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A variety of heterogeneous potentials are capable of localizing linear non-interacting waves. In
this work, we review different examples of heterogeneous localizing potentials which were realized
in experiments. We then discuss the impact of nonlinearity induced by wave interactions, in
particular its destructive effect on the localizing properties of the heterogeneous potentials.

From communications amongst ourselves to sensing and imaging our surroundings, wave transmissions
through media play an integral role in our modern lives. Regardless of their physical origin or scale,
most wave systems exhibit phenomena such as scattering, reflection, refraction, and interference. This
commonality thus provides a framework to discuss universal features. Transmission media, modeled by
mathematical potentials, are often idealized with the characteristics of integrability, hermiticity (i.e. closed
systems), linearity, and homogeneity. In-situ applications rarely however are at this level of perfection -
even in a laboratory, such situations require colossal experimental control and accuracy to achieve. Besides,
these small differences from perfection may lead to novel and utilitarian phenomena.

One such small difference is heterogeneity of the medium. This heterogeneity can arise in several
different ways, but throughout, attenuation of the wave transmission is possible - a phenomenon called
localization. The first heterogeneity to be discussed is the presence of randomly distributed impurities,
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leading to an exponential localization in the eigenstates - called Anderson localization (AL). In Sec.
this AL is described in greater detail. The second form of heterogeneity arises from the presence of a DC-
biased electric field, creating an equidistant spectrum and an inverse factorial eigenstate attenuation - called
Wannier-Stark localization. This case is detailed within Sec. The third case, covered in Sec. comes
from potentials that arranged in correlated fashions. In these types of heterogeneity, a tuning parameter
may allow transitions from localized states to those that are unattenuated, with critical states at the
transition point. The last form of heterogeneity to be discussed arises from a specially designed potential,
in which localization occurs not spatially, but within a momentum space. This dynamical localization will
be presented in Sec.

In addition to heterogeneity, a second deviation from ideal transmission media is due to wave interac-
tion, resulting in nonlinear dependencies on wave amplitudes. Examples of such nonlinear potentials are
prolific, and include: the AC Kerr effect in optical media, atom-atom scattering in boson condensates,
screened Coulomb interactions in electrons, and acoustic Langmuir waves in cold plasmas. This nonlin-
earity can additionally be coupled to heterogeneous localizing potentials, drastically altering the resulting
localization. Within Sec. [2] the effect of nonlinearity on the dynamics of packets in localizing media is
discussed, with individual subsections corresponding to the four different heterogeneities.

In short, we address what happens when first, the linear waves yield zero conductivity (localized) in
heterogeneous media, and then wave interactions are added. Will an insulator change into a conductor, or
will localization remain? This is the main question in the interplay between heterogeneity and nonlinearity,
and helps define how these two different ingredients collaborate.

1. Linear Waves in Localizing Media
1.1. Dsisorder - Anderson Localization

A fundamental problem of condensed matter physics was (and still remains) the study of conductivity
of electrons in solids. Since in an infinite perfect crystal, electrons can propagate ballistically, a natural
question is raised: what happens in a more realistic situation when there is disorder in the crystal due to
impurities or defects? Will the increase of the degree of disorder lead to a decrease of conductivity, or not?
These questions were first answered in a seminal paper by P.W. Anderson |Anderson, (1958, where it was
shown that for large enough strengths of disorder the diffusive motion of the electron will come to a halt.
In particular, Anderson studied an unperturbed lattice of uncoupled sites, where the perturbation was
considered to be the coupling between them, and randomness was introduced in the on-site energies. For
this model he showed that for a large degree of randomness, the transmission of a wave decays exponentially
with the length of the lattice.

This absence of wave diffusion in disordered mediums is nowadays called Anderson localization, and
is a general wave phenomenon that applies to the transport of different types of classical or quantum waves,
like electromagnetic, acoustic and spin waves. Its origin is the wave interference between multiple scattering
paths; i.e. the introduction of randomness can drastically disturb the constructive interference, leading to
the halting of waves. Anderson localization plays an important role in several physical phenomena. For
example, the localization of electrons has dramatic consequences for the conductivity of materials, since
the medium no longer behaves like a metal, but becomes an insulator when the strength of disorder exceeds
a certain threshold. This transition is often referred as the metal-insulator transition (MIT).

Often theoretical and numerical approaches of localization start with the Anderson model: a standard
tight-binding (i.e. nearest-neighbor hopping) with an on-site potential disorder. This can be represented
in one dimension by a time-dependent Schrodinger model

2% = e — Y1 — Y11 (1)

Here {¢} are the random on-site energies, which are drawn from an uncorrelated uniform distribution in
[-W/2,W /2], where W parametrizes the disorder strength. The 1); is the complex wavefunction associated
with lattice site [. Using the substitution ¢, = A;exp(—iAt) yields a time-independent form

M = A — Ay — A, (2)
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The solution consists of both a set of eigenvectors called the normal modes (NMs), A7, (normalized as
> (AY)? = 1), and also a set of eigenvalues called the normal frequencies, \, € [-W/2— 2, W/2+ 2] which
exist in a spectral band of width A = 4 + W. The eigenvectors are exponentially localized, meaning that
their asymptotic behavior can be described by an exponential decay

|Af | ~ e ), 3)

where £()\,) is a characteristic energy-dependent length, called the localization length. Naturally, £ — oo
corresponds to an extended eigenstate. Several approaches have been developed for the evaluation of &, such
as: the transfer matrix method, schemes based on the transport properties of the lattice, and perturbative
techniques. For more information on such approaches, the reader is referred to [Kramer & MacKinnon, 1993]
and references therein. In general, these approaches approximate the localization length as £(A,) ~ 96/W?
for weak disorder strengths, W < 4. On average, the localization volume (i.e. spatial extent) V of the NM
is on order of 3.3¢(0) for these weak disorder strengths, and tends to unity in the limit of strong disorder.

