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We study cubic vector fields with inverse radial symmetry, i.e., of the form ẋ = δx− y + ax2 +
bxy + cy2 + σ(dx − y)(x2 + y2), ẏ = x + δy + ex2 + fxy + gy2 + σ(x + dy)(x2 + y2), having a
center at the origin and at infinity; we shortly call them cubic irs-systems. These systems are
known to be Hamiltonian or reversible. Here we provide an improvement of the algorithm that
characterizes these systems and we give a new normal form.
Our main result is the systematic classification of the global phase portraits of the cubic Hamil-
tonian irs-systems respecting time (i.e. σ = 1) up to topological and diffeomorphic equivalence.
In particular there are 22 (resp. 14) topologically different global phase portraits for the Hamil-
tonian (resp. reversible Hamiltonian) irs-systems on the Poincaré disc.
Finally we illustrate how to generalize our results to polynomial irs-systems of arbitrary degree.
In particular we study the bifurcation diagram of a 1-parameter subfamily of quintic Hamiltonian
irs-systems. Moreover we indicate how to construct a concrete reversible irs-system with a given
configuration of singularities respecting their topological type and separatrix connections.

Keywords : classification of global phase portraits, characterization of cubic centers, Lyapunov
quantities, Hamiltonian planar vector fields, cubic vector fields.

1. Introduction

Let P and Q be two real polynomials in the variables x and y, then we say that X = (P,Q) : R2 −→ R2 is
a planar polynomial vector field of degree d if the maximum of the degrees of the polynomials P and Q is d.
Such vector fields are called quadratic or cubic if d = 2 or d = 3, respectively. The polynomial differential
system associated to the vector field X is

ẋ = P (x, y), ẏ = Q(x, y).

Two of the main classical problems in the qualitative theory of real planar polynomial vector fields are
the determination of their limit cycles and the center-focus problem; i.e. to distinguish whether a singular
point is either a focus or a center. A center is a singular point having a neighborhood fulfilled of periodic
orbits with the unique exception of the singular point.

The classification of the centers of the polynomial vector fields is an old problem which started with
the quadratic ones by the works of Dulac [1908], Kapteyn [1911, 1912], Bautin [1954], Żo la̧dek [1994b],. . . ;
an update on the quadratic centers can be found in [Schlomiuk, 1993a]. For the quadratic polynomial
vector fields the characterization of centers is completed. There exist many partial results for the centers
of polynomial vector fields of degree larger than 2, but we are very far to obtain a complete classification
of the centers for the class of all polynomial vector fields of degree 3. In particular the centers of the cubic
polynomial vector fields of the form ẋ = −y + P3(x, y), ẏ = x + Q3(x, y) with P3 and Q3 homogeneous
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polynomials of degree 3, have been classified by Vulpe & Sibirskĭı [1988], Lloyd & Pearson [1999] and
Żo la̧dek [1994a]. In case former cubic systems are reversible through a linear involution and have a fixed
set of dimension 1, a classification of their global phase portraits can be found in [Buzzi et al., 2009].

In this paper we study real planar cubic polynomial systems for which the coefficients in the asymptotic
expansion of the Poincaré map both near the origin and near infinity are polynomial in the parameter.
These systems are of the form

ẋ = δx− y + ax2 + bxy + cy2 + σ(dx− y)(x2 + y2),
ẏ = x + δy + ex2 + fxy + gy2 + σ(x + dy)(x2 + y2),

(1)

as also was found in [Blows & Rousseau, 1993]. Recall that system (1) has a center at infinity if the origin
of system (1) is a center after the transformation x = cos θ/r and y = sin θ/r.

First we improve the algorithm used in [Blows & Rousseau, 1993] to characterize these systems having
simultaneously a center at the origin and at infinity. As a result we find a new normal form classifiying
these systems as a Hamiltonian and a reversible class (see Theorem 1). Although the center-focus problem
has its own interest, the knowledge of the center conditions near the origin (resp. infinity) also is used
to study the maximum number of large amplitude limit cycles (resp. small amplitude limit cycles) by
ways of the so-called division-derivation algorithm. In [Blows & Rousseau, 1993] the simultaneous cyclicity
problem is also studied and it is proved that the maximum of limit cycles which can appear by simultaneous
bifurcation at the origin and at infinity is seven. Some results on the number of large amplitude limit cycles
for this class of cubic planar vector fields can be found in [Liu & Chen, 2002], [Liu & Huang, 2006] and
[Zhang & Liu, 2006]. More precisely they give concrete bifurcations for which seven large amplitude limit
cycles appear. This problem of large amplitude limit cycles is also studied in [Huang & Liu, 2004a], [Zhang
et al., 2006] and [Zhang & Liu, 2007] for quintic planar vector fields, in [Huang & Liu, 2004b] for septic
planar vector fields, in [Caubergh & Dumortier, 2008] for classical Liénard systems of even degree and in
[Luca et al., 2009] for certain subclasses of generalized Liénard systems.

After rescaling the parameter σ can be supposed to be ±1. Written in polar coordinates the leading
terms of system (1) at infinity are the same as the ones at the origin, up to the sign of σ. Hence, the
local phase portrait at infinity is topologically equivalent to the one at the origin (after time reversal for
σ = −1.). Therefore a cubic system of type (1) is called a cubic system with inverse radial symmetry or
shortly cubic irs-system. If σ > 0 (resp. σ < 0) we say that system (1) is a cubic system with inverse radial
symmetry respecting time (resp. reversing time).

Theorem 1. The cubic irs-system (i.e., system (1)) has a center at the origin and at infinity if and
only if δ = d = 0 and it is Hamiltonian or reversible, after a rotation, with respect to the change
(x, y, t) → (x,−y,−t). That is, after rotation, system (1) satisfies δ = d = 0, b = −2g and f = −2a
for the Hamiltonian class or δ = a = c = d = f = 0 for the reversible class, given below in (2) and (8)
respectively.

Next we classify the global phase portraits of the Hamiltonian cubic irs-systems respecting time with
respect to topological and diffeomorphic equivalence (see Theorems 2, 3, 4 and 5). The classification of
global phase portraits of other Hamiltonian systems is done before, see e.g., [Gasull et al., 2000] and
[Guillamon & Pantazi, 2008]. However their techniques does not apply to the cubic irs-system we consider
in this paper. Here we introduce a new systematic technique to systematically study the global phase
portraits of Hamiltonian irs-systems.

By Lemma 2 we only need to consider a = 0, g ≥ 0 and c ≥ 0. Next result details the corresponding
phase portrait in each region of the parameter space.

Theorem 2. In Table 1 the global phase portraits of the Hamiltonian cubic irs-systems respecting time, i.e.

XH
(g,c,e) ↔

{
ẋ = −y − 2gxy + cy2 − y

(
x2 + y2

)
,

ẏ = x + ex2 + gy2 + x
(
x2 + y2

)
,

(2)

are classified up to diffeomorphic equivalence. In Case 2 the explicit expressions of the polynomials R̂2

and R̂6 in (g, c) are given in (45). In Case 4 the parameter (α, β) is defined by (46) with λ = −e + 2g;



October 7, 2010 11:54 CauLliTor2010˙revised

Global Classification of a class of Cubic Vector Fields whose canonical regions are period annuli 3

the semi-algebraic subsets A,B, C,D, E ,F ,G,H of {(α, β) : 0 ≤ −β < α} are defined on page 27 and the
figures show the bifurcation with respect to the bifurcation parameter λ.

Note that Table 1 provides all the phase portraits of system XH
(g,c,e) according to values of its param-

eters. Moreover observe that in cases 1, 2 and 3 the classification is done using only the initial parameters
of the system. In the study of case 4 there need to be introduced auxiliary parameters in function of the
initial ones, which simplifies the classification, see for more details Theorem 7.

Table 1. Classification of the phase portraits of the Hamiltonian cubic irs-systems
respecting time, XH

(g,c,e), with respect to diffeomorphic equivalence (Theorem 2).

g < 1 Figure 10(a)
Case 1: c = 0, e = 2g g = 1 Figure 10(b)

g > 1 Figure 10(c)

R̂2 < 0 Figure 12(a)

R̂2 = 0 Figure 12(b)

g < 1, R̂2 > 0 Figure 12(c)
Case 2: c 6= 0, e = 2g g = 1 Figure 12(d)

g > 1, R̂6 < 0 Figure 12(e)

R̂6 = 0 Figure 12(f)

R̂6 > 0 Figure 12(g)

e < 2 Figure 13(a)

Case 3: e 6= 2g, c2 − 4g(e− 2g) < 0 e = 2 Figure 13(b)
e > 2 Figure 13(c)

(α, β) ∈ A Theorem 7(1), Figure 17
(α, β) ∈ B Theorem 7(2), Figure 18
(α, β) ∈ C Theorem 7(3), Figure 19

Case 4: e 6= 2g, c2 − 4g(e− 2g) > 0 (α, β) ∈ D Theorem 7(4), Figure 20
(α, β) ∈ E Theorem 7(5), Figure 21
(α, β) ∈ F Theorem 7(6), Figure 22
(α, β) ∈ G Theorem 7(7), Figure 23
(α, β) ∈ H Theorem 7(8), Figure 24

In Theorem 3 we classify all phase portraits for Hamiltonian cubic irs-systems up to topological equiv-
alence.

Theorem 3. The phase portrait of a Hamiltonian cubic irs-system, XH
(g,c,e), is topologically equivalent to

one of the 22 phase portraits described in Figure 1.

Theorem 4. The phase portrait of a reversible Hamiltonian cubic irs-system respecting time, XH
(g,0,e), is

topologically equivalent to one of the 14 phase portraits presented in Figure 2. Furthermore the phase portrait
of these cubic reversible Hamiltonian systems is uniquely determined with respect to topological equivalence
in case that the total number of singularities equals 1, 2, 4 or 6.

Throughout this paper we will use the notation |·| for the Euclidean norm on R2 as well for the absolute
value of a real number.

Theorem 5. The global phase portrait of a Hamiltonian cubic irs-system respecting time, XH
(g,c,e) has at

most 7 singularities of which one is the center at the origin. Furthermore the following statements hold:

(1) There are at most 3 distinct straight lines l through the origin that carry 2 or more singularities of
(1). Denote these lines by li, 0 ≤ i ≤ k, k ≤ 2.

(2) If li (0 ≤ i ≤ k, k ≤ 2) is such a straight line through the origin, then li carries at most 2 singularities
different from the origin.
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(I) (II) (IIIa) (IIIb) (IVa) (IVb)

(Va) (Vb) (Vc) (Vd) (Ve) (Vf)

(VIa) (VIb) (VIIa) (VIIb) (VIIc) (VIId)

(VIIe) (VIIf) (VIIg) (VIIh)

Fig. 1. Topologically different phase portraits of the cubic Hamiltonian irs-systems (see Theorem 3).

(I) (II) (IIIa) (IIIb) (IV) (Va) (Vb)

(VI) (VIIa) (VIIb) (VIIc) (VIId) (VIIe) (VIIf)

Fig. 2. Topologically different phase portraits of the cubic reversible Hamiltonian irs-systems (see Theorem 4).

(a) When li carries 1 singularity different from the origin, then we denote this singularity by si and
we have

∣∣si
∣∣ = 1. Furthermore its Hamiltonian value is hi ≡ 1/12.

(b) When li carries 2 singularities different from the origin, then both singularities lie on the same side
of the origin and we denote them by si± having

∣∣si−
∣∣ < 1 <

∣∣si+
∣∣ . Furthermore hi− < hi+ < 1/12,

where hi± denotes the Hamiltonian value at si± respectively.

(3) Assume that there are k+ 1 straight lines (k ≤ 2), say li, 0 ≤ i ≤ k, carrying at least two singularities,
then we order these lines such that hi1− ≤ hi2− for 0 ≤ i1 ≤ i2 ≤ k, where we extend the notation hi− ≡ hi

in case li carries only 1 singularity outside of the origin.
(4) A Hamiltonian cubic irs-system has maximally 7 disjoint period annuli.
(5) The global phase portraits can be classified up to topological equivalence in terms of the number of
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singularities (#s) and the order of their values of the Hamiltonian. For three configurations of the
Hamiltonian values an additional algebraic condition has to be checked to determine the phase portraits
uniquely up to topological equivalence. This classification is presented in Table 2.

Table 2. Topological classification of the phase portraits of the cubic Hamil-
tonian systems based on the number of singularities. The number m (A) is
defined as the maximal multiplicity of a zero of A on [0, π) and A and Π are
respectively defined in (12) and (52).

#s Hamiltonian values Condition Figure

1 Figure 1(I)

2 h0 = 1/12 Figure 1(II)

3 h0 = h1 = 1/12 Figure 1(IIIa)

3 h0− < 1/12 Figure 1(IIIb)

4 h0− < h1 = 1/12 Figure 1(IVa)

4 h0 = h1 = h2 = 1/12 Figure 1(IVb)

5 h0− < h1+ < h1− < 1/12 m (A) = 2 Figure 1(Va)

5 h0− = h1+ < h1− < 1/12 m (A) = 2 Figure 1(Vb)

5 h1+ < h0− < h1− < 1/12 m (A) = 2 Figure 1(Vc)

5 h0− < h1− < 1/12 m (A) = 1 Figure 1(Vd)

5 h0+ = h1+ < h0− = h1− < 1/12 Figure 1(Ve)

5 h0− < h1 = h2 = 1/12 Figure 1(Vf)

6 h0− < h1− < h2 = 1/12 Figure 1(VIa)

6 h0+ = h1+ < h0− = h1− < h2 = 1/12 Figure 1(VIb)

7 h0− < h1− < h2− < 1/12 Π > 0 Figure 1(VIIa)

7 h0− < h1− < h2− < 1/12 Π < 0 Figure 1(VIIb)

and h2+ /∈ {h0−, h1−}

7

{
h0− < h1− = h2+ < h2− < 1/12 or

h2+ < h1− = h0− < h2− < 1/12
Π < 0 Figure 1(VIIc)

7

{
h0− = h2+ < h1− < h2− < 1/12 or

h0− = h1− < h2+ < h2− < 1/12
Π < 0 Figure 1(VIId)

7 h0− < h1− = h2− < 1/12 Figure 1(VIIe)

7 h0− = h1− = h2− < 1/12 Figure 1(VIIf)

7 h0− = h1− < h2− < 1/12 Π > 0 Figure 1(VIIg)

7 h0− = h1− = h2+ < h2− < 1/12 Π < 0 Figure 1(VIIh)

The paper is organized as follows. In section 2 we prove Theorem 1. Using the improved algorithm of
Gasull & Torregrosa [2001] to calculate Lyapunov quantities we derive a new normal form for the cubic
irs-systems. In section 3 we recall basic notions and results on singular points, on the infinity and equivalent
vector fields. Next in section 4 we study the qualitative properties of the 4-parameter Hamiltonian subfamily
for σ = 1 in polar coordinates. This leads to the introduction of trigonometric polynomials A and B
that play an important role in the description of the bifurcation diagram of the phase portraits (see
subsection 4.1). Next in subsection 4.2 we reduce the study of the 4-parameter Hamiltonian family to the
one of a 3-parameter Hamiltonian subfamily. Next in subsection 4.3 we analyze the singularities along a
‘ray’ depending on its multiplicity and in subsection 4.4 we study the properties of the Hamiltonian. The
local analysis of the singularities and the properties of the Hamiltonian enable us to classify the global
phase portraits of the Hamiltonian class up to diffeomorphic equivalence. For σ = 1 the bifurcation of
the global phase portraits are described in section 5 for arbitrary but fixed number of the rays that can
carry singularities multiplicity taken into account (sections 5.1, 5.2, 5.3 and 5.4). These characterizations
prove Theorems 2 and 5. The proof of Theorem 3 follows by identifying the topologically nonequivalent
phase portraits of Figures 10, 12, 13, 17, 18, 19, 20, 21, 22, 23 and 24; the proof of Theorem 4 follows from
Theorem 3 by considering the ones appearing for c = 0. Finally, in section 6, using the systematic method
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previously introduced for these cubic systems, we construct concrete examples of polynomial Hamiltonian
and reversible systems of higher degree than 3 with a given configuration of singularities and connections
of the separatrices. In a forthcoming paper we treat the reversible class.

