series 

 

 

(FIGURE 2) 
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Fig 3. % Determinism of embedded AP and ML COP time series of both normal and deteriorated 
postural control systems.  

† : Deteriorated postural control system is significantly different from normal one along ML 
direction (p AP = 0.097, p ML = 0.000). 

*:  AP is significantly different from ML in both groups (p Normal = 0.000, p Deteriorated = 0.001). 

 

 

 

 

 

(FIGURE 3) 
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Fig 4. Maximum diagonal line lengths of embedded AP and ML COP time series of normal and 
deteriorated postural control systems.  

† : Deteriorated postural control system is significantly different from normal one in both 
directions (p AP = 0.047, p ML = 0.000) 

*:  AP is significantly different from ML in normal postural control system (p Normal = 0.000). 

 

 

 

 

(FIGURE 4) 
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Fig 5. Entropy of embedded AP and ML COP time series of normal and deteriorated postural 
control systems.  

† : Deteriorated postural control system is significantly different from normal one along ML 
direction (p ML = 0.000). 

*:  AP is significantly different from ML in both groups (p Normal = 0.000, p Deteriorated = 0.002). 

 

 

 

(FIGURE 5) 
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Fig 6. Trends of embedded AP and ML COP time series of normal and deteriorated postural 
control systems.  

† : Deteriorated postural control system is significantly different from normal one along ML 
direction (p ML = 0.002). 

*:  AP is significantly different from ML in normal postural control system (p Normal = 0.000). 

 

 

 

(FIGURE 6) 
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Table 1. Descriptive statistics of first local minimums of auto mutual information functions of COP 

time series, embedding dimensions and mean distances between data points in reconstructed space.  

Group 

 

Index 

Normal 

Mean Value 

Deteriorated 

Mean Value 

AP ML AP ML 

τ 11 10 12 12 

d 2 2 2 2 

Mean 

Distance 
1.6049 1.6049 1.6127 1.5957 

 

 

 

 

 

 

 

 

 

 

(TABLE 1) 