In real experiments, measurements of transmission and conductivity are mainly performed, so the
need for a connection between the conductivity and the spectrum becomes apparent. The basic approach
towards the fulfillment of this goal was the establishment of a connection between the conductivity and
the sensitivity to changes of the boundary conditions of the eigenvalues of the Hamiltonian of a finite (but
very large) system |[Edwards & Thouless, 1972]. The sensitivity to the boundary conditions turned out to
be conceptually important for the formulation of a scaling theory for localization [Abrahams, [1979]. The
main hypothesis of this single-parameter scaling theory is that close to the transition between localized
and extended states, there should be only one scaling variable which should depend on the conductivity for
the metallic behavior, and the localization length for the insulating behavior. This single parameter turned
out to be a dimensionless conductance (often called Thouless conductance or Thouless number) defined as

o) = 22, (1)

where 0F is the average energy shift of eigenvalues of a finite system of size N due to the change in
the boundary conditions, and AFE is the average spacing of the eigenvalues. For localized states and
large N, E becomes very small and g(/N) exponentially vanishes. In the metallic regime the boundary
conditions always influence the energy levels, even in the limiting case of infinite systems. The introduction
of the Thouless conductance led to the formulation of a simple criterion for the occurrence of Anderson
localization: g(N) < 1. In one and two-dimensional random media this criterion can be reached for any
degree of disorder by just increasing the size of the medium, while in higher dimensions a critical threshold
exists.

The experimental observation of Anderson localization is not easy, for example due to the electron-
electron interactions in cases of electron localization, and the difficult discrimination between localization
and absorption in experiments of photon localization. Nevertheless, nowadays the observation of Anderson
localization has been reported in several experiments, a few of which we quote here. In [Wiersma et al.,
1997} |Storzer et al.l [2006] localization of light in three-dimensional random media was reported. Anderson
localization has also been observed in experiments of transverse localization of light for two [Schwartz
et all 2007] and one |Lahini et al.l 2008] dimensional photonic lattices. Anderson localization has also
been observed in experiments of localization of a Bose-Einstein condensate in an one-dimensional optical
potential [Billy et all 2008; [Roati et al., 2008|, and of elastic waves in a three-dimensional disordered
medium [Hu et all 2008]. In addition, the observation of the MIT in a three-dimensional model with
atomic matter waves has been reported [Chabé et all 2008].

1.2. Wannier-Stark Ladder - Bloch Oscillations

Another intriguing class of problems appears when replacing the disorder potential ¢; by a DC field ¢, = IFE
(E denotes the strength of the field). As an example, one can mention the textbook solid state problem
of an electron in a periodic potential with an additional electric field (see e.g. [Tsu, [1993]) which leads
to investigations of Bloch oscillations [Wannier, [1960] and Landau-Zener tunneling [Landau, [1932; |Zener)
1932; Liu et all [2002] in different physical systems. Nowadays, such effects are experimentally observed
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employing optical waves in photonic lattices [Pertsch et al., [1999; [Morandotti et al., [1999] and ultracold
atoms in optical lattices |[Anderson & Kasevich, [1988; |Gustavsson et al., 2008; Morsch et al., 2001]. If the
well depth of the periodic potential is large enough, Landau-Zener tunneling is suppressed, the problem
is discretized (Wannier-Stark ladder) and the resulting eigenvalue problem is explicitly solved in terms of
the localized eigenmodes of the system (see e.g. [Fukuyama et al., [1973|). Let us consider a discrete linear
Schrodinger equation, as in Eq. but now with a DC bias F:

iy = 1B — Y — Y1 (5)
Note this is the governing equation e.g. for dilute Bose-Einstein condensate dynamics in a deep and biased
optical potential, whereby |1/;(#)|? has a meaning of BEC density in the I-th potential well. Here also 1/ is a
site’s complex amplitude, and the same substitution as in Egs.(1}}2)) can be made to arrive at the eigenvalue
problem

M =1EA — A1 — A (6)

In the case of an infinite lattice, this yields eigenvalues of A\, = Ev (with integer v). These eigenvalues
form an equidistant spectrum which extends over the whole real axis - the Wannier-Stark ladder. The

corresponding normal modes obey the generalized translational invariance A;’j: = A} |Wannier, |1960] and
(0)

are given by the Bessel functions of the first kind, A, = J;(2/E). All normal modes are spatially localized
with an asymptotic decay of

‘A(O)

ool = (1/E)' /11
The eigenstates are thus more strongly localized as compared to the disordered case, where the eigenstates
decay exponentially. Remarkably, various observables exhibit temporal periodic motion (Bloch oscillations)
with the period Tp = 27 /E.