2. Normal Forms for Cubic irs-Systems

In this section we deduce a normal form for the cubic irs-systems. Ending the writing of this paper we
found that the centers for these systems also are characterised in [Blows & Rousseau, 1993] by a calculation
of Lyapunov quantities. However in [Blows & Rousseau, 1993] calculations are performed at infinity while
here we perform calculations near the origin parallel with calculations at infinity. Moreover we include
an improvement of the algorithm as introduced in [Gasull & Torregrosa, 2001] what lead to a significant
reduction of the calculations. Since our proof is shorter and leads to a different normal form we include it
here.

Lyapunov quantities are defined by an algebraic lemma in [Schlomiuk, 1993b] for a weak focus; we
recall a slightly generalized version of it which proof can be found in [Caubergh & Dumortier, 2004].

Lemma 1 [Lyapunov quantities]. Let (Xλ) , λ ∈ W ⊂ Rp be an analytic family of planar vector fields with
1-jet (d (λ)x− c (λ) y) ∂

∂x + (c (λ) x + d (λ) y) ∂
∂y , for some analytic functions c, d : W → R with c (λ) 6= 0

for all λ. Then there exists a formal power series Fλ with

Fλ (x, y) =
1

2

(
x2 + y2

)
+ O

(
‖ (x, y) ‖2

)
, ‖ (x, y) ‖ → 0,

and there exist analytic functions Vi, i ∈ N such that

XλFλ (x, y) =

∞∑

i=0

Vi (λ)
(
x2 + y2

)i+1
. (3)

Furthermore such analytic functions {Vi, i ∈ N} are uniquely determined by (3) in the sense that if another
set of analytic functions {Wi, i ∈ N} satisfies (3), then

Wi = Vi mod (V0, V1, . . . , Vi−1) ,

where (V0, V1, . . . , Vi−1) denotes the ideal generated by the analytic functions Vj , 0 ≤ j ≤ i− 1. Any set of
analytic functions satisfying (3) is called a set of Lyapunov quantities for Xλ.

The systems Xλ, λ ∈ W having a center at the origin can be characterized by the vanishing of all
Lyapunov quantities: if {Vi, i ∈ N} is a set of Lyapunov quantities of Xλ, then the focus at the origin of
Xλ0 is a center if and only if Vi (λ0) = 0 for all i ∈ N. In particular the systems Xλ, λ ∈ W having a weak
focus at the origin can be characterized by the vanishing of the 0th Lyapunov quantity of Xλ.

In practice Lyapunov quantities can be calculated by putting the system in polar coordinates (r, θ)

dr

dθ
=

∞∑

k=1

Sk(θ)rk, (4)

where Sk(θ) are homogeneous trigonometric polynomials of degree k whose coefficients are polynomials in
(a, b, c, d, e, f, g, δ, σ).

Denote by r(θ, r0) the solution of (4) such that r = r0 when θ = 0. In this case and for r small enough
we can write

r(θ, r0) = r0 +
∞∑

k=1

uk(θ)rk0 ,

for analytic functions uk with uk(0) = 0 for k ≥ 1. The Poincaré return map is defined as

Π(r0) = r(2π, r0) = r0 +

∞∑

k=1

uk(2π)rk0 .
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In particular if {Vi, i ∈ N} is a set of Lyapunov quantities for (1), then

V0 = c0δ and Vi = ciu2i+1 (2π) mod (V0, V1, . . . , Vi−1)

for some non-zero constants ci, i ≥ 0 (see [Caubergh & Dumortier, 2004]). Therefore to find the center
conditions, it suffices to determine vk = 0, k ≥ 1 recursively where v1 = u1 (2π) mod (δ) and vk =
u2k+1 (2π) mod (δ, u3 (2π) , u5 (2π) , . . . , u2k−1 (2π)) for k ≥ 1.

By calculating the set vk, k ≥ 1 instead of Vk, k ≥ 1 computations and computer time are significantly
reduced; if one in addition works in complex notation as does the algorithm introduced in [Gasull & Tor-
regrosa, 2001], the computer time is even more reduced. System (1) can be written in complex coordinates
(z, z), as

ż = (δ + i)z +

∞∑

k=1

Rk(z, z) and Rk(z, z) =

k∑

l=0

rl,k−lz
lzk−l, (5)

where rl,k−l depend on the parameter (a, b, c, d, e, f, g, δ, σ) . Notice that only in this section z denotes the
conjugate of a complex number z and i the number

√
−1.

Proof. [Proof of Theorem 1]After the change of variables z = x + iy system (1) writes in the form (5)
where

r10 = δ + i, r20 = (a− c + f + i(−b + e− g))/4, r30 = 0,

r01 = 0, r11 = (a + c + i(e + g))/2, r21 = σ(d + i),

r02 = (a− f − a + i(b + e− g))/4, r12 = 0,

r03 = 0.

Then the cubic irs-system (1) has a weak focus at the origin when δ = 0 and after the transformation
x = cos θ/r and y = sin θ/r we can say that system (1) has a weak focus at infinity when d = 0.

After a rescaling of the variables and time it is not restrictive to assume that σ = ±1. Here we only
consider the case σ = 1, the case σ = −1 is analogous. The computation of the Lyapunov quantities
according to the algorithm in [Gasull & Torregrosa, 2001] gives

v1 = πi (r20r11 − r20r11) ,

v2 = 2πi
(
2r02r

3
11 − 2r02r

3
11 + 3r02r20r

2
11 − 3r02r20r

2
11 + 2r02r

2
20r11 − 2r02r

2
20r11

)
/3,

v3 = πi
(
−146r02r20r

2
11 + 146r02r20r

2
11 − 72r02r

3
11 + 72r02r

3
11 − 8r02r

3
20

+ 8r320r02 − 30r311r02r20r11 + 30r02r20r
4
11 − 15r411r02r11 + 15r11r02r

4
11

− 15r202r02r
3
11 + 15r311r

2
02r02 − 30r202r20r02r

2
11 + 30r211r02r

2
02r20

)
/6,

v4 = πi
(
3926r02r20r

2
11 − 3926r02r20r

2
11 + 2232r02r

3
11 − 2232r02r

3
11 + 2152r320r02

− 2152r02r
3
20 + 105r202r02r

3
11 − 105r311r

2
02r02 + 840r202r

3
20r02 − 840r202r

3
20r02

+ 13035r11r02r
4
11 − 13035r411r02r11 + 26070r02r20r

4
11 − 26070r311r02r20r11

)
/225,

v5 = 16πi
(
−143r02r20r

2
11 + 143r02r20r

2
11 − 66r02r

3
11 + 66r02r

3
11 − 44r02r

3
20 + 44r320r02

− 2890r311r02r20r11 + 2890r02r20r
4
11 − 1445r411r02r11 + 1445r11r02r

4
11

)
/105,

and v6 = v7 = 0. Using only the vanishing of the first four Lyapunov quantities we obtain

v25 = 0 mod (v1, v2, v3, v4) .

Now we show that {δ, d, v1, v2, v3, v4} are the Lyapunov quantities that control the centers in real coordi-
nates by adding the condition

v24 = −20480π2r11r
2
11(−r02r

3
11 + r02r

3
11)2(2r20 + r11) mod (v1, v2, v3)

and solving system S = {v1 = 0, v2 = 0, v3 = 0, v4 = 0}. We solve system S for the variables rkl and
next we return to the original parameters a, b, c, e, f, g. By taking into account that system (1) is a real
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differential system we obtain some concrete families that are of Hamiltonian or reversible type. Then we
can conclude that system (1) has a center at the origin if and only if the Lyapunov quantities vj , 0 ≤ j ≤ 4
are zero.

Notice that these two classes are invariant after a rotation with respect to the origin. Up to this rotation
the Hamiltonian class is the 4-parameter subfamily within system (1) defined by the conditions

δ = d = 0, b = −2g and f = −2a, (6)

and the Hamiltonian is given by

H(x, y) =
1

2

(
x2 + y2

)
+

1

3
ex3 − ax2y + gxy2 − 1

3
cy3 +

1

4
σ
(
x2 + y2

)2
.

The reversible class, up to some rotation with respect to the origin, is the 3-parameter subfamily within
system (1) defined by the conditions δ = a = c = d = f = 0. Notice that this family is symmetric with
respect to the change (x, y, t) 7→ (x,−y,−t). �

In subsection 4.2 for σ = 1 we will see that up to linear conjugacy the phase portraits of the Hamiltonian
class are represented by the 3-parameter subfamily b = −2g, f = −2a and a = 0. Then the Hamiltonian
class can be represented by the 3-parameter family defined by (2), i.e.

XH
(g,c,e) ↔

{
ẋ = −y − 2gxy + cy2 − y

(
x2 + y2

)
,

ẏ = x + ex2 + gy2 + x
(
x2 + y2

)
,

with Hamiltonian H = H(g,c,e) given by

H(x, y) =
1

2

(
x2 + y2

)
+

1

3
ex3 + gxy2 − 1

3
cy3 +

1

4

(
x2 + y2

)2
, (7)

and the reversible class can be represented by the 3-parameter family

XR
(g,ξ,e) ↔

{
ẋ = −y + (ξ − 2g)xy − y

(
x2 + y2

)
,

ẏ = x + ex2 + gy2 + x
(
x2 + y2

)
.

(8)

Notice that by increasing |ξ| from ξ = 0, the reversible class is born from the Hamiltonian subclass defined
by c = 0, i.e., XR

(g,0,e) = XH
(g,0,e). These facts are also true for the case σ = −1.

3. Topological and Diffeomorphic Equivalence

In this section we recall notions and basic theorems that we will use in the classification of the phase
portraits of the Hamiltonian cubic irs-systems.

We denote by Pn(R2) the set of real planar polynomial vector fields of the form X(x, y) =
(P (x, y), Q(x, y)) where P and Q are real polynomials in the variables (x, y) of degree n. We denote
by p(X) the Poincaré compactified vector field corresponding to X ∈ Pn(R2) which is an analytic vector
field induced on S2, as described in [Gonsales, 1984], or Chapter 5 of [Dumortier et al., 2006]. In this way,
S1 is identified to the infinity of R2; in this paper when we speak about infinity, we mean the circle of
infinity of X. System (1) doesn’t have singularities at infinity, so the invariant circle S1 at infinity is a
periodic orbit.

We say that two polynomial vector fields X and Y on R2 are topologically equivalent (resp. diffeomor-
phically equivalent, resp. diffeomorphically linear) if there exists a homeomorphism (resp. diffeomorphism,
resp. isomorphism) on S2 preserving the infinity S1 carrying orbits of the flow induced by p(X) into orbits
of the flow induced by p(Y ). In particular the phase portraits are drawn in the disk D2 that is obtained by
projecting the northern hemisphere of the Poincaré sphere on the equatorial plane.

We will rely on a result due to Markus [1960], Neumann [1975] and Peixoto [1971] to determine easily
whether two diffeomorphically non-equivalent systems are topologically equivalent. To state this result we
first recall some definitions from [Dumortier et al., 2006].
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We say that a flow
(
R2, ϕ

)
is parallel if it is topologically equivalent to the strip flow (i.e., defined by

the flow of ẋ = 1, ẏ = 0), the period annulus or annulus flow (i.e., defined by the flow of ṙ = 0, θ̇ = 1) or
the spiral or nodal flow (i.e., defined by the flow of ṙ = r, θ̇ = 0).

The boundary of a maximal open region on R2 on which the flow is parallel is called an extended
separatrix skeleton; its structure is precisely described in [Dumortier et al., 2006]. The union S of all
orbits in the extended separatrix skeleton is a closed set invariant under the flow. A maximal connected
component of R2 \ S, which is necessarily invariant under the flow, is called a canonical region. Given a
flow

(
R2, ϕ

)
by the completed separatrix skeleton we mean the union of the extended separatrix skeleton

of the flow together with one orbit from each of the canonical regions.
Let C1 and C2 be the completed separatrix skeletons of the flows

(
R2, ϕ1

)
and

(
R2, ϕ2

)
respectively.

Then we say that C1 and C2 are topologically equivalent if and only if there exists a homeomorphism from
R2 to R2 that maps the orbits of C1 to the orbits of C2 preserving the orientation.

According to the so-called Markus-Neumann-Peixoto Theorem it suffices to describe the completed
separatrix skeleton in order to determine the topological equivalence class of a differential system. More
precisely it is stated as follows:

Theorem 6 [Markus-Neumann-Peixoto]. Assume that
(
R2, ϕ1

)
and

(
R2, ϕ2

)
are two continuous flows with

only isolated singular points. Then these flows are topologically equivalent if and only if their completed
separatrix skeletons are equivalent.

4. The Hamiltonian Class

4.1. Polar coordinates

By (6) the Hamiltonian class is a 4-parameter family formed by the cubic polynomial differential system
of the form

X(a,g,c,e) ↔
{
ẋ = −y + ax2 − 2gxy + cy2 − y

(
x2 + y2

)
,

ẏ = x + ex2 − 2axy + gy2 + x
(
x2 + y2

)
,

(9)

with Hamiltonian H = H(a,g,c,e) given by

H(x, y) =
1

2

(
x2 + y2

)
+

1

3
ex3 − ax2y + gxy2 − 1

3
cy3 +

1

4

(
x2 + y2

)2
. (10)

For all values of the 4-dimensional parameter (a, g, c, e) the vector field X(a,g,c,e) has a singularity at the
origin; it is of center type. To localize the other singularities of X(a,g,c,e) for some arbitrary but fixed value of
(a, g, c, e), and to determine their type, we study this system using polar coordinates, x = r cos θ, y = r sin θ.
Thus we obtain:

ṙ = r2A(θ),

θ̇ = 1 + rB(θ) + r2,
(11)

where

A(θ) = a cos3 θ + (e− 2g) cos2 θ sin θ + (c− 2a) cos θ sin2 θ + g sin3 θ,
B(θ) = e cos3 θ − 3a cos2 θ sin θ + 3g cos θ sin2 θ − c sin3 θ.

(12)

Although the functions A and B depend on the parameter, we often leave it out of our notation to facilitate
the reading. Singularities of (9) correspond to values (r, θ) with

A(θ) = 0, 1 + rB(θ) + r2 = 0. (13)

To localize the singularities we look for angles θ satisfying A(θ) = 0, i.e.,

cos θ = 0 or a + (b + e)tanθ + (c + f)tan2θ + gtan3θ = 0.

Since A(θ)|cos θ=0 = 0 is equivalent to g = 0, there are at most 6 solutions θ∗ satisfying A (θ∗) = 0, say
θi, θi + π (i = 0, 1, 2). For each such θ∗ we look for solutions r > 0 such that 1 + rB (θ∗) + r2 = 0. Clearly
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for |B (θ∗)| ≤ 2 this equation has solutions

r∗± =
−B (θ∗) ±

√
(B (θ∗))2 − 4

2
, (14)

which are positive if B (θ∗) < 0.
In particular since

r∗+r
∗
− = 1, (15)

we have

r∗− < 1 < r∗+ if B (θ∗) < −2 and r∗− = r∗+ = 1 if B (θ∗) = −2. (16)

4.2. Reduction to 3-parameter subfamily

From the following lemma it follows that we can restrict our study without loss of generality to the 3-
parameter subfamily XH

(g,c,e) defined in (2), i.e., we can assume that

a = 0. (17)

Moreover we can suppose that g, c ≥ 0 and that there exists 1 ≤ n ≤ 3 such that

A(i)(0) = 0, for all 0 ≤ i < n and A(n)(0) 6= 0. (18)

Lemma 2. For a, g, c, e ∈ R there exist g, c ≥ 0 such that the vector field X(a,g,c,e) is linearly equivalent to
X(0,g,c,e) defined in (9). The linear equivalence is given by the composition of a rotation and some of the
following symmetry operations:

T1(x, y, t) = (−x,−y, t), T2(x, y, t) = (−x, y,−t) and T3(x, y, t) = (x,−y,−t).

Proof. By a rotation the vector field X(a,g,c,e) is transformed into X(0,g̃,c̃,ẽ) for some parameter value
(0, g̃, c̃, ẽ) . Indeed the rotation θ 7→ θ − θ0 is in cartesian coordinates defined by the matrix

M (θ0) ≡
(

cos θ0 − sin θ0
sin θ0 cos θ0

)
,

and transforms the vector field X(a,g,c,e) into the vector field XK(θ0)(a,g,c,e), where the linear map K (θ0) is
given by

K (θ0) =




(
3 cos2 θ0 − 2

)
cos θ0

(
1 − 3 cos2 θ0

)
sin θ0 cos θ0 sin2 θ0 cos2 θ0 sin θ0(

3 cos2 θ0 − 1
)

sin θ0 −2 cos θ0 − sin θ0 cos2 θ0 cos θ0 sin2 θ0
− cos θ0 sin2 θ0 − cos2 θ0 sin θ0 − cos3 θ0/3 − sin3 θ0/3
−3 sin θ0 cos2 θ0 3 cos θ0 sin2 θ0 − sin3 θ0 cos3 θ0


 ,

with detK (θ0) = −1/3 6= 0. Furthermore since A (0) = −A (π) = a, there exists an angle θ0 ∈ [0, π] and
1 ≤ n ≤ 3 such that A(i) (θ0) = 0, for all i ≤ n− 1 and A(n) (θ0) 6= 0.

By T1 (resp. T2 and T3) the vector field X(a,g,c,e) is transformed into X(−a,−g,−c,−e) (resp. −X(a,−g,c,−e)

and −X(−a,g,−c,e)). �

In particular we can fix the sign of the first non-vanishing derivative of A at θ = 0 since

A(n) (θ0 + π) = −A(n) (θ0) .

As it is convenient in cases that A has at most two zeroes in [0, π) we shall assume that

A(n) (θ0) > 0; (19)

in cases that A has three zeroes in [0, π) we shall assume that

A(n) (θ0) < 0. (20)
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4.3. Classification of the singularities

For a given θ∗ we define the ray θ = θ∗ by the set {(r, θ∗) : r ≥ 0}. Then for B (θ∗) = −2 system (9)
has exactly one singularity on the ray R∗ different from the center at the origin, and its radius is 1. For
B (θ∗) < −2 system (9) has two singularities on the ray R∗ with radius r∗±. For later use we describe the
behavior of r∗± with respect to B = B (θ∗) in Lemma 3, and illustrate its graph in Figure 3.

Lemma 3. Let B < −2 and let r± be the radii defined as

r± =
−B ±

√
B2 − 4

2
. (21)

The graphs of r± exhibit the following behavior (see Figure 3):

(1) The graph of r+ is concave and decreasing to 1 as B increases to −2.
(2) The graph of r− is convex and increasing to 1 as B increases to −2.
(3) r+ + r− = −B and r+ · r− = 1.
(4) If B1 < B2 < −2, then r− (B1) < r− (B2) < r+ (B2) < r+ (B1) .

−2

1

B

r+

r−

B1 B2

Fig. 3. Graphs of r+ and r− as functions of B, drawn in dashed line and continuous line respectively.

Since A and B are cubic homogeneous polynomials in (cos θ, sin θ) it follows that

A(θ + π) = −A(θ) and B(θ + π) = −B(θ), (22)

and the same property holds for their derivatives with respect to θ. As a consequence there are at most
three angles 0 ≤ θ0, θ1, θ2 ≤ 2π satisfying A (θi) = 0 such that the equation r2+B (θi) r+1 = 0 has at least
one positive solution r, i = 0, 1, 2. As a conclusion, system (9) has at most 7 singularities, one singularity
fixed at the origin and the other singularities laying on the rays θ = θi for i = 0, 1, 2.

From the relation (22) all zeroes of A can be derived from the zeroes in [0, π) , by translating these
zeroes over integer multiples of π. Furthermore the graph of A on [π, 2π) is found by reflecting the graph
of A on [0, π) about the θ-axis and translating it over a distance of π. If A vanishes along the ray θ = 0,
then the horizontal axis can carry singularities; singularities are present on the positive horizontal axis,
i.e. on the ray θ = 0, only if B(0) ≤ −2. If B(0) > −2, then there are no singularities present on the
positive horizontal axis. By (22) if B(0) ≥ 2, then singularities are present on the negative horizontal axis,
and if |B(0)| < 2, no singularities occur on the horizontal axis at all. Analogously if A vanishes along
the ray θ = θ∗, there are singularities present on R∗ ≡ {θ = θ∗} (respectively R∗ ≡ {θ = θ∗ + π}) if
B (θ∗) ≤ −2 (respectively if B (θ∗) ≥ 2). If |B (θ∗)| < 2, then there are no singularities neither on θ = θ∗

nor on θ = θ∗ + π.
To determine the nature of each singularity (x∗, y∗) = (r∗ cos θ∗, r∗ sin θ∗) of (9), we analyze its Jacobian

J at (x∗, y∗) , expressed in cartesian coordinates (x, y). The determinant of J at the singularity (x∗, y∗) is
given by

detJ (x∗, y∗) = det

(
2r∗A (θ∗) (r∗)2 A′ (θ∗)

B (θ∗) + 2r∗ r∗B′ (θ∗)

)
= r∗A′ (θ∗)

(
1 − (r∗)2

)
, (23)
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and its trace by tr (J (x∗, y∗)) = 0.
If det J (x∗, y∗) 6= 0, then the singularity (x∗, y∗) is elementary. In particular since the system is

Hamiltonian, if detJ (x∗, y∗) > 0 (respectively < 0), then the singularity is a center (respectively saddle).
If detJ (x∗, y∗) = 0, then the singularity (x∗, y∗) is degenerate; it is said to be non-elementary if both

eigenvalues of J (x∗, y∗) vanish. Using a local classification theorem for nilpotent singularities (see e.g.,
[Dumortier et al., 2006]), the topological type of the degenerate singularities can be determined in cases
B (θ∗) < −2 and B (θ∗) = −2 with A′ (θ∗) 6= 0. However by a detailed analysis of the asymptotics of the
system, we can describe the local behavior of all degenerate singularities more precisely (see Proposition 1).

More precisely elementary singularities lay on rays θ = θ∗, for which A (θ∗) = 0 and B (θ∗) < −2. In
this case if A′ (θ∗) < 0 (resp. > 0), the singularity determined by

(
r∗−, θ

∗) (resp.
(
r∗+, θ

∗)) is a saddle point

and the singularity determined by
(
r∗+, θ

∗) (resp.
(
r∗−, θ

∗)) is a center point, i.e., if A′ (θ∗) < 0 (resp. > 0),
then on the ray θ = θ∗ the singularity with smaller radius is a saddle (resp. center), while the singularity
with bigger radius is a center (resp. saddle).

In Proposition 1 of section 4.3 we summarize all possible types of the Hamiltonian singularities in
terms of the multiplicity of A on the ray θ = θ∗, and the sign of A(θ) for θ ց θ∗. In fact given θ∗ such
that A (θ∗) = 0, i.e., on the ray θ = θ∗ singularities can be present, the proposition gives the number, the
relative position and the type of the singularities on the ray θ = θ∗ in terms of the first non-vanishing
derivative A at θ∗.

The proof of this proposition and the principal result strongly relies on the relation between the
trigonometric polynomials A and B, as described in the following lemma.

Lemma 4. Let A and B be the cubic trigonometric polynomials defined in (12). Then for all k ≥ 1 and
for all θ ∈ R we have that B(k)(θ) = −3A(k−1)(θ).

Lemma 5. Let A,B be the cubic trigonometric polynomials as defined in (12) and θ∗ ∈ R. Then the
following statements are equivalent:

(1) A (θ∗) = A′ (θ∗) = A′′ (θ∗) = A(3) (θ∗) = 0.
(2) a = c = e = g = 0.

In particular if one of the above statements is satisfied, then (9) has a global center at the origin linearly
equivalent to {ẋ = −y, ẏ = x} .

In Figure 4 the relation between the graphs of A and B is sketched in case A vanishes along the
horizontal axis according to the assumptions made in (18), (19) and (20). By Lemma 5, we can distinguish
between four non-trivial cases:

- Case 1 corresponds to A(0) = A′(0) = A′′(0) = 0, A′′′(0) 6= 0;
- Case 2 corresponds to A(0) = A′(0) = 0, A′′(0) 6= 0;
- Cases 3 and 4 correspond to A(0) = 0, A′(0) 6= 0.

Case 3 is distinguished from Case 4 by their number of zeroes in (0, π) : in Case 3 A has no zeroes in (0, π) ,
while in Case 4, A has 2 zeroes in (0, π) .

Due to the number of zeroes of A in [0, 2π] , multiplicity taken into account, we will call Cases 1, 2, 3
and 4 respectively by ‘One triple ray’, ‘One double ray - one simple ray’, ‘One simple ray - two complex
rays’, and ‘Three simple rays’.

Next proposition describes the local phase portrait of the Hamiltonian system (9) in a neighborhood
of the rays θ = θ∗ along which A vanishes.

Proposition 1. Let A and B be the trigonometric polynomials of degree 3 defined in (12), and suppose
that for 1 ≤ n ≤ 3,

A(i) (θ∗) = 0, for all 0 ≤ i ≤ n− 1 (24)

and θ∗ ∈ R such that

n!γ ≡ A(n) (θ∗) 6= 0. (25)
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θ
0 π

2π
θ

0

θ1 π

2π

Case 1: One triple ray Case 2: One double ray- one simple ray

θ
0 π 2π

θ
0 θ1 θ2 π 2π

Case 3: One simple ray - two complex rays Case 4: Three simple rays

Fig. 4. Graphical analysis of the map B in relation with the map A as functions of θ in [0, 2π]. The map B is drawn
in continuous line and A is drawn in dashed line. The parameter values are: Case 1, a = 0, e = 2, g = 1, c = 0; Case 2,
a = 0, c = 1, g = 1, e = 2; Case 3, a = 0, c = 0, g = 1, e = 3 and Case 4, a = 0, e = −13/2, g = 13/4, c = 39/4 or
α = 1, β = −1/4, λ = 13.

Then the origin is a center. Furthermore

(1) If B (θ∗) > −2, then there are no additional singular points on the ray θ = θ∗. The local phase portrait
of (9) along the ray θ = θ∗ is given in Figure 5.

|B (θ∗)| < 2
θ = θ∗

γ < 0 γ > 0
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

|B (θ∗)| = 2

|B (θ∗)| > 2

Fig. 5. Classification of the phase portraits of (9) in a neighborhood of the ray θ = θ∗; see Proposition 1.
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(2) If B (θ∗) = −2, then there is one additional singular point on the ray θ = θ∗ for which the radius
r = 1. Depending on the first non-vanishing higher order derivative A(n) (θ∗) and its sign, the local
phase portrait of (9) along the ray θ = θ∗ is given in Figure 5.

(3) If B (θ∗) < −2, then there are two additional singularities on the ray θ = θ∗ for which the radii are
0 < r− < 1 < r+ with expressions given in (14). Depending on the first non-vanishing higher order
derivative A(n) (θ∗) and its sign, the local phase portrait of (9) along the ray θ = θ∗ is given by Figure 5.

Proof. It suffices to analyze the behavior of the singularities on the ray R∗ ≡ {θ = θ∗} for which
B (θ∗) ≤ −2. Every solution (r, θ) of (11) sufficiently close to (r∗, θ∗) with 1 + r∗B (θ∗) + (r∗)2 = 0
can be parameterized by θ, say r = r(θ), where r(θ) is solution of

(
1 + rB(θ) + r2

) dr

dθ
= r2A(θ). (26)

By Lemma 4, relations (24) and (25) we can write for θ → θ∗

A(θ) = γ (θ − θ∗)n + O
(

(θ − θ∗)n+1
)
,

B(θ) = B (θ∗) − 3γ

n + 1
(θ − θ∗)n+1 + O

(
(θ − θ∗)n+2

)
.