The localization volume of an eigenstate is determined via £ =1/3, ]AZ(O)\4 [Krimer et al., [2009]. It
characterizes the spatial extent of the eigenstate as a function of . In Fig. [I the localization volume of
an eigenstate is shown as a function of E. The asymptotic behavior was found to be £ oc —[E -In E]~! for

E —0,and £ — 1 for E — oo [Krimer et al., |2009].
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Fig. 1. (Color online) Localization volume £ of the eigenfunction L

AEP ) versus F. Insets: Explicit form of the eigenfunction across the 1
chain for two values E = 2 and E = 0.2 [(b), blue; (1), red]. Figure 10
adapted from |[Krimer et al., [2009].
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1.3. Aubry-André Chains - An Example of Quasiperiodicity

A periodic lattice gives a translational symmetry. A simple way to destroy the symmetry is to introduce
a secondary periodic lattice of a different and incommensurate frequency. This idea has gained much
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attention in solid-state via quasicrystals [Levine & Steinhardt, |1984; Trebin, 2003} Vekilov & Chernikovl,
2010]. The idea of incommensuration also extends into optics via sequenced (e.g. Fibonacci, Thue-Morse,
Rudin-Shapiro) potentials [Macid & Dominguez-Adame] 2000; Albuquerque & Cottaml 2003]. More so, it
has recently been focused upon in ultracold atomic physics, in terms of bichromatic lattices |Guidoni et al.l
1997; Modugno| 2009} 2010; Albert & Leboeutf] 2010].

Regardless of the subfield, for large lattices the dynamics is described in a tight-binding form - as in
Eqs. - and goes by the moniker of Aubry-André model

Z% = (cos(2mal) - Yy — i1 — P11 (7)

in which the parameter a dictates the commensurability ratio between the two different frequencies. The
parameter ( dictates a relative lattice strength, much as W for the disordered Anderson model. As in
Egs.(2f6)), a substitution is made to turn Eq.([7)) into an eigenvalue problem:

M} = (cos(2mal) - Aj — Ajpq — A (8)

Originally this model was introduced by Harper [Harper} |1955bla] (hence Eq. is also synonymously
the Harper model) to describe a low-temperature two-dimensional electron gas in a high magnetic field,
in which the parameter o describes incommensurability between the quantum of magnetic flux and the
lattice cell. It is commonplace to make the lattice as largely incommensurate as possible for studies in the
Aubry-André model; the inverse golden mean is often used o = @ We shall henceforth keep with this
standard convention.

Using the Fourier form ¢ =), e2miakly, Eq. transforms into the quasi-momentum basis of {¢x}

Z% = 2cos(2mak) - i — g¢k+1 - g¢k—1 9)

Note that Eqs. are not identical, as seen in the location of the ( parameter. Eq. dictates dynamics
in a position representation and ( occurs on the on-site energy terms, while Eq.@ dictates dynamics
in a momentum representation, and ¢ appears in the kinetic coupling of the momentum modes. Even
though the two equations are strictly different, under exchange of ¢ the two equations are equivalent in
form - a property know as self-duality, first derived by Aubry and André [Aubry & André, 1980]. Both
equations easily can be seen to be equivalent without ANY parameter exchange if ( = 2. This self-dual
symmetry is nicely observed in the eigenstates. For the critical value of ( = 2, the two representations
have identical localization lengths. Additionally, the localization volumes can be probed as in the prior
section, using either L, =1/, [¢|* or L, =1/, |¢x|*. This is shown in Fig. 2| In the figure, for small
¢ states localized in position space are extended in momentum space. As ¢ sweeps across ( = 2, the strong
transition from localized to extended is seen for L, (and vice-versa for Ly).

The value ¢ = 2 is thus tied strongly to criticality and fractality of eigenstates, whose existence in
quasiperiodic models has been quite an active hotbed. In terms of the Aubry-André model, this has focused
on changes in the density of states [Soukoulis & Economou, [1982], density-density correlations |[Boers et al.,
2007 |Li et al., 2010], Husimi/Wigner distributions [Ingold et al.l 2002; Aulbach et al.,2004], and spreading
of density moments [Hu et al., [2000; Hufnagel et al., [2001; Diener et al. 2001]. The Aubry-André model
has also seen modification by another parameter v, introduced in Eq.(7) as cos(2wal) — cos(2ran”), in
order to further probe and control the mobility edge [Griniasty & Fishman, 1988} [Sarma et al., 1988; Varga
et al., |1992]. Study of the Aubry-André model continues onward, beyond simple tight-binding formalisms
[Johansson & Riklund|, 1991} Biddle et al., 2009].