Since r∗ 6= 0 on a sufficiently small compact neighborhood of (r∗, θ∗) the asymptotics of (26) is as follows

1

r2
(
1 + rB (θ∗) + r2

) dr

dθ
= γ (θ − θ∗)n + O

(
(θ − θ∗)n+1

)
, θ → θ∗. (27)

Now the result follows by applying Lemma 6 on (27). �

Lemma 6. Let k, n ≥ 1. Consider the planar differential vector field X with a singularity at (x0, y0) , such
that in polar coordinates (r, θ) the singularity x0 corresponds to (r0, θ0) and X writes as {ṙ = F (r, θ) , θ̇ =
G (r, θ)} for some smooth functions F,G with asymptotics

F (r, θ) = γ · (θ − θ0)
n + F̄ (r, θ) and G (r, θ) = (r − r0)k + Ḡ (r, θ) , (28)

where γ 6= 0, F̄ (r, θ) = O
(

(θ − θ0)
n+1
)

and Ḡ (r, θ) = O
(

(r − r0)
k+1
)
, for θ → θ0, r → r0. Then, the

diffeomorphic type of the singularity (x0, y0) depends on the parity of k and n, the ratio k/n and the sign
of γ as shown in Figure 6. For k, n both odd the singularity is a topological saddle, for k and n of opposite
parity the singularity is a cusp, and for k, n both even the phase portrait near the singularity shows that of
a parallel flow.

Proof. The system can be written as a scalar differential system G (r, θ) dr = F (r, θ) dθ. By integra-
tion along the path from (r0 + δ, θ0 + ε) to (r, θ) for |δ| , |ε| , |r − r0| , |θ − θ0| small, we get the following
asymptotics:

(r − r0)
k+1 =

γ (k + 1)

n + 1
(θ − θ0)

n+1 + U (r, θ, δ, ε) , (29)

with U (r, θ, δ, ε) = O
(

(θ − θ0)
n+1
)

+ O
(

(r − r0)
k+1
)

+ O
(
δk
)

+ O (εn) , for (r, θ, δ, ε) → (r0, θ0, 0, 0) .

Studying the graph of equation (29) we obtain the topological type of (x0, y0) corresponding to (r0, θ0) as
drawn in Figure 6. �

Remark 4.1.

(1) By the classification in Lemma 6 we will call the integers n (resp. k) the multiplicity of the ray {θ = θ0} ,
(resp. the multiplicity of the singularity r = r0 on this ray). Furthermore we will call γ the orientation
of the singularity on the ray {θ = θ0} .
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γ < 0 γ > 0
k < n k = n k > n k < n k = n k > n

k and n odd

k and n even

k odd and n even

k even and n odd

Fig. 6. Classification of the singularity (x0, y0) = (r0 cos θ0, r0 sin θ0) of {ṙ = γ · (θ − θ0)
n + F̄ (r, θ) , θ̇ = (r − r0)

k + Ḡ (r, θ)}
where (r, θ) are polar coordinates, see Lemma 6.

(2) From Proposition 1 the Hamiltonian singularities can topologically be summarized to be one of the
following three types: center, saddle or cusp. In particular parameters for which B equals −2 for a
certain root θ∗ of A, show locally along the ray R∗ a topologically equivalent behavior for fixed sign of
γ. For n = 1 the singularity different from (0, 0) is a nilpotent cusp; for n = 2 resp. 3, these singularities
have zero linear part, and therefore we will call them degenerate cusp of order 1 resp. 2. Analogously
parameters for which B is strictly smaller than −2 for a certain root θ∗ of A show locally along the
ray R∗ a topologically equivalent behavior for fixed sign of γ, in case n = 1 or 3. The saddles and
centers outside the origin are elementary for n = 1 while they are nilpotent for n = 3. For n = 2 the
singularities different from (0, 0) are nilpotent cusps.

4.4. Properties of the Hamiltonian

In this section we summarize the properties and the relative values of the Hamiltonian H as defined in
(10) at the singular points. Observe that the Hamiltonian H depends on the parameter only through B.
Moreover the radii of the singularities are completely determined by the value of B; as a consequence the
value of the Hamiltonian and its properties near a ray θ = θ∗ implicitly depend on the parameter through
B = B (θ∗) .

For r,B ∈ R we write

HB(r) = r2
(

1

2
+

1

3
Br +

1

4
r2
)
. (30)

Lemma 7 and Figure 7 summarize the analytical interpretation and the graphical properties of HB . In
particular HB(r) (resp. HB(−r)) for r > 0 represents the value of the Hamiltonian at (r cos (θ∗) , r sin (θ∗))
(resp. (r cos (θ∗ + π) , r sin (θ∗ + π)) if B = B (θ∗) .

Lemma 7. Let HB(r) be the function defined in (30), then its graph is drawn in Figure 7. Furthermore

(1) For (x, y) = (r cos θ, r sin θ) , we have H(x, y) = HB(r), where H(x, y) is the Hamiltonian defined in
(10) and B = B(θ) is the trigonometric polynomial defined in (12).
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r

(a)
(b)

(c)

(d)
(e)(f)

H̄B (r)

0

1
12

1

Fig. 7. Graph of HB(r) for characteristic values of B; see Lemma 9. The corresponding values of B are: (a) −
√
3 < B,

(b)− 2 < B ≤ −
√
3, (c)B = −2, (d)− 3

√
2/2 < B < −2, (e)B = −3

√
2/2 and (f)B < −3

√
2/2.

(2) If B = −2 then H−2(1) = 1
12 .

(3) For B < −2 we define the functions h± : (−∞,−2) → R by

h± (B) ≡ HB (r±) = − 1

48

(
−2 + B2 ∓B

√
B2 − 4

)(
−6 + B2 ∓B

√
B2 − 4

)
, (31)

i.e., the Hamiltonian value at the singularities (x∗, y∗) = (r± cos θ∗, r± sin θ∗) on the ray θ = θ∗ for
which B = B (θ∗) and r± is given by (21).

(4) The graph of the functions h± are drawn in Figure 8. In particular these functions satisfy the following
properties:

(a) The function h+ is increasing and concave with respect to the variable B < −2, i.e., h′+ (B) > 0
and h′′+ (B) < 0 if B < −2.

(b) The function h− is increasing and convex with respect to the variable B < −2, i.e., h′− (B) > 0
and h′′− (B) > 0 if B < −2.

(c) limB→−∞ h+ (B) = −∞ and limB→−2 h+ (B) = 1/12.
(d) limB→−∞ h− (B) = 0 and limB→−2 h− (B) = 1/12.
(e) h− (B) > h+ (B) if B < −2.

(f) h− (B) > 0 if B < −2 and





h+ (B) < 0 if B < −3
√

2/2,

h+ (B) = 0 if B = −3
√

2/2,

h+ (B) > 0 if − 3
√

2/2 < B < −2.

Proof. The expression in (31) is obtained using (10) and the fact that r2± = −1−Br±. Next by substituting
the expressions for r± into h± (B) , one finds the expression in (31):

h± (B) = − 1

12
(1 + Br±) (3 + Br±) = − 1

48

(
−2 + B2 ∓B

√
B2 − 4

)

︸ ︷︷ ︸
>0 if B<−2

(
−6 + B2 ∓B

√
B2 − 4

)
.

From this expression the inequalities in statement (4)(f) are easily derived. In particular statement (4)(e)
then follows from

h− (B) − h+ (B) = −B
(
B2 − 4

) 3
2 /12.

For the properties on the derivatives with respect to B in statement (4)(a) and (b) we notice that
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h+ (B)

h− (B)

−2

1/12

B

Fig. 8. Graphs of h+ and h− with respect to B; see Lemma 7.

12
√
B2 − 4 · h′± (B) =

(
−2 + B2 ∓B

√
B2 − 4

)(
−6 + B2 ∓B

√
B2 − 4

)
and 2

√
B2 − 4 · h′′± (B) =

±B3 −B2
√
B2 − 4 ∓ 3B +

√
B2 − 4. �

Lemma 8. Let HB(r) be defined in (30). Then the following statements hold

(1) The radial direction of the flow on a fixed ray θ = θ1 can be read from the graph of HB , where
B = B(θ) :

∂

∂r
HB(r) = rθ̇. (32)

(2) Let (x∗, y∗) ∈ R2 represented in polar coordinates by (r∗, θ∗) , r∗ > 0, where x∗ = r∗ cos θ∗, y∗ = r∗ sin θ∗.
Then (x∗, y∗) is a singularity of (9) if and only if (r∗, θ∗) is a solution of

∂

∂r
HB(θ∗) (r∗) = 0 and

∂

∂θ
HB(θ∗) (r∗) = 0, (33)

as defined in (30).

Proof. Straight-forward derivation of (30) implies the equality in (32). Furthermore it follows that the
equations in (33) are equivalent to (13) with A = A

∣∣
b=−2g,f=−2a

, B = B
∣∣
b=−2g,f=−2a

. �

From this lemma it follows that the critical points of HB with respect to r correspond exactly to the
singularities of the Hamiltonian vector field. Next lemma further analyzes the graph of HB with respect
to the critical points of the Hamiltonian along a given ray θ = θ∗, for which A (θ∗) = 0 and B = B (θ∗) ;
see Figure 7.

Lemma 9. Consider the function HB : R → R defined by (30) for B in R.

(1) If B > −2, then HB has 1 critical point over R, r = 0, it is a global minimum.
(2) If B = −2, then HB has 2 critical points over R, a global minimum at r = 0 and a point of inflection

at r = 1.
(3) If B < −2, then HB has 3 critical points over R, HB has a local minimum at r = 0 and at r = r+,

and a local maximum at r = r−, where r± are defined in (21). In this case we can distinguish between
the following 3 cases:

(a) 0 = HB(0) < HB (r+) < HB (r−) , for −3
√

2/2 < B < −2,
(b) 0 = HB(0) = HB (r+) < HB (r−) , for B = −3

√
2/2 and

(c) HB (r+) < 0 = HB(0) < HB (r−) , for B < −3
√

2/2.

(4) Let B1, B2 ∈ R with B1 ≥ B2, then for r ∈ R we have HB1(r) −HB2(r) = 1
3r

3 (B1 −B2) ≥ 0. As a

consequence the graphs of HB1 and HB2 only coincide at (0, 0) if B1 6= B2. In particular the graph of
HB2 lies below the graph of HB1 .
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Proof. Straight-forward calculations show that for all B ∈ R we get

∂2HB

∂r2
(0) = 1 > 0.

For B > −2, there are no other critical points than r = 0, but the graph of HB is convex or convex-
concave-convex depending whether B > −

√
3 or −2 ≤ B < −

√
3 (see Figure 7). For B = −2 we have

∂2HB

∂r2
(1) = 0 and

∂3HB

∂r3
(1) = 2.

For B < −2 one finds that

H
′′
B (r−) =

B2 + B
√
B2 − 4 − 4

2
< 0 and H

′′
B (r+) =

B2 −B
√
B2 − 4 − 4

2
> 0.

�

Next two lemma’s provide a criterion to decide whether a connection between different singularities is
possible.

Lemma 10. Let (x∗1, y
∗
1) and (x∗2, y

∗
2) be two singularities of (2) that are not of center type. Then there

does not exist a connection between (x∗1, y
∗
1) and (x∗2, y

∗
2) if

(1) H (x∗1, y
∗
1) 6= H (x∗2, y

∗
2) , or if

(2) (x∗1)
2 + (y∗1)2 = 1 6= (x∗2)

2 + (y∗2)2 .

Lemma 11. Assume that (Sλ)λ∈R is a 1 - parameter subfamily of (2) such that for all λ, θ ∈ R we have

A (θ) = λA (θ) and B (θ) = λB (θ) for some trigonometric polynomials A and B in θ, that are independent
of λ. Suppose that θ1, θ2 ∈ [0, 2π) with Ai ≡ A (θi) = 0 and B1 ≡ B (θ1) < B2 ≡ B (θ2) < −2. Let
si± (λ) , i = 1, 2 be the singularities of Sλ for λ > −2/B2 with polar coordinates

(
r±
(
λBi

)
, θi
)
, i = 1, 2.

Then

(1) there is no connection between s1− (λ) and s2− (λ) neither between s1+ (λ) and s2− (λ) .
(2) If s1− (λ) and/or s2+ (λ) are centers, then there is no connection between s1− (λ) and s2+ (λ) ;

(3) if for λ > −2/B2 neither of the singularities s1− (λ) nor s2+ (λ) are centers, then there exists a unique

λ∗ > −2/B2 such that there exists a connection between s1− (λ∗) and s2+ (λ∗) ; in particular for −2/B2 <

λ < λ∗, we have h−
(
λB1

)
< h+

(
λB2

)
,

h−
(
λ∗B1

)
= h+

(
λ∗B2

)
(34)

and for λ > λ∗ we have h−
(
λB1

)
> h+

(
λB2

)
. Furthermore for all λ 6= λ∗ there is no connection

between the singularities s1− (λ) and s2+ (λ) . The bifurcation parameter λ∗ is implicitly defined by (34),
and the bifurcation of the relative Hamiltonian values at the singularities is shown in Figure 9.

Proof. This proof exploits the properties of H described in Lemma 7. Statements (1) and (2) follow from
Lemma 7 (4)(a) and (4)(b). Statement (3) follows from statements (4)(b) and (4)(e) of Lemma 7. The
existence of λ∗ defined in (34) follows from statements ( 4)(c) and ( 4) (d) of Lemma 7. Indeed we have
B2 = λB2 → −∞, for λ → +∞ (since B̄2 is fixed in R−), hence by the Intermediate Value Theorem there
exists λ1 such that h+

(
λ1B2

)
< 0 < h−

(
λ1B̄1

)
. On the other hand for λ2 = −2/B2 we have

λ2B̄1 < λ2B2 = −2 and so h−
(
λ2B1

)
<

1

12
= h+

(
λ2B2

)
. (35)

Hence there exists λ∗ ∈ (λ2, λ1) such that h−
(
λ∗B1

)
= h+

(
λ∗B2

)
. Suppose that λ∗∗ > λ∗ also has property

(34); then by Rolle’s Theorem applied to the smooth function P, defined by P (λ) = h−
(
λB1

)
−h+

(
λB2

)
,

it follows that h′−
(
cB1

)
= h′+

(
cB2

)
for some c ∈ (λ∗, λ∗∗) ; this is in contradiction with the convexity

(resp. concavity) property of h− (resp. h+), implying that

h′+
(
cB2

)
> h′+ (−2) = h′− (−2) > h′−

(
cB1

)
.

Using a continuity argument the claim on the connections follows. �
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(a) − 2

B̄2
< λ < λ∗ (b) λ = λ∗ (c) λ > λ∗

B

H

B

H

B

H

H

r

H

r

H

r

Fig. 9. Bifurcation of the Hamiltonian with respect to λ, see Lemma 11.

5. Classification of the Hamiltonian Phase Portraits

Using Proposition 1 we can classify all Hamiltonian singularities and their local behavior in a systematic
way. Now to understand the global behavior, like the relative position of the separatrices and the existence
of connections between the singularity points, we make use of the global properties of the Hamiltonian H
along a ray carrying singularities (see section 4.4) as well as of a continuity argument (Lemma 11).

In first instance the classification is based on the number of complex zeroes of A in [0, π) multiplicity
taken into account. For the 3-parameter Hamiltonian family in (2) and (17) the trigonometric function A
in (12) reads as:

A(θ) = sin θ
(
(e− 2g) cos2 θ + c cos θ sin θ + g sin2 θ

)
. (36)

Next the trigonometric function B for this 3-parameter family reads as

B(θ) = e cos3 θ + 3g cos θ sin2 θ − c sin3 θ.

In particular A has always a zero in [0, π) at θ = 0, and

A′(0) = e− 2g, A′′ (0) = 2c.

Therefore by Lemma 5 we only need to treat four cases for which the graph of A can be found in Figure 4;
in terms of the parameter (g, c, e) these cases are characterized as follows:

Case 1 or ‘One triple ray’ e− 2g = c = 0.

Case 2 or ‘One double ray - one simple ray’ e− 2g = 0, c 6= 0.

Case 3 or ‘One simple ray - two complex rays’ e− 2g 6= 0 and c2 − 4g (e− 2g) < 0.

Case 4 or ‘Three simple rays’ e− 2g 6= 0 and c2 − 4g (e− 2g) > 0.

Notice that the case e− 2g 6= 0 with c2 − 4g (e− 2g) = 0 is contained in Case 2, i.e., e− 2g = 0, c 6= 0.
Indeed in that case the function A has a double zero at θ = θ1 6= 0 in (0, π) ; after rotation over angle θ1
and perhaps translation over distance π the current system (9) is transformed to one satisfying Case 2.

The subsections 5.1, 5.2, 5.3 and 5.4 subsequently deal with these four cases. In all of these cases we
will use the following notation

0 = θ0 < θ1 < θ2 < π such that A (θi) = 0, i = 0, 1, 2 (if they exist).
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We denote by Ri the ray

Ri =

{
{θ = θi, r ≥ 0} if B(θi) ≤ 0,

{θ = θi + π, r ≥ 0} if B(θi) > 0.

Furthermore for i = 0, 1, 2 we denote

hi± = HB (r± (B)) , where B ≡ − |B (θi)| ,
whenever |B (θi)| > 2. If |B (θi)| > 2 for i = 0, 1, 2, then hi± are the values of the Hamiltonian at the
singularities si± along the ray Ri at a distance r± from the origin. If |B (θi)| = 2, i.e., when the singularities
on Ri collapse, then we will write hi :

hi = H−2 (1) =
1

12
.

Lemma 12. Let B be the trigonometric function defined in (12). The origin of (2) is a global center if
and only if

max{|B (θ)| : θ ∈ R} = max{|B (θ)| : θ ∈ [0, π) such that A (θ) = 0} < 2. (37)

Proof. From Lemma 4 it follows that both maxima in (37) coincide. The assertion follows since a linear
center of the Hamiltonian system (2) with θ̇ > 1 for all (r, θ) is a global center. �

5.1. Case 1: One triple ray

In this case the functions A and B simplify to

A(θ) = g sin3 θ and B(θ) = g cos θ
(
2 + sin2 θ

)
. (38)

For g = 0 the functions A and B vanish identically. So the phase portrait consists of a global center.
For g > 0 the graph of A is drawn in Figure 4 Case 1. As a consequence one finds

A(0) = A′(0) = A′′ (0) = 0, A′′′(0) = 6g > 0 and B(0) = e = 2g > 0. (39)

Clearly all singularities are found on R0, which corresponds to the negative horizontal axis. By Propo-
sition 1 the diffeomorphically different phase portraits are determined by the parameter g, see Figure 10.

(a) g < 1 (b) g = 1, h0 = 1
12 (c) g > 1, h0+ < h0− < 1

12

Fig. 10. Phase portraits of (2) in Case 1 (e− 2g = c = 0) (see Theorem 2).

For g < 1 the phase portrait is a global center. When g grows and reaches g = 1, a degenerate
singularity s0 is born on the horizontal axis at (−1, 0) , and the global center is disturbed by a homoclinic
loop. Indeed by Lemma 9 (2) , H is strictly increasing with r ≥ 0, and by continuity with respect to the
parameter g, the stable and unstable separatrices of the degenerate singularity at (−1, 0) connect, enclosing
the center at the origin. Moreover h0− = 1/12. When g grows through g = 1, the cusp singularity splits
horizontally into two singularities: a saddle s0− and a center point s0+. By the same arguments as before,
Lemma 9 and continuity, we know that a figure eight is born; moreover, h0+ < h0− < 1/12.

This ends the proof of Theorems 2, 5 and 4 in Case 1.
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5.2. Case 2: One double ray - one simple ray

By Lemma 2, we only have to consider parameter values for which e− 2g = 0, c > 0, g ≥ 0.
In this case the graph of A looks like the one in Figure 4 Case 2 and the trigonometric functions A

and B can be written as

A(θ) = c sin2 θ (cos θ − α sin θ) ,

B(θ) = −c
(
2α cos3 θ + 3α cos θ sin2 θ + sin3 θ

)
≡ cB (θ) ,

for some smooth function B depending only on θ and α, where

α = cot θ1 = −g

c
.

Notice that α takes values from 0 to −∞ when g goes from 0 to +∞. Hence the angle θ1 goes from π/2 to
π. By substituting θ = 0 respectively θ = θ1 in the above expressions one finds

A (0) = A′ (0) = 0, A′′ (0) = 2c > 0 and B (0) = 2g = e = −2αc ≥ 0,

and respectively

A (θ1) = 0, A′ (θ1) = −c sin θ1 =
−c√

1 + α2
< 0,

B (θ1) =
c2 + 2g2√
c2 + g2

=
−c
(
2α4 + 3α2 + 1

)
√

(1 + α2)3
< 0,

(40)

where we used the fact that sin θ1 =
(
1 + α2

)−1/2
and θ1 lies in [π/2, π) .

Clearly A has 1 double zero at θ = 0 and 1 simple zero θ1, see Figure 4 Case 2. Moreover we can
describe the bifurcation of the phase portraits in terms of α and c. The parameter α determines the ray
R1 ≡ {θ = θ1, r ≥ 0} on which singularities can occur besides on the ray R0 ≡ {θ = π, r ≥ 0}. For fixed
value of α the parameter c determines the presence of 1, 2 or 3 singularities on the rays R0 and R1. Indeed
for fixed α the amplitude of the function B grows linearly with c, see (40).

For a fixed but arbitrarily value α ≤ 0, we can describe the bifurcation of the phase portraits with
respect to c. The values B (0) ≡ B0 and B (θ1) ≡ B1 are constants. Furthermore B (0) and B (θ1) linearly
depend on c and we can write

B0,c ≡ cB0 and B1,c ≡ cB1. (41)

Additionally it is easy to verify that B1 < −B0 < 0, hence for all c > 0, B1,c < −B0,c < 0.
The bifurcation values c1 = c1 (α) and c2 = c2 (α) that determine the birth of singularities on the rays

R1 and R0 are respectively given by

c1 = − 2

B1
(42)

and

c2 =
2

B0
. (43)

Case 2(a) If 0 ≤ c < c1, then B1,c > −2. The singularity at the origin is a global center of (2).
Case 2(b) If c = c1, then B1,c = −2 < −B0,c. There are 2 singularities, (0, 0) and s1 = (cos θ1, sin θ1) ,

both lying on R1.
Case 2(c) If c1 < c < c2, then B1,c < −2 < −B1,c. There are 3 singularities, (0, 0) and s1±, on the ray

R1 and there are no singularities outside this ray: s1− is a saddle and s1− is a center. The bifurcation of the
phase portraits for c passing through c1 occurs analogously as in section 5.1, but this time the singularities
are on ray R1 instead of the horizontal axis.

Case 2(d) If c = c2, then B1,c < −2 = −B0,c. There are 4 singularities, (0, 0) and s1± on the ray R1,
and s0 = (−1, 0) on the ray R0. The type of the singularities s1− (saddle) and s1− (center) does not change,
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however their exact position on the ray R1 does change. The singularity s0 is a degenerate cusp of order
1 (see Remark 4.1).

By Lemma 7 and Figure 11, we know that the Hamiltonian value at the saddle point s1− is smaller
than at the degenerate cusp singularity s0, where h0 = 1/12. Now because the Hamiltonian along R0 is
strictly increasing with respect to r, there is a homoclinic loop through the degenerate cusp singularity
that encloses the non-isolated periodic orbits surrounding the double homoclinic loop through s1−.

Case 2(a) Case 2(b) Case 2(c) Case 2(d)

h+

h−
B

h+

h−
BS

B

HS

h+

h−
BS

B

HS

h+

h−
BSBD

B

HS

HD

Case 2(e) Case 2(f) Case 2(g)

h+

h−

BSBD
B

HS

HD

h+

h−

BSBD
B

HS = HD

h+

h−
BSBD

B

HS

HD

Fig. 11. Graphs of h+ and h− for fixed value of the parameter (α, c) ; the parameter c increases going from Case 2(a) to
Case 2(g).

If c > c2, then there are 5 singularities, (0, 0) and s1± on the ray R1, and (0, 0) and s0± on the ray R0;
the nilpotent cusps s0± are born from the degenerate cusp s0.

Clearly the Hamiltonian value h0− at the smallest cusp singularity is always bigger than the one h1− at
the saddle point along the ray R1. Therefore only a connection between the saddle singularity s1− and the
biggest cusp singularity s0+ is possible.

If c now grows to +∞, the corresponding values B0,c and B1,c decrease to −∞ respecting their re-
spective order, however as is illustrated in Figure 11, the relative order of the values of the corresponding
Hamiltonian values changes at some value c3, giving rise to the crossing of homoclinic connections and the
appearance of a heteroclinic connection. Lemma 11 ensures the existence of this third bifurcation value
c3 = c3 (α) > c2 for which

h1− (c3) ≡ h− (c3B1) = h+ (−c3B0) ≡ h0+ (c3) , (44)

and

h1− (c) < h0+ (c) for c2 < c < c3 and h1− (c) > h0+ (c) for c > c3.

In particular only for c = c3 there exists a connection between s1− and s0+. Using the argument of continuity,
the increasing of the Hamiltonian with respect to r ≥ 0 and the corresponding graphs in Figure 11, we
obtain the phase portraits in the cases c > c2 as drawn in Figure 12.

Case 2(e) If c2 < c < c3, i.e., c > c2 and h1− (c) < h0+ (c) , then B1,c < −B0,c < −2 and h1− < h0+. There
are 5 singularities.

Case 2(f) If c = c3, i.e., c > c2 and h1− (c) = h0+ (c) , then B1,c < −B0,c < −2 and h1− = h0+. There are
5 singularities.

Case 2(g) If c > c3, i.e., c > c2 and h1− (c) > h0+ (c) , then B1,c < −B0,c < −2 and h1− > h0+. There are
5 singularities.
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R1

R2

R3

R4 R5

R6

R7

0 1

1

g

c

(a) R1 (b) R2, h
1 = 1

12 (c) R3, h
1
+ < h1− < 1

12

(d) R4, h
1
+ < h1− < h0 = 1

12 (e) R5, h1+ < h1− < h0+ < h0− < 1
12

(f) R6, h
1
+ < h1− = h0+ < h1− < 1

12 (g) R7, h
1
+ < h0+ < h1− < h0− < 1

12

Fig. 12. Bifurcation diagram of the global phase portraits of (2) in the (g, c)-plane in Case 2, e−2g = 0, c 6= 0 (see Theorem 2).

Using the relation between α and (g, c) we can draw the bifurcation diagram of phase portraits in
Case 2 in the (g, c, e)-space; by Lemma 2 it then suffices to present the bifurcation diagram to g, c ≥ 0 in
the plane e = 2g as done in Figure 12. In this figure we distinguish between 7 regions which are denoted
by R1, R2, . . . , R7 respectively for which the typical phase portraits in each region Ri, i = 1, . . . , 7, are
respectively drawn.

In particular the explicit expression of the bifurcation curves can be computed. Solving (13) for θ = 0
and θ = θ1 we obtain the value for the radius of the singularities s0± and s1± along the rays R0 for c ≥ c2
and R1 for c ≥ c1 respectively:

r0± = g ±
√

g2 − 1 and r1± =
c2 + 2g2 ±

√
4g4 + 4g2c2 + c4 − 4g2 − 4c2

2
√

g2 + c2
,

and for the corresponding Hamiltonian values at these singularities:

h0± = − 1

12

(
g ±

√
g2 − 1

)2 (
−3 + 2g2 ± 2g

√
g2 − 1

)
,

h1± =
1

96 (c2 + g2)2

(
−c2 − 2g2 ±

√
c4 + 4c2g2 + 4g4 − 4c2 − 4g2

)2

(
−(c2 + 2g2)2 + 6(c2 + g2) ± (c2 + 2g2)

√
c4 + 4c2g2 + 4g4 − 4c2 − 4g2

)
.

Therefore the bifurcation curves defined in (42), (43) and (44) can be presented respectively as the following
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algebraic sets:

R2 = {(g, c) : B1 = −2} = {(g, c) : R̂2 ≡ 4g4 + 4g2c2 + c4 − 4g2 − 4c2 = 0},
R4 = {(g, c) : B0 = 2} = {(g, c) : R̂4 ≡ g − 1 = 0},
R6 =

{
(g, c) : h1− = H0

+

}
= {(g, c) : R̂6 ≡ 256g10 + 512g8c2 + 352g6c4

+ 96g4c6 + 8g2c8 − 768g8 − 1536g6c2 − 960g4c4 − 192g2c6 − 9c8

+ 768g6 + 1536g4c2 + 864g2c4 + 96c6 − 256g4 − 512g2c2 − 256c4 = 0}. (45)

Taking into account the number of singularities, the phase portrait also is uniquely determined with
respect to diffeomorphic equivalence in case the total number of singularities is less than five. When the
maximum number of singularities is reached, five in this case, it is necessary to consider the value of the
Hamiltonian at the singularities different from the origin. To be precise it suffices to consider only h1−
and h0+ to describe the bifurcation. For completeness in Figure 12 we indicate the relative value of the
Hamiltonian values for all singularities.

This ends the proof of Theorems 2 and 5 in Case 2. Notice that c 6= 0 in Case 2, hence the Hamiltonian
systems in Case 2 are not reversible and therefore there is nothing to prove for Theorem 4 in Case 2.

5.3. Case 3: One simple ray - two complex rays

By Lemma 2 and (19) we can assume without loss of generality that e− 2g > 0. In this case the graphs of
A and B look like in Figure 4 Case 3. We have

A(0) = 0, A′(0) = e− 2g > 0, B(0) = e.