1.4. Quantum Kicked Rotor - Localization in Momentum Space

There is a growing interest in the study of quantum systems with time-dependent Hamiltonians. An impor-
tant motivation in this area is better understanding of the quantum dynamics within simple systems whose
classical counterparts exhibit chaotic behavior. One of the relatively simple models to study the quantum
dynamics is a quantum kicked rotor. This model was introduced in [Casati et al., 1979] as a quantum
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Fig. 2. The self-duality of the Aubry-André model: For lattice size of .
10946, as a function of the parameter ¢ is shown the average localization ]
volumes in both real space (L, black) and momentum space (L4, gray). 2§
For small ¢ < 2, the eigenstates are extended in real space (L, > 1) 10°3
and localized in momentum space (L, ~ 1). At { = 2 the exchange .
is seen, i.e. for ¢ > 2 we see the eigenstates localized in real space ]
and extended in momentum space. Figure adapted from those shown in 1 E
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analog of the standard mapping |Chirikov, [1979], which is the basic model of dynamical chaos in the clas-
sical limit. In spite of this formal analogy, the dynamical chaos in the quantum kicked rotor exhibits some
specific features closely related with the quantum nature of the underlying model. Namely, in the classical
case the motion depends on a single parameter, K, the dimensionless strength of kick. For each value of
K the motion can be quasi-periodic, chaotic, or accelerating, depending on the initial conditions. At small
K the chaotic regions are isolated and separated by the Kolmogorov-Arnold-Moser (KAM) trajectories;
consequently the motion is bounded. For K = K. =~ 0.97146 the last of these trajectories disappears and
diffusion in the momentum space takes place. On the other hand, in the quantum case the energy remains
bounded and does not increase with time even for K > K,.. In other words, the quantum suppression of
classical diffusion in the phase space has taken place in the model of quantum kicked rotor [Izrailev, 1990].
The quantum localization of classical chaotic diffusion is sometimes called dynamical localization. This
phenomenon is in many aspects analogous to Anderson localization in the models with disorder [Fishman
et al., [1982]. However, in the case of quantum chaos there is no randomness and transient diffusion in
the corresponding classical system. In other words, the dynamical localization in a quantum kicked rotor
occurs in a completely deterministic system. In addition, in the cases where the period of kicks equals to
an integer multiple of the natural period of rotor, quantum resonances and ballistic diffusion occur.
The quantum kicked rotor is described by the Schrodinger equation:
d 192 <2
ia—lf:sz—ia—;ﬁ—kkcos(H)w Z S(t—mT) . (10)

m=—0oQ

Here, § and —i0/06 are the position and the conjugated momentum operators of the rotor. All quantities
are in units of & = 1, and the motion is considered on a ring with periodic boundary conditions ¢ (0 + 27) =
¥ (0). The parameter k is the kick strength and 7" is the period between kicks. The evolution operator over
one period T is given by

"9 962

The solution v (6, ¢) of Eq.(L0) can be expanded in the basis of the angular momentum eigenfunctions in
a form

U = exp (— T‘92> exp (—ikcos (6)) . (11)

0 (0,1) = \/12? S Ay (t) exp (ind) | (12)

n=—oo

where the coefficients A,, (t) are the Fourier coefficients of the time-dependent wave function v (6,t). As a
result of the action of the evolution operator, Eq., on the wave function v (6,t) over one period T', the
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following mapping of the Fourier coefficients A,, is obtained

A (E+T) =Y (=) Jnom (k) Ay (t) exp <—i;Tm2> : (13)

m

where J,,_, (k) is the Bessel function of the first order [Casati et all [1979]. It is found from Eq.(13) that
- opposite to the classical model where one parameter determines the system behavior - in the quantum
model, behavior depends on two parameters: k and T [Izrailev, |1990]. The perturbation strength k gives
the effective number of unperturbed states covered by one kick, and 7' is ratio between the period of kicks
T and the natural period of rotor, set to one in this case. When the ratio between these two periods is
rational (i.e. T is a rational number), the rotor energy E (t) = >, |An (t)> n2/2, grows ballistically in time
as t2, at variance to the classical case. This phenomenon is called quantum resonance (being caused by
pure quantum interference effects) and has no relation to the classical behavior [Casati et all, [1979]. On
the other hand, for irrational 7', suppression of the energy diffusion occurs and the spreading of the wave
packet stops. Eq. can be also treated as an eigenvalue problem

AAY =Y (=) Ty (k) exp (—i;Tm2) AY (14)

m

The complex eigenvectors are localized for irrational T'; |AY_, | — 0. The characteristic eigenvalues A,
are complex numbers placed on the unit circle in the complex plane, A\, = exp(ix,). For rational T' then,
extended eigenvectors are obtained.

One of the first experimentally-grounded evidences of localization in a quantum system (which leads
to the suppression of the chaotic diffusion in the action space) was obtained with hydrogen atoms in a
microwave field [Bayfield et al., [1989]. The quantum energy spectrum of this system - which consists of
excited hydrogen atoms inside an intense time dependent magnetic field - is investigated in the regime
when underlying classical motion has passed from regular to irregular behavior, via increasing magnetic
field strength |[Delande & Gayl [1987|. The first experimental realization of the quantum kicked rotor was
obtained in a sample of dilute ultracold sodium atoms in a periodic standing wave of near-resonant light,
pulsed periodically in time to approximate a series of delta kicks [Moore et al.,|1995]. In these experiments,
atomic momenta were measured as a function of interaction time and the pulse period. The diffusive growth
of energy up to a quantum break time, followed by dynamical localization, was observed. In addition, in
cases with the pulse period equal to an integer multiple of the rotor period, the ballistic diffusion and
corresponding quantum resonances were observed. All these experimental findings confirmed previously
established numerical and theoretical predictions of the quantum kicked rotor model.