By the assumption g ≥ 0, it follows that e > 0. Therefore all singularities lay on R0, which corresponds to
the negative horizontal axis {(x, 0) : x ≤ 0}.

Using Proposition 1 and Lemma 9, for a fixed value of g ≥ 0, a bifurcation occurs at e = 2 diffeomor-
phically equivalent to the one that happens in case e− 2g = c = 0.

For e < 2 the phase portrait is a global center. For e = 2 there is a cuspidal loop with cusp s0 at
(−1, 0) ; by Lemma 9, it follows that h0 = 1/12. For e > 2 there appears the figure eight corresponding to
a double homoclinic saddle loop at s0−; by Lemma 9, it follows that h0+ < h0− < 1/12.

The bifurcations of the phase portraits in Case 3 with respect to e are drawn in Figure 13. In particular
these three phase portraits correspond with 1, 2 or 3 critical points, respectively. This ends the proof of
Case 3 of Theorems 2, 4 and 5.

(a) (b) h0 = 1
12 (c) h0+ < h0− < 1

12

Fig. 13. Phase portraits of (2) in Case 3, e− 2g 6= 0 and c2 − 4g (e− 2g) < 0 with (a) 0 ≤ e < 2, (b) e = 2 and (c) e > 2 (see
Theorem 2).

5.4. Case 4: Three simples

By Lemma 2 and (20) we can assume that A′(0) < 0, g, c ≥ 0. As a consequence

λ = − (e− 2g) = −A′(0) > 0. (46)
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Now the function A can be rewritten as A(θ) = −λ sin θ (cos θ − α sin θ) (cos θ − β sin θ) , where

α =
c +

√
c2 + 4gλ

2λ
> 0 and β =

c−
√
c2 + 4gλ

2λ
. (47)

Notice that under our assumptions necessarily 0 ≤ −β ≤ α. In particular αβ = − g

λ
, α+β =

c

λ
≥ 0. Hence

0 < −β ≤ α for g > 0, and β = 0 for g = 0. To a given value of the parameter (α, β, λ) there corresponds
a unique (g, c, e) , given by

e = −λ (1 + 2αβ) , g = −λαβ, c = λ (α + β) .

To each parameter value (g, c, e) of Case 4 there corresponds a unique parameter value (α, β, λ) with
0 ≤ −β ≤ α defined by (46) and (47), and so in Case 4 we can describe the global phase portraits
in terms of the new parameter (α, β, λ) . Therefore we fix an arbitrary parameter 0 ≤ −β ≤ α and
we study the bifurcation of the global phase portraits in the 1-parameter subfamily (2) with (g, c, e) =
(−λαβ, λ (α + β) ,−λ (1 + 2αβ)) for λ > 0.

In terms of the parameter (λ, α, β) the functions A,B,H look like

A(θ) = − λ sin θ (cos θ − α sin θ) (cos θ − β sin θ) ≡ λA (θ) ,

B(θ) = − λ
(
(1 + 2αβ) cos3 θ + 3αβ cos θ sin2 θ + (α + β) sin3 θ

)
≡ λB (θ) ,

H(x, y) =
1

2

(
x2 + y2

)
− λ

3
(1 + 2αβ) x3 − λαβxy2 − λ

3
(α + β) y3 +

1

4

(
x2 + y2

)2
,

for some smooth functions A,B, that do not depend on λ. Define the angles

0 = θ0 < θ1 ≡ θ1 (α) < θ2 ≡ θ2 (β) < π,

such that A (θi) , i = 1, 2, satisfies cot θ1 = α and cot θ2 = β. Using the fact that cos θ1 = α/
√

1 + α2 and
sin θ1 = 1/

√
1 + α2, we can easily calculate that

A′(0) = −λ < 0, A′ (θ1) =
(α− β)λ√

1 + α2
> 0 and A′ (θ2) =

− (α− β)λ√
1 + β2

< 0.

Clearly this case corresponds to the situation that A has 3 simple zeroes in [0, π) .
By a straight-forward calculation we find the value of B along the rays {θ = 0}, {θ = θ1}, and {θ = θ2}:

B(0) = λB (0) = −λ (1 + 2αβ) ≡ λB0 (α, β) ≡ B0 (λ) , (48)

B (θ1) = λB (θ1) = −λ
(
2α2β + α + β

)
√

1 + α2
≡ λB1 (α, β) ≡ B1 (λ) , (49)

B (θ2) = λB (θ2) = −λ
(
2αβ2 + α + β

)
√

1 + β2
≡ λB2 (α, β) ≡ B2 (λ) , (50)

for some smooth functions Bi, i = 0, 1, 2 depending only on (α, β) .
For fixed (α, β) the graph of A looks the same as the graph of A (resp. B and B); indeed it is only a

rescaled copy with respect to the vertical coordinate. Denote by Ri the ray θ = θi if Bi ≡ B (θi) < 0 and
θ = θi + π if B̄i ≡ B (θi) > 0, i = 0, 1, 2. Increasing λ to +∞ the values

∣∣Bi

∣∣ pass subsequently through
2 and so singularities are born on the corresponding ray Ri. The order according to which rays carry
singularities for the first time is dictated by the relative order of

∣∣Bi

∣∣ , i = 0, 1, 2. For instance suppose that
ij , j ∈ {0, 1, 2} with

∣∣Bi0

∣∣ ≥
∣∣Bi1

∣∣ ≥
∣∣Bi2

∣∣ ,

then singularities occur first on ray Ri0 (as soon as λ = 2/
∣∣Bi0

∣∣), next on ray Ri1 (as soon as λ = 2/
∣∣Bi1

∣∣)
and finally on ray Ri2 (as soon as λ = 2/

∣∣Bi2

∣∣). Notice that we do not exclude the simultaneous appearance

of singularities on different rays, thus when
∣∣Bi0

∣∣ =
∣∣Bi1

∣∣ , singularities appear simultaneously on rays Ri0

and Ri1 .
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The type of the singularities on ray Ri is given by the sign of A
′
(θi) , i = 0, 1, 2 as described by

Proposition 1. If
∣∣Bi

∣∣ < 2, neither of the rays θ = θi and θ = θi + π carry singularities but the center at

the origin; if
∣∣Bi

∣∣ ≥ 2, then sgn(γ) = sgn(−A
′
(θi)Bi) = sgn(BiB

′′
i ) characterizes the local phase portrait

along the ray Ri for i = 0, 1, 2.
Since A has only simple zeroes the sign of

A′ (0) = −λ < 0,

determines yet the sign of all A′ (θi) , which is the opposite of the sign of B′′
i , i = 1, 2. Indeed by a straight-

forward analysis one finds that

(−1)iB′′
i ≡ (−1)i B′′ (θi) > 0.

This formalizes the fact that B has a local minimum at θ = θ0, a local maximum at θ = θ1, and a local
minimum at θ = θ2. Therefore essentially we need to distinguish between the following three cases:

Case 4+ : Π > 0, Case 40 : Π = 0 and Case 4− : Π < 0 (51)

where Π ≡ B0B1B2

Case 40 corresponds to the case where at most two rays Ri, i = 0, 1, 2 can carry singularities. For Cases
4± the typical graphs of A and B are drawn in Figure 14.

3

B0

B1

B2

3

B0

B1

B2

3

B0

B1
B2

Case 4Ai Case 4Aii Case 4Aiii

3

B0

B1
B2

3

B0

B1

B2

3

B0

B1
B2

Case 4Bi Case 4Bii Case 4Biii

Fig. 14. Graphs of A and B in dashed and continuous line respectively for parameter values (α, β) in A or B, divided in the
cases like described on page 27. In these pictures the following representative values for the parameter value (α, β) are taken:
(1/2,−2/5) in Case 4A(i), (3/4,−2/5) in Case 4A(ii), (3/4,−3/5) in Case 4A(iii), (1/2,−1/5) in Case 4B(i), (1,−1/4) in Case
4B(ii) and (1,−3/4) in Case 4B(iii).

In Case 4+ necessarily B0, B2 < 0 and B1 > 0 , i.e., R0 = {θ = θ0} , R2 = {θ = θ2} and R1 =

{θ = θ1 + π} , and A
′

is negative along all rays Ri, i = 0, 1, 2. As a consequence the bifurcation diagram of
the local phase portraits along these rays are diffeomorphically equivalent. In Case 4− necessarily B0B1 > 0
and B2 < 0, i.e.

R0 = {θ = θ0} , R1 = {θ = θ1} and R2 = {θ = θ2} , or (52)

R2 = {θ = θ2} , R0 = {θ = θ0 + π} and R1 = {θ = θ1 + π} . (53)
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If we define (i0, i1, i2) = (0, 1, 2) for (52) and (i0, i1, i2) = (2, 0, 1) for (53) , then A
′

is positive along the
ray Ri1 and negative along the rays Ri0 and Ri2 . In particular

∣∣Bi1

∣∣ = min
{∣∣Bi

∣∣ : i = 0, 1, 2
}
. As a

consequence first appear the singularities along the rays Ri0 and Ri2 , and the bifurcation diagram of the
local phase portraits along these rays are diffeomorphically equivalent. Next appear the singularities along
ray Ri1 , and the local phase portrait along this ray is oriented in the reverse direction with respect to the
origin (e.g., the cusps along Ri0 and Ri2 point outwards while the cusp along Ri1 points inwards).

To describe the bifurcation of the global phase portrait of (2) with growing λ to +∞, we need to
decide whether there is a connection between different singularities or not, and if not how the crossing of
separatrices happens. This decision can be made based on the relative order of the Hamiltonian values at
the saddle or cuspidal singularities (see Lemma 11). The result is summarized in Theorem 7. Statement (1)
(resp. (2)) of Theorem 7 corresponds to the regular situation in Case 4+ (resp. Case 4−), while statements
(4), (5) and (8) (resp. (6)) correspond to the singular situations of Case 4+ (resp. Case 4−) having some
Bi = Bj (for i 6= j). Statements (3) and (7) correspond to Case 40 having some Bi = 0.

To be precise we distinguish between the eight regions A,B, C,D, . . . ,H, that represent parameters
(α, β) with diffeomorphically different bifurcation diagrams, that in their turn can be split into subcases
that are characterized by the order of the rays in which they start to carry singularities (see Figure 15). In
this notation (α, β) belongs to A (resp. B) if the condition (52) for Case 4+ (resp. Case 4−) is satisfied and
all
∣∣Bi

∣∣ , i = 0, 1, 2 are mutually distinct; C,D, E and H (resp. F and G) belong to the boundary of A (resp.
B). A precise algebraic definition of the sets A, B, . . . , H is given below, but first we give an equivalent
characterization of these regions in terms of the relative order of the

∣∣Bi

∣∣ , i = 0, 1, 2 (see Figure 15); in
particular we indicate the corresponding sign of Π as defined in (52) and we indicate if the corresponding
Hamiltonian system (2) is reversible by adding (rhs).

Case 4A (α, β) ∈ A (Π > 0)

(i) B0 < B2 < −B1 < 0. (ii) B2 < B0 < −B1 < 0. (iii) B2 < −B1 < B0 < 0.

Case 4B (α, β) ∈ B (Π < 0)

(i) B0 < B2 < B1 < 0. (ii) B2 < B0 < B1 < 0. (iii) B2 < −B1 < −B0 < 0.

Case 4C (α, β) ∈ C (Π = 0)

(i) B0 < B2 < B1 = 0. (ii) B2 < B0 < B1 = 0. (iii) B2 < −B1 < B0 = 0.

Case 4D (α, β) ∈ D (Π > 0)

(i) B0 < B2 = −B1 < 0 (rhs). (ii) B2 < B0 = −B1 < 0.

Case 4E (α, β) ∈ E (Π > 0)

(i) B0 = B2 < −B1 < 0. (ii) B2 = −B1 < B0 < 0 (rhs).

Case 4F (α, β) ∈ F (Π < 0)

(i) B0 = B2 < B1 < 0. (ii) B2 = −B1 < −B0 < 0 (rhs).
Case 4G (α, β) ∈ G (Π = 0)

(i) B0 = B2 < B1 = 0. (ii) B2 = −B1 < B0 = 0 (rhs).

Case 4H (α, β) ∈ H (Π > 0)

B0 = B2 = −B1 < 0 (rhs).

The bifurcation curves in Figure 15 are obtained by straight-forward calculations. Clearly for parameter
values (α, β) along the curve 1 + 2αβ = 0 (resp. 2α2β + α + β = 0) with 0 ≤ −β ≤ α,α > 0, the value
B0 (resp. B1) vanishes; as a consequence along this curve neither of the rays θ = θ0 nor θ = θ0 + π (resp;
θ = θ1 nor θ = θ1 + π) will carry singularities whatever the value of λ. Crossing this curve the ray R0

(resp. R1) that possible can carry singularities swaps over π radians. A straight-forward calculation also
implies that

∣∣B1

∣∣ =
∣∣B2

∣∣ if and only if |α| = |β| , and
∣∣B1

∣∣ =
∣∣B0

∣∣ if and only if β2 − 2αβ − 1 = 0, or since
0 < −β < α

β = α−
√
α2 + 1; (54)
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0 α

β
α = β

B0 = B2

B1 = 0

B0 = −B1

B0 = 0

α = −β

B(i)
B(ii)

B2 = 0

A(i) A(ii)

A(iii)

B(iii)

G(i)

H

G(ii)

F(i)

C(ii)C(i)

D(ii)

D(i)

E(ii)

F(ii)

C(iii)E(i)

Fig. 15. The regions A(i), 4A(ii),. . . in the (α, β)-plane correspond to Cases 4A(i), 4A(ii),. . . as described on page 27. When
lifting the parameter (α, β) in the (α, β, λ)-space and thus varying the value of λ, the corresponding phase portraits of (2)
undergo the respective bifurcations presented in Figures 17, 18, 19, 20, 21, 22, 23, and 24.

by symmetry, it follows that
∣∣B2

∣∣ =
∣∣B0

∣∣ if and only if α = β +
√

β2 + 1 since α > 0, or if

β =
α2 − 1

2α
. (55)

As such the regions A,B, C,D, . . . ,H can algebraically be expressed as follows:

(α, β) ∈ A ⇐⇒ max
{

0, 2α2β + α
}
< −β < min

{
α,

1

2α

}
and β 6= α2 − 1

2α
and β 6= α−

√
α2 − 1, (56)

(α, β) ∈ B ⇐⇒
[
0 ≤ −β < min

{
α, 2α2β + α

}
and β 6= α2 − 1

2α

]
or
[
−α < β < α−

√
α2 + 1

]
, (57)

(α, β) ∈ C ⇐⇒
[
2α2β + α + β = 0, 0 < β < −α and β 6= α2 − 1

2α

]
or

[
−
√

2

2
< β = − 1

2α
< 0

]
, (58)

(α, β) ∈ D ⇐⇒
[

0 < α = −β <

√
3

3

]
or

[
−
√

3

3
< β = α−

√
α2 + 1 < 0

]
, (59)

(α, β) ∈ E ⇐⇒
[
−
√

3

3
< β =

α2 − 1

2α
< −1

2

]
or

[
−
√

2

2
< β = −α < −

√
3

3

]
, (60)

(α, β) ∈ F ⇐⇒
[
−1

2
< β =

α2 − 1

2α
≤ 0

]
or

[
β = −α <

√
2

2

]
, (61)

G =

{(√
2

2
,−

√
2

4

)
,

(√
2

2
,−

√
2

2

)}
, (62)

H =

{(√
3

3
,−

√
3

3

)}
. (63)
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For fixed (α, β) the singularities si± ≡ si± (λ) of (2) on the ray Ri and the Hamiltonian H at these

singularities depend on λ through B (θi) = λBi, i = 0, 1, 2. We will denote

hi± ≡ hi± (λ) ≡ h±
(
−λ
∣∣Bi

∣∣) and hi ≡ 1

12
.