2. Nonlinear Waves: Destruction of Localization
2.1. Disorder

A number of recent studies have been devoted to uncover the interplay of nonlinearity and disorder |[Molinay,
1998 [Pikovsky & Shepelyanskyi, |2008; [Kopidakis et al., 2008 [Flach et al., 2009} |Skokos et al.,2009; Veksler
et al., 2009; Mulansky et al.,|2009; |Skokos & Flach, 2010; Flach, 2010; Laptyeva et al.,|2010]. Most of these
studies consider the evolution of an initially localized wave packet. While the linear equations will trap the
packet, the presence of nonlinearity leads to a spreading of the packet way beyond the limits set by the
linear theory. Numerical studies suggest that the second moment ms of the wave packet grows subdiffusively
in time following a power law t“ with o < 1. On the other side, for weak enough nonlinearity, wave packets
appear to be frozen over the complete available integration time, thereby resembling Anderson localization,
at least on finite time scales. As recently argued by Johansson, et al. [Johansson et al., 2010], these states
may be localized for infinite times and correspond to Kolmogorov-Arnold-Moser (KAM) torus structures
in phase space.
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2.1.1. Basic models

Let us consider as our first model the disordered nonlinear Schrédinger (DNLS) chain, which has equations
of motion

’Léi;z: = e — Vi1 — Vi1 + Bl (15)

with a nonlinearity strength 8 and random on-site energies chosen as in Eq..
A second model we consider is the Klein-Gordon (KG) chain of coupled oscillators
82ul 1
ot? w
where € are uncorrelated random values chosen uniformly in the interval [1/2,3/2]. Note in this model, v,
is the generalized coordinate on the site [ and is wholly real, as opposed to Eq.’s complex ; values.
Nevertheless, we can reduce the linear form of Eq. [remove the cubic u} term] to the same eigenvalue
form as Eq.(2). This is done with the transforms ¢, = W (& — 1) and \, = Ww2 — W — 2, where w, are the
KG’s eigenfrequencies, w? € [1/2,3/2 + 4/W]. The width of the KG’s squared eigenfrequency spectrum
is then A =1+4/W.
Additionally, in the KG model the total energy

E=) &
l

1 1 1 1
where & = 5(81”/875)2 + §€lu12 + Zu? + W (w1 —w)? >0

acts as the nonlinear control parameter, similar to 8 for the DNLS case. Both models conserve the total
energy; additionally, the DNLS conserves the total norm & = ), |1y 2. For small amplitudes an approximate
mapping, S ~ 3WE, from the KG model to the DNLS model exists |[Kivshar & Peyrard}, [1992; |[Kivshar,
1993; |Johansson), [2006]. Because of this mapping, in the remainder of this section we shall focus on the
DNLS model’s analytics, and return to the KG model only in our observations.

The average spacing d of eigenvalues of NMs within the range of a localization volume is of the order of
d ~ A/V, which becomes d ~ AW?2/300 for weak disorder. The two frequency scales d < A are expected
to determine the packet evolution details in the presence of nonlinearity.

The equations of motion in Eq. can be rewritten in normal mode space as

iq'ﬁl, = )\V¢I/ + B Z Iy,m,yg,l/gﬁbzl ¢1/2¢y3 (17)

V1,V2,V3

= —&u —u} + — (w1 + w1 — 2u) (16)

where the variables ¢, = >, A} exp(—iA,t) determine the complex time-dependent behavior of the NMs
and Iy oy = 2 AviAu 1Ay, 1AL, are the overlap integrals. The frequency shift of a single site
oscillator induced by the nonlinearity is 6 ~ 8n for DNLS (here n = [1|?), and § ~ € for the KG model
[Skokos et all 2009; Laptyeva et al., 2010].

We sort the NMs with increasing center-of-norm coordinate X, = Y, 1(AY)2. For DNLS, we monitor the
time-dependent normalized norm density distribution in NM space, z, = n,/ > T The KG counterpart
is the normalized energy density distribution in NM space z, = &,/ > u &u. We characterize distributions

by means of the second moment mg = Y (v — )%z, (where 7 = 3 z,), which quantifies the wave packet’s
degree of spreading, and the participation number P =1/ 22, which measures the number of effectively
excited sites. The ratio ¢ = P?/my (the compactness index [Skokos et al.,|2009]) quantifies the sparseness
of a packet.

2.1.2.  Regimes of wave packet spreading

We consider compact wave packets at t = 0 spanning a width L centered in the lattice, such that within
L there is a constant norm density of n and a random phase at each site (outside the volume L the norm
density is zero). In the KG case, this corresponds to exciting each site in the width L with the same energy
density, £ = F/L, i.e. setting initial momenta to p; = /2 with randomly assigned signs. If § > A then
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Self-Trapping

Fig. 3. Parametric space of disorder, W, vs. the frequency
shift induced by nonlinearity, J, for the DNLS model. The
KG analog is obtained by the small amplitude mapping.
Three spreading regimes are shown for dynamics dictated
by: (i) weak chaos (pale blue), (ii) strong chaos (green),
and (iii) the onset of self-trapping (pale red). The three
circles show numerical values used in Fig.[d] Adapted from
ﬂLaptyeva et al.|, |2010ﬂ.
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a substantial part of the wave packet will be self-trapped [Kopidakis et al.,|2008; Skokos et al, [2009]. This
is due to nonlinear frequency shifts, which will tune the excited sites immediately out of resonance with
the non-excited neighborhood [Flach & Willis| [1998; Flach & Gorbachl [2008]. In fact, partial self-trapping
will occur already for § > 2 since at least some sites in the packet may be tuned out of resonance. If now
0 < 2, self-trapping is avoided, and the wave packet can start to spread. For L < V', the packet will spread
over the localization volume during the time 7y;, ~ 27/d (even for § = 0). At that time, the new norm
density will drop down to n(7m;,) ~ (nL)/V. For L > V the norm density will not change appreciably up
to Ty and n(7y,) ~ n. The nonlinear frequency shift Sn(7;,) should be now compared with the average
spacing d. If fn(1;,) > d, all NMs in the packet are resonantly interacting with each other. We refer to this
regime as strong chaos. If instead fn(7;,) < d, NMs are weakly interacting with each other. We refer to
this regime as weak chaos. Note that a spreading wave packet that is launched in the regime of strong chaos
will increase in size, drop its norm (energy) density, and therefore the crossover into the asymptotic regime
of weak chaos must occur at later times. For a single-site excitation L = 1 the strong chaos regime shrinks
to zero width in the norm/energy parameter and one is left only with either weak chaos or self-trapping
[Pikovsky & Shepelyansky, [2008; Flach et al., 2009; |Skokos et al., 2009; Veksler et al., 2009]. To summarize,
the expected spreading regimes for L > V are:

d > 2 : onset of self-trapping;
d < § < 2 : strong chaos; (18)
0 < d : weak chaos.

Fig. |3| sketches the predicted regimes in a parametric space for the case L = V, in which lines represent
the regime boundaries § = d and § = 2. Note that we used d = A/(3.3¢(0)) with £(0) = 96W 2 being the
weak disorder estimate.

2.1.3. Resonances and chaos

A NM with index p in a layer of width V in the cold exterior - which borders the packet but will belong to
the core of the spreading packet at later time - is either incoherently heated by the packet, or resonantly
excited by some particular NM from a layer with width V inside the packet. The resonant channel will
lead to spreading only if a new resonance can be found. Due to the disorder this is not possible. Then a
single resonance will simply lead to beatings (oscillations) of the wave packet. In order to finally achieve
true spreading, we have to destroy the phase coherence of the wave packet. Therefore there is no other way
but to allow incoherent chaotic dynamics to take place, if spreading is observed.

Chaos is a combined result of resonances and nonintegrability. Let us estimate the number of resonant
modes in the packet for the DNLS model. Excluding secular interactions, the amplitude of a NM with
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|¢y|* = ny, is modified by a triplet of other modes i = (u1, 12, u3) in first order in 3 as
dA

Illuufl sH2, 143

oM : (19)

_ —1
= BTy, Mg, oy - Ru,ﬁv Ry i~

where d)\ = Av + Auy — Aus — Aus. The perturbation approach breaks down, and resonances set in, when
1)
o

main result is that the probability of a packet mode to be resonant is given by P = 1 — e~¢#" [Krimer &
Flach, [2010], with C being a constant depending on the strength of disorder. Then

my ~Dt, D~ 7 [P(6n))? (20)

ny, <

. Since all considered NMs belong to the packet, we assume their norms to be equal to n. The

and finally
n?~ B [1 - 6_05"} /2, (21)

The solution of this equation yields a crossover from subdiffusive spreading in the regime of strong chaos
to subdiffusive spreading in the regime of weak chaos:

)~ {%527&]1/2, Cpn > 1 (strong chaos); .

ﬁ4t]1/3, Cpn < 1 (weak chaos).

The only characteristic frequency scale here is 1/C. From the above discussion of the different spreading
regimes it follows that 1/C ~ d.

2.1.4. Computational results

Ensemble averages over disorder were calculated for 1000 realizations with W = 4 and are shown in Fig.
(upper row). We use L = V = 21 and system sizes of 1000 — 2000 sites. For DNLS, an initial norm density
of n =1 is taken, so that 6 = 3. The values of § (£ for KG) are chosen to give three expected spreading
regimes (see Fig. |3)), respectively 8 € {0.04,0.72,3.6} and &€ € {0.01,0.2,0.75}. In the predicted regime of
weak chaos we indeed find a subdiffusive growth of mo according to mgy ~ t* with a & 1/3 at large times. In
the expected regime of strong chaos we observe exponents a ~ 1/2 for 103 <t < 10* (KG: 10* <t < 10°)
in Fig. 4l Time averages in these regions over the green curves yield o ~ 0.49+0.01 (KG: 0.5140.02). With
spreading continuing in the strong chaos regime, the norm density in the packet decreases, and eventually
satisfies fn < d. That leads to a dynamical crossover to the slower weak chaos subdiffusive spreading, as
predicted. Fits of the further decay suggest a ~ 1/3 at 10'° < ¢ < 10'!. In the regimes of weak and strong
chaos, the compactness index at largest computational times is ( ~ 2.8540.79 (KG: 2.74+0.83), as seen in
the blue and green curves of Fig. 4 This means that the wave packet spreads, but remains rather compact
and thermalized (¢ &~ 3). The duration of a@ = 1/2 spreading (and the crossover time) is largely dependent
on how deep we are initially in the strong chaos regime. This is illustrated in Fig. [5| for the KG model.
For W € {1,2} a long-lasting strong chaos spreading is clearly observed. For W € {4,6} the width in the
energy density is small and, even if, initially, the energy density is chosen to give strong chaos, its decrease
due to spreading will get the system into the weak chaos regime with a < 1/2.

2.1.5. Generalizations

Let us apply the same theoretical arguments to a general D-dimensional lattice with the nonlinearity of
the order o

ih=eatr—BlY" i — > Ym. (23)
meD(1)

Here 1 denotes a D-dimensional lattice vector with integer components, and m € D(1) defines its set
of nearest neighbors. We assume that all NMs are spatially localized (which can be obtained for strong
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Fig. 4. Upper row: Average log of second mo-
ments (inset: average compactness index) vs.
log time for the DNLS/KG on the left/right,
for W = 4,L = 21. Colors/letters corre-
spond the three different regimes: (i) weak
chaos - (b)lue, 8 = 0.04 (£ = 0.01), (ii) strong
chaos - (g)reen, f = 0.72 (€ = 0.2), (iii) self-
trapping - (r)ed, 8 = 3.6 (€ = 0.75). The re-
spective lighter surrounding areas show one
standard deviation error. Dashed lines are to
guide the eye to ~ t1/3, while dotted-dashed
guides for ~ t/2. Lower row: Finite differ-
ence derivatives a(logt) = d(logms) /dlogt
for the smoothed mso data respectively from
above curves. Adapted from |[Laptyeva et al.|

2o,

0.5_ ..................... Sy — ey NS

0.4
Fig. 5. Spreading behavior in the strong

chaos regime for the KG model, with an initial
energy density of £ = 0.1. The four curves are
for the disorder strengths of: W = 1 - (r)ed,
W =2 - (g)reen, W = 4 - (o)range, W = 6
- (b)lue. Inset: the KG analog of the DNLS
- parametric space from Fig. |3] The four points
correspond to the disorder strengths used in
7 the main portion of the figure. Adapted from
ﬂLaptyeva et al.|7 |2010ﬂ.

0.3

Self-Trapping

0.2

Weak Chaos

0.1

log t

enough disorder W). A wave packet with the same average norm n per excited mode has a second moment
mo ~ n~2/P_ The nonlinear frequency shift is proportional to Sn/2.
A straightforward generalization of the expected regimes of wave packet spreading , with
L > V leads to the following: self-trapping if Sn°/2 > A, strong chaos if An?/? > d, and weak chaos if
Bn°/? < d. The regime of strong chaos can be observed for n > [d/ﬂ]z/".
Similar to the above we obtain a diffusion coefficient
D ~ B2n° [P(ﬁnaﬂ)} : (24)
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In both regimes of strong and weak chaos the spreading is subdiffusive [Flach) 2010]:

2
9,7 522
t| 2teP _ (strong chaos);
my ~o 4 BT, (strong chaos); 25)
[8*] 7P | (weak chaos).
T T T I T T T T T T I T T T I
1.0 .
N - .
\\ \\ m No depllmsmg
0.8F \“ \\‘ Dephasing |
Fig. 6. Spreading exponent « vs. the nonlin- AN \\
earity power o for integration without dephas- r AN NG 1
ing (filled squares) and for integration with S0.6- \\\ NS i
dephasing of NMs (filled triangles). The the- : S \\
oretically predicted boundaries of weak chaos L \\\ I I \\ i
and strong chaos are plotted by dashed and o~ - i T~
solid lines, respectively. Adapted from [Skokos 0.4+ h \\I \\_\ —
& Flach], 2010]. \E\} } ——
0.2F f E“E‘-}—f
1 1 1 | 1 1 1 | 1 1 1 I 1 1 1 I
0.0 1.0 2.0 3.0 4.0
0
. D(oc—2)+2 . .
The number of resonances on the wave packet surface is Nrg ~ fn~ 20 . This number increases

with time for

1
1-0/2°

We expect that the wave packet surface will not stay compact if Eq. is fulfilled [Flach) [2010].
Instead, surface resonances will lead to a resonant leakage of excitations into the exterior. This process
will increase the surface area, and therefore lead to even more surface resonances, which increase the
surface area further on. The wave packet will fragmentize, perhaps get a fractal-like structure, and lower
its compactness index. The spreading of the wave packet will speed up, but will not anymore be due to
pure incoherent transfer, instead it will become a complicated mixture of incoherent and coherent transfer
processes. For such cases, Anderson localization will be destroyed quickly even in the tails of wave packets
[Skokos & Flachl [2010].

The numerical evidence [Skokos & Flach|, 2010] for the validity of predictions Eq. for the generalized
KG model i, = —&u; — |uy|” u + %(U/Li,l +w;—1 — 2u;) and energies away from the self-trapping regime are
presented in Fig. [6] The energy values used there cross the boundary between the weak and strong chaos
regimes around the interval 1 < o < 2. In particular, the computed exponents are in a good agreement
with the theoretical prediction for weak chaos Eq. for ¢ > 2. For smaller values of ¢ they smoothly
cross over to the prediction of strong chaos, as expected.

D>D.= < 2. (26)

Wannier-Stark Ladder

The evolution of a wave packet in a nonlinear Wannier-Stark ladder was studied in [Krimer et al., 2009].
Nonlinearity induces frequency shifts and mode-mode interactions and destroys localization. For large
strength of nonlinearity we observe single-site trapping as a transient, with subsequent explosive spreading,
followed by subdiffusion. For moderate nonlinearities an immediate subdiffusion takes place. Finally, for
small nonlinearities we find linear Wannier-Stark localization as a transient, with subsequent subdiffusion.
For single-mode excitations additional stability and instability intervals with respect to the DC bias strength
were shown to exist. The onset of subdiffusive spreading was also observed in Refs. [Datta & Jayannavar
1998; [Kolovsky et all [2010] for two runs on rather short scales up to ¢ = 10°.

2.2.
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2.2.1. Basic model
We consider the discrete nonlinear Schrodinger equation with a DC bias
10910t = LBy — iy — i1 + Bl >, (27)

As in Eq., a transformation to the NM space first is made using ¢, = >, A} exp(—iA,t). The linear
term can be gauged out by use of a secular normal form ¢, = x, exp(—ivEt), yielding

.0 , e
i gt” =8 Luwrnws X XinXuye T2 L (28)
v1,V2,V3
where
0 0 0
VV1,V27V3 = ZA( : An 2z gL)l/QA'I(’L)l/g (29)

are the overlap integrals between the NMs. As for DNLS with disorder, adding nonlinearity again leads
to a finite range interaction between the eigenstates. The main difference from the disordered case is that
here, the linear spectrum is unbounded and exact resonances are always present. Resonant normal form
equations are indeed obtained by substituting v + v1 — 19 — 3 = 0 into Eq. . These equations are not
integrable [Krimer et al., 2009], in contrast to the resonant normal form equations for the disordered case
[Flach, 2010]. As a consequence, if at least two neighboring NMs are excited, the resonant normal form,
having a connectivity similar to the original lattice equations, allows spreading over the whole lattice. Such
a direct resonant interaction mechanism takes place between the NMs both inside and outside the wave
packet.

2.2.2. Single site excitation

First, we study a single site initial excitation ¢;(0) = dj9. In that case the amplitudes in NM space are
¢v(0) = J,(2/E). The nonlinear frequency shift, § ~ 3, at site n = 0 should be compared with the two
scales set by the linear problem: the eigenvalue spacing E and the eigenvalue variation over a localization
volume A = EL (see Sec. . We found three qualitatively different regimes of spreading shown on the
phase diagram in the parameter plane of nonlinearity, 8, and DC field, F, strengths (see Fig. Ea )é < E,
(I) E <6 < A, (III) A < 6. In case (I), the nonlinear frequency shift is less than the spacmg between
excited modes. Therefore no initial resonance overlap is expected, and the dynamics may evolve as the
one for § = 0 at least for long times. In case (II), resonance overlap happens, and the packet expands
subdiffusively from the very beginning. For case (III), 0 tunes the excited site out of resonance with the
neighboring NMs. Resonances with more distant NMs are possible, but the overlap with these NMs is the
weaker the further away they are. Therefore for long times the excited site may evolve as an independent
oscillator (trapping).

Let us discuss case (III) in more details. For ' = 2 and > 8.9, the single site excitation stays trapped
up to times ¢t = 10® without significantly spreading into any other site of the lattice (violet curve in Fig. .
Slightly lowering 8 we observe that the excitation is trapped up to a some time Tk which sensitively
depends on 3 and changes by many orders of magnitude e.g. between 102 to 107 in the narrow interval
B € (8.05,8.9) for E = 2 (Fig. [7)). For times ¢ > Tp an explosive and spatially asymmetric spreading
is observed on a time scale of one Bloch period Tg. The packet spreads in the direction of NMs with
larger eigenvalues, which provide the possibility of resonant energy transfer from the single site excitation
due to its positive nonlinear frequency shift . For about ten Bloch periods Tp the packet shows Bloch
oscillations, which then quickly decohere. Finally the packet spreads incoherently and subdiffusively. The
explosion time T is not monotonously changing with 3, which indicates intermittency, i.e. the single site
excitation can be closer or further away from some regular structures in phase space. That distance may in
turn control the value of Tg. For E = 2 and 8 = 8 the packet spreads from scratch (blue curve in Fig. (7).

It is worth noting, that