For simplicity of writing we will often omit this dependence if no confusion is possible.

Theorem 7. Consider the cubic Hamiltonian irs-system given by (2) and consider the parameter (α, β, λ)
as defined in (46) and (47). Let Bi, i = 0, 1, 2 be defined by (48), (49) and (50) and let i0, i1, i2 ∈ {0, 1, 2}
be such that

∣∣Bi0

∣∣ ≥
∣∣Bi1

∣∣ ≥
∣∣Bi2

∣∣ ≥ 0. Let A,B, . . . ,H be the algebraic sets defined in (56),(57),. . . ,(63).
Then the bifurcation of the phase portraits of (2) with respect to λ is summarized in

(1) Figure 17 for (α, β) ∈ A and λA
0 < λA

1 < λA
2 defined by λA

j = λA
j (α, β) = 2/

∣∣Bij

∣∣ , j = 0, 1, 2.

(2) Figure 18 for (α, β) ∈ B and λB
0 < λB

1 < . . . < λB
4 with λB

j = λB
j (α, β) = 2/

∣∣Bij

∣∣, j = 0, 1, 2, and

λB
j = λB

j (α, β) , j = 3, 4 with h−
(
−λB

3

∣∣Bi1

∣∣) = h+
(
−λB

3

∣∣Bi2

∣∣) and h−
(
−λB

4

∣∣Bi0

∣∣) = h+
(
−λB

4

∣∣Bi2

∣∣) .
(3) Figure 19 for (α, β) ∈ C and λC

0 < λC
1 with λC

j = λC
j (α, β) = 2/

∣∣Bij

∣∣, j = 0, 1.

(4) Figure 20 for (α, β) ∈ D and λD
0 < λD

1 with λD
j = λD

j (α, β) = 2/
∣∣Bij

∣∣, j = 0, 1.

(5) Figure 21 for (α, β) ∈ E and λE
1 < λE

2 by λE
j = λE

j (α, β) = 2/
∣∣Bij

∣∣, j = 1, 2.

(6) Figure 22 for (α, β) ∈ F and λF
1 < λF

2 < λF
3 with λF

j = λF
j (α, β) = 2/

∣∣Bij

∣∣, j = 1, 2, and λF
3 =

λF
3 (α, β) with h−

(
−λF

3

∣∣Bi1

∣∣) = h+
(
−λF

3

∣∣Bi2

∣∣) .
(7) Figure 23 for (α, β) ∈ G and λG

1

(√
2/2,−

√
2/4
)

= 1 and λG
1

(√
2/2,−

√
2/4
)

= 2
√

3. Moreover the
bifurcation is described in terms of g.

(8) Figure 24 for α = −β =
√

3/3 and λH
0 = 6. In this case g = −e = λ/3 and c = 0 and the cubic

Hamiltonian irs-systems (2) are reversible. Moreover the bifurcation is described in terms of g.

Proof. [Proof of Theorem 7(2)] Locally near the rays the phase portrait is known from Proposition 1. Now
we use the graphs of the Hamiltonian along the rays Ri, i = 0, 1, 2 to determine the relative position of
the separatrices of the singularities that are not centers (Lemma 11). We only prove Theorem 7(2) in Case
4B(ii), i.e., in case (α, β) ∈ B and B2 < B0 < B1 < 0. Hence (i0, i1, i2) = (2, 0, 1) and Rj = {θ = θij}, 0 ≤
j ≤ 2. The other cases are analogous.

Figure 16 presents the bifurcation of the Hamiltonian at the singularities and the corresponding phase
portrait with increasing λ. On the left of these figures, there are the graphs of the Hamiltonian values
h+ and h− at the singularities r+ and r− in function of B (and so in terms of −λ, as |Bi (λ)| grows
linearly with λ). The Hamiltonian values hi±, h

i, i = 0, 1, 2 that correspond to saddle or cusp singularities
are indicated by a big bullet and the Hamiltonian values hi±, i = 0, 1, 2 that correspond to a center are

indicated by a thin bullet. In the middle of these figures the graphs of the Hamiltonian HλBi
along the

rays Ri, i = 0, 1, 2 are presented as a function of r, in dashed, dotted, point-dashed line respectively. Again
the value of the Hamiltonian is indicated at the saddle and cusp points by a big bullet and at the center
points by a thin bullet. Furthermore for i = 0, 1, 2 and for λ big enough such that the singularities si± or si

exist along Ri the horizontal lines Γi, defined by {H = hi− (λ)}, are drawn in dashed, dotted, point-dashed
line respectively (value of the Hamiltonian at the saddle or cusp point along Ri).

If such a horizontal line Γj, j = 0, 1, 2 intersects the graph of HλBi
, i = 0, 1, 2 (i 6= j) for a value

r = r∗, then the level curve Γj also intersects the ray Ri in the phase portrait at distance r∗. Comparing
the relative position of the intersection points and the critical points of the Hamiltonian HλBi

along the
ray Ri, i = 0, 1, 2, we can complete the phase portrait as shown in the right of Figure 16, where the orbits
in dashed, pointed resp. point-dashed line correspond to level curves of the Hamiltonian at the saddle or
cusp singularity if occurring along Ri, i = 0, 1 resp. 2. The level curve Γj intersects Ri in a point s∗ with
|s∗| = r∗ and s∗ lies on the ray Ri between (0, 0) and si−, s

i
− and si+ or between si+ and +∞ (or (0, 0) and si

or between si and +∞). In the same way by comparing the order of the intersections of the horizontal lines
Γi, i = 0, 1, 2 and the graph of HλBj

along a fixed ray Rj , we know the corresponding order of intersections

of the level curves Γi, i = 0, 1, 2 with Rj , and so by Lemma 11 we can derive the configuration of the
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saddle and cusp connections. In this way and by use of a continuity argument we describe the bifurcation
for increasing λ.

It can be seen from Figure 16 that in Case 4 (b) there are 11 possible configurations for the singularities
on the rays Ri, i = 0, 1, 2 and the Hamiltonian values at the saddle points, that depend on the relative
values B2 < B0 < B1 < 0 with respect to −2 and the relative values of the Hamiltonian at the saddle
points.

(a) If λ < λB
0 , then B2 (λ) > −2 and hence the origin is a global center, see Figure 16(a).

(b) If λ = λB
0 , then B2 (λ) = −2. Hence there is one singularity on the ray R2 of cuspidal type with

Hamiltonian value h2
(
λB
0

)
= 1/12. The Hamiltonian along the rays Ri, i = 0, 1, 2 is strictly increasing with

the radial value r, therefore the phase portrait presents a center at the origin bounded by a cuspidal loop,

that is pointing outwards (since A
′
(θ2) < 0), and a center at infinity that reaches to the cuspidal loop, see

Figure 16(b).

(c) If λB
0 < λ < λB

1 , then B2 (λ) < −2 < B0 (λ) . Hence the ray R2 carries two singularities, a saddle
and a center. Outside this ray there is only the center in the origin. By studying the Hamiltonian along the
rays Ri, i = 0, 1, 2 in function of r, we conclude that the phase portrait exhibits a figure eight connection at
the saddle point of which one loop encircles the center at the origin and the other loop encircles the center
at s2+, see Figure 16(c). Notice that the value of the Hamiltonian at the saddle point is strictly smaller
than 1/12.

(d) If λ = λB
1 , then B0 (λ) = −2. By continuous dependence on λ the local phase portrait near the ray

R2 is unchanged, and along the ray R0 a cuspidal singularity is born. By studying the Hamiltonian that
is increasing along the ray R0 we conclude that there is a cuspidal loop pointing outwards encircling the
figure eight determined by the saddle point at R2, see Figure 16(d).

(e) If λB
1 < λ < λB

2 , then B0 (λ) < −2 < B1 (λ) . Locally along R2 the phase portrait is unchanged and
locally along R0 the cusp singularity has split up in a center s0+ and a saddle singularity s0−. Analyzing the
Hamiltonian, shown in the corresponding graphs of Figure 16(e), one finds that the phase portrait exists
of a topological lemniscate through s0−, that bounds the center at s0+ by one of its loops and it bounds
the non-isolated periodic orbits encircling the lemniscate through s2− by the other loop. The lemniscate
through s0− itself is encircled by non-isolated periodic orbits reaching to the center at ∞. Notice that for all
λ > λB

1 , it follows that B2 (λ) < B0 (λ) < −2 and hence h2− (λ) < h1− (λ) . Therefore for increasing λ > λB
1

the relative position of the saddle connections at s0− and s2− will be preserved.

(f) If λ = λB
2 , then B1 (λ) = −2 and hence a cusp singularity is born along R1 pointing inwards. By

an analysis based on the Hamiltonian, see Figure 16(f), it follows that the phase portrait has a cuspidal
loop bounding the non-isolated periodic orbits encircling the lemniscate through s0−.

(g, h, i, j, k) If λ > λB
2 , then B1 (λ) < −2 and we clearly have that h2− (λ) < h0− (λ) < h1− (λ) . The

cusp singularity s1 has split up into a center and a saddle singularity like happened on rays Ri, i = 0, 2.
However this time the smallest singularity s1− is the center point and the biggest one s1+ is the saddle point.
In particular the Hamitonian value h1+ (λ) at the saddle s1+ will decrease with increasing λ ∈

(
λB
2 ,+∞

)

from 1/12 to −∞, permitting the crossing of separatrices with increasing λ, see Figure 16. By Lemma 11,
there exist λB

3 and λB
4 such that

h0−
(
λB
3

)
= h1+

(
λB
3

)
, h2−

(
λB
4

)
= h1+

(
λB
4

)
, h0− (λ) < h1+ (λ) for λB

2 < λ < λB
3 ,

h2− (λ) < h1+ (λ) < h0− (λ) for λB
3 < λ < λB

4 and h1+ (λ) < h2− (λ) for λ > λB
4 .

(g) If λB
2 < λ < λB

3 , then from an analysis based on the Hamiltonian, see Figure 16, it follows that the
level curve Γ1 through s1+ takes topologically the form of Cayley’s Sextic: with the center at s1− bounded
by its interior loop and the non-isolated periodic orbits encircling the topological lemniscate through s0−
bounded by its outermost loop.

(h) If λ = λB
3 , then from an analysis based on the Hamiltonian, see Figure 16, and by Lemma 11, it

follows that a connection between the separatrices of the saddles s0− and s1+ exist. The rest is unchanged
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Fig. 16. Graphical bifurcation analysis of the phase portraits of (2) in Case 4B(ii), see Theorem 7(2).
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with respect to (g) by continuous dependence on λ.

(i) If λB
3 < λ < λB

4 , then from an analysis based on the Hamiltonian, see Figure 16, and by Lemma 11,
it follows that the connection between the separatrices of the saddles s0− and s1+ is broken and the order
in which the separatrices intersect the ray R1 is reversed with respect to parameter values λB

2 < λ < λB
3 ,

see (g). The rest is unchanged with respect to (h) by continuous dependence on λ.

(j) If λ = λB
4 , then from an analysis based on the Hamiltonian, see Figure 16, and by Lemma 11, it

follows that a connection between the separatrices of the saddles s2− and s1+ exist. The rest is unchanged
with respect to (i) by continuous dependence on λ.

(k) If λ > λB
4 , then from an analysis based on the Hamiltonian, see Figure 16, and by Lemma 11, it

follows that the connection between the separatrices of the saddles s2− and s1+ is broken and the order in
which the separatrices intersect the ray R1 is reversed with respect to parameter values λB

3 < λ < λB
4 , see

(g). The rest is unchanged with respect to (j) by continuous dependence on λ. �

Figure λ Hamiltonian #s

(a) 0 ≤ λ < λA
0 1

(b) λ = λA
0 hi0 = 1/12 2

(c) λA
0 < λ < λA

1 hi0− < 1/12 3

(d) λ = λA
1 hi0− < hi1 = 1/12 4

(e) λA
1 < λ < λA

2 hi0− < hi1− < 1/12 5

(f) λ = λA
2 hi0− < hi1− < hi2 = 1/12 6

(g) λ > λA
2 hi0− < hi1− < hi2− < 1/12 7

(a) (b) (c) (d)

(e) (f) (g)

Fig. 17. Bifurcation of phase portraits of (2) in Case 4A (see Theorem 7(1)).

Proof. [Proof of Theorem 7(1)] Since in Case 4A the saddle points along Rij , j = 0, 1, 2 correspond to the

smallest ones, s
ij
−, j = 0, 1, 2 the bifurcation of the phase portraits with respect to increasing λ < λA

2 in

Case 4A is analogous to the bifurcation of the phase portraits in Case 4B for λ < λB
2 . For λ = λA

2 a cusp
singularity si2 is born along Ri2 , this time pointing outwards. For λ > λA

2 this cusp singularity splits into

a saddle singularity si2− and a center singularity si2+ , giving rise to a homoclinic saddle connection at si2−
surrounding the center at si2+ and the non-isolated periodic orbits surrounding the lemniscate at si1− . Since
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Figure λ Hamiltonian #s

(a) 0 ≤ λ < λB
0 1

(b) λ = λB
0 hi0 = 1/12 2

(c) λB
0 < λ < λB

1 hi0− < 1/12 3

(d) λ = λB
1 hi0− < hi1 = 1/12 4

(e) λB
1 < λ < λB

2 hi0− < hi1− < 1/12 5

(f) λ = λB
2 hi0− < hi1− < hi2 = 1/12 6

(g) λB
2 < λ < λB

3 hi0− < hi1− < hi2+ < hi2− < 1/12 7

(h) λ = λB
3 hi0− < hi1− = hi2+ < hi2− < 1/12 7

(i) λB
3 < λ < λB

4 hi0− < hi2+ < hi1− < hi2− < 1/12 7

(j) λ = λB
4 hi0− = hi2+ < hi1− < hi2− < 1/12 7

(k) λ > λB
4 hi2+ < hi0− < hi1− < hi2− < 1/12 7

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 18. Bifurcation of phase portraits of (2) in Case 4B (see Theorem 7(2)).

for λ > λA
2 the order of the Hamiltonian values at the saddle points is stable, hi0− < hi1− < hi2− , no crossing

of the separatrices at the different saddle points si−, i = 0, 1, 2 is possible. Hence no further bifurcation
with increasing λ will appear. �

Proof. [Proof of Theorem 7(3)] In Case 4C since Bi2 = 0 one also has that Bi2 (λ) = 0 for all λ. Hence
no singularities appear on ray Ri2 , for any value of the parameter λ. Therefore and since the saddle points
of Ri0 and Ri1 correspond to the smallest ones, si0− and si1−, the bifurcation of the phase portraits with
respect to increasing λ in Case 4C is analogous to the bifurcation of the phase portraits in Case 4B for
λ < λB

2 . �
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Figure λ Hamiltonian #s

(a) 0 ≤ λ < λC
0 1

(b) λ = λC
0 hi0 = 1/12 2

(c) λC
0 < λ < λC

1 hi0− < 1/12 3

(d) λ = λC
1 hi0− < hi1 = 1/12 4

(e) λ > λC
1 hi0− < hi1− < 1/12 5

(a) (b) (c) (d) (e)

Fig. 19. Bifurcation of phase portraits of (2) in Case 4C (see Theorem 7(3)).

Figure λ Hamiltonian #s

(a) 0 ≤ λ < λD
0 1

(b) λ = λD
0 hi0 = 1/12 2

(c) λD
0 < λ < λD

1 hi0− < 1/12 3

(d) λ = λD
1 hi0− < hi1 = hi2 = 1/12 5

(e) λ < λD
1 hi0− < hi1− = hi2− < 1/12 7

(a) (b) (c) (d) (e)

Fig. 20. Bifurcation of phase portraits of (2) in Case 4D (see Theorem 7(4)).

Proof. [Proof of Theorem 7 (4) and (5)] The bifurcation of the phase portraits with respect to increasing
λ in Cases 4D and 4E are analogous to the one in Case 4A, since the saddle points appearing on all the
rays Ri correspond to the smallest ones si−, i = 0, 1, 2.

In Case 4D since
∣∣Bi1

∣∣ =
∣∣Bi2

∣∣ we also have |Bi1 (λ)| = |Bi2 (λ)| for all λ. Therefore in Case 4D first
the singularities appear along Ri0 , next the singularities appear simultaneously along Ri1 and Ri2 , and
the local phase portrait near Ri2 is an identic copy of the one near Ri1 . The first three bifurcations are
completely analogous to the ones in Case 4A, the last two bifurcations follow from an analysis based on
the Hamiltonian.

In Case 4E since
∣∣Bi0

∣∣ =
∣∣Bi1

∣∣ we also have |Bi0 (λ)| = |Bi1 (λ)| for all λ. Therefore in Case 4E first
the singularities appear along Ri0 and R1 simultaneously, where the local phase portraits near R0 and R1

are diffeomorphic copies; next the singularities appear along Ri2 . �

Proof. [Proof of Theorem 7(6) and 7(7)] The bifurcation of the phase portraits with respect to increasing
λ in Case 4F is analogous to the one in Case 4B, since the saddle points appearing on the rays Rij , j = 0, 2

correspond to the smallest ones s
ij
−, j = 0, 2 and the saddle on Ri1 corresponds to the biggest one si1− .
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Figure λ Hamiltonian #s

(a) 0 ≤ λ < λE
1 1

(b) λ = λE
1 hi0 = hi1 = 1/12 3

(c) λE
1 < λ < λE

2 hi0− = hi1− < 1/12 5

(d) λ = λE
2 hi0− = hi1− < hi2 = 1/12 6

(e) λ > λE
2 hi0− = hi1− < hi2− < 1/12 7

(a) (b) (c) (d) (e)

Fig. 21. Bifurcation of phase portraits of (2) in Case 4E (see Theorem 7(5)).

Figure λ Hamiltonian #s

(a) 0 ≤ λ < λF
1 1

(b) λ = λF
1 hi0 = hi1 = 1/12 3

(c) λF
1 < λ < λF

2 hi0− = hi1− < 1/12 5

(d) λ = λF
2 hi0− = hi1− < hi2 = 1/12 6

(e) λF
2 < λ < λF

3 hi0− = hi1− < hi2+ < hi2− < 1/12 7

(f) λ = λF
3 hi0− = hi1− = hi2+ < hi2− < 1/12 7

(g) λ > λF
3 hi2+ < hi0− = hi1− < hi2− < 1/12 7

(a) (b) (c) (d)

(e) (f) (g)

Fig. 22. Bifurcation of phase portraits of (2) in Case 4F (see Theorem 7(6)).

In Cases 4F and 4G since
∣∣Bi0

∣∣ =
∣∣Bi1

∣∣ we also have |Bi0 (λ)| = |Bi1 (λ)| , for all λ. Therefore in Case
4F first the singularities appear along Ri0 and Ri1 simultaneously, where the local phase portraits near
Ri0 and Ri1 are identic copies; next the singularities appear along Ri2 .

In Case 4G (i0, i1, i2) = (0, 2, 1) for (α1, β1) =
(√

2/2,−
√

2/4
)

and (i0, i1, i2) = (2, 1, 0) for (α2, β2) =
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Figure λ e = −2g = −
√

2c e = c = 0 Hamiltonian #s

(a) 0 ≤ λ < λG
1 0 ≤ g < 1/4 0 ≤ g <

√
3 1

(b) λ = λG
1 g = 1/4 g =

√
3 hi0 = hi1 = 1/12 3

(c) λ > λG
1 g > 1/4 g >

√
3 hi0− = hi1− < 1/12 5

(a) (b) (c)

Fig. 23. Bifurcation of phase portraits of (2) in Case 4G (see Theorem 7(7)).

Figure λ g Hamiltonian #s

(a) 0 ≤ λ < λH
0 0 ≤ g < 2 1

(b) λ = λH
0 g = 2 hi0 = hi1 = hi2 = 1/12 4

(c) λ > λH
0 g > 2 hi0− = hi1− = hi2− < 1/12 7

(a) (b) (c)

Fig. 24. Bifurcation of phase portraits of (2) in Case 4H (see Theorem 7(8)).

(√
2/2,−

√
2/2
)
. One can calculate that

B0 = B2 = −1

2
for (α, β) = (α1, β1) and B2 = −B1 = −

√
3

3
for (α, β) = (α2, β2) .

For both values of (α, β) ∈ G one has that Bi2 = 0, and hence Bi2 (λ) = 0 for all λ. Therefore no singularities
appear on ray Ri2 , for any value of the parameter λ. So the bifurcation of the phase portraits in Case 4G
is analogous to the first three bifurcations in Case 4F, i.e., for λ < λF

2 . �

Proof. [Proof of Theorem 7(8)] In Case 4H one has B0 = −B1 = B2 = −1

3
> 0, and so

B0 (λ) = −B1 (λ) = B2 (λ) = −λ

3
, for λ ≥ 0.

Furthermore all cusps appearing on Ri, i = 0, 1, 2 point outwards and the saddles appearing on Ri, i = 0, 1, 2
correspond to the smallest singularities si−, i = 0, 1, 2. As a consequence the singularities on Ri, i = 0, 1, 2
appear simultaneously and the local phase portraits near Ri, i = 0, 1, 2 are identic copies. Notice that in
this case the original parameter is given by (g, c, e) = (λ/3, 0,−λ/3) and hence in Case 4H the systems are
reversible. �
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6. Applications and Generalizations

In this section we illustrate how the techniques developed for cubic irs-systems apply to polynomial differ-
ential systems of higher degree. Polynomial irs-systems of degree n read in polar coordinates as

r′ =
n−1∑
k=2

Ak(θ)rk,

θ′ = 1 +
n−2∑
k=1

Bk(θ)rk + rn−1,

(64)

where Ak(θ) and Bk(θ) are homogeneous trigonometric polynomials of degree k. The singularities can be
analyzed using Lemma 6.

When all but one Ak and Bk in (64) are identically zero, i.e., when r′ = Ai (θ) ri, θ′ = 1 +Bjr
j + rn−1,

then the results for cubic irs-systems can directly be generalized. In section 6.1 we study the bifurcation
diagram of such a 1-parameter subfamily of Hamiltonian quintic irs-systems.

In section 6.2 we study the bifurcation diagram of a more general 2-parameter subfamily of quintic
irs-systems. In particular we explain how one can construct a polynomial that has a specified number of
aligned singularities of a specified topological type and with the specified connections between them.

6.1. The bifurcation diagram of a quintic system with a center at the origin
and at the infinity

In this section we consider Hamiltonian quintic systems that in polar coordinates write as (64) with n = 5
and A2 ≡ A4 ≡ 0; then necessarily B2 ≡ B4 ≡ 0. As an example we take the 1-parameter subfamily
depending on the parameter a

X5
a ↔

{
x′ = −y + ay3 − y(x2 + y2)2,
y′ = x + ax3 + x(x2 + y2)2,

(65)

which in polar coordinates writes as

r′ = a sin θ cos θr3,
θ′ = 1 + a(−1 + 2 cos2 θ)r2 + r4.

The Hamiltonian is given by H (x, y) = 1
2(x2 + y2) + 1

4a(x4− y4) + 1
6(x2 + y2)3. Since X5

a is invariant under
(t, x, y) 7→ (−t,−x, y) (resp. (t, x, y) 7→ (−t,−x, y)), its phase portrait is symmetric with respect to the
horizontal (resp. vertical) axis reversing time. For |a| < 2 the vector field X5

a has a global center at the
origin. For |a| = 2 the vector field has two singularities with r = 1 on the horizontal (resp. vertical) axis
symmetric for a < 0 (resp. a > 0) with Hamiltonian value h = 1/6. For |a| > 2 the vector field has four
singularities with r = r± on the horizontal (resp. vertical) axis symmetric for a < 0 (resp. a > 0) where

r2± =
(
|a| ±

√
a2 − 4

)
/2. Using analogous techniques as in section 5 we obtain the bifurcation diagram

and the phase portrait of system (65) in terms of the parameter a, see Figure 25.

a < −2 a = −2 −2 < a < 2 a = 2 2 < a

Fig. 25. Bifurcation diagram and phase portraits of (65).
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6.2. How to construct a system with a given phase portrait

In this section we derive some sufficient conditions for polynomial irs-systems whose phase portrait looks
like the ones of Figure 27. Observing that all these phase portraits have a center at the origin and at infinity,
both with the same orientation, all these phase portraits are reversible having five aligned singularities, we
look for a quintic planar system satisfying these conditions

ẋ = −y + a11xy + a21x
2y + a03y

3 + a31x
3y + a13xy

3 − y(x2 + y2)2,

ẏ = x + b20x
2 + b02y

2 + b30x
3 + b12xy

2 + b40x
4 + b22x

2y2 + b04y
4 + x(x2 + y2)2.

(66)

As for cubic irs-systems, the phase portraits in Figure 27 can be generated by perturbing the corresponding
degenerate cases drawn in Figure 26 in the appropriate way. In order that system (66) has two double
singularities on the positive horizontal axis, e.g., at s1 ≡ (1/2, 0) and s2 ≡ (2, 0), it is necessary that

b02 = b12 = b22 = b04 = 0, b20 = b40 = −5, and b30 =
33

4
. (67)

Then by Lemma 6 with k = 2 and l = 1 it is sufficient to pick some parameter values (a11, a21, a31) such
that the sign of γ ≡ γ (si) , i = 1, 2 leads to the appropriate orientation of the cusps si, i = 1, 2 as in Figure
26, where

γ (s1) =
1

36
(−17 + 8a11 + 4a21 + 2a31) , and

γ (s2) =
4

9
(−17 + 2a11 + 4a21 + 8a31) .

From these expressions it follows that the orientation of the cusps can independently be changed as in
Figure 26 when we restrict our study to

a21 = a11 = 0, a31 = a ∈ R\ {17/8, 17/2} . (68)

In order that system (66) with (67) and (68) has no singularities outside the horizontal axis, it is necessary
that a03 = a13 = 0 and the following 1-parameter family of quintic irs-systems is induced

XR,5
a ↔





x′ = −y + ax3y − y(x2 + y2)2,

y′ = x− 5x2 +
33

4
x3 − 5x4 + x(x2 + y2)2.

(69)

An analogous reasoning as in section 5 shows that the bifurcation diagram of the global phase portraits
of XR,5

a in terms of a is given by Figure 26. Notice that we here have not included the phase portraits
corresponding to the bifurcation values a = 17/8 and a = 17/2. These phase portraits can be obtained by a
continuity argument. However the goal of this section is to find explicit irs-systems having phase portraits
as in Figure 27.

(a) a < 17/8 (b) 17/8 < a < 17/2 (c) a > 17/2

Fig. 26. Phase portraits of Eq. (69).

Analogously one constructs a 2-parameter family XR,5
(a,ε) of quintic irs-systems having four singularities

on the positive horizontal axis, say at (2, 0), (2 + ε, 0) , (1/2, 0) and (1/(2 + ε), 0) with

XR,5
(a,ε) ↔

{
x′ = −y + ax3y − y(x2 + y2)2,

y′ = x + b(ε)x2 + c(ε)x3 + b(ε)x4 + x(x2 + y2)2,
(70)
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where

b(ε) = −(4 + ε)(5 + 2ε)

2(2 + ε)
and c(ε) =

33 + 24ε + 5ε2

2(2 + ε)
for ε > 0.

Clearly XR,5
(a,0) ≡ XR,5

a . Again by Lemma 6 and since there are no other singularities present outside the

horizontal axis, it follows that for each a there exists ε0 (a) > 0 such that for all 0 < ε < ε0 (a) the phase

portrait of XR,5
(a,ε) coincides globally with the corresponding one in Figure 27. In particular ε0 (a) is an

algebraic function that is implicitly defined. For example ε0 (1) = +∞, ε0(5) and ε0 (30) are the positive
zeros of ε4 + 3ε3 − 6ε2 − 28ε − 23 and ε4 + 8ε3 + 24ε2 + 2ε − 43 respectively. Approximately these values
are ε0(5) ≈ 2.991961290 and ε0(30) ≈ 1.096040970.

(a) a < 17/8 (b) 17/8 < a < 17/2 (c) a > 17/2

Fig. 27. Phase portraits of Eq. (70) for ε small enough.

From this study we can pick an infinite number of values (a, ǫ) to give an explicit irs-system having
the phase portrait described in Figure 27(a),(b) respectively (c), for instance the following irs-system with
a = 1, a = 5 respectively a = 30 :

x′ = −y + ax3y − y(x2 + y2)2,

y′ = x− 35

6
x2 +

31

3
x3 − 35

6
x4 + x(x2 + y2)2.
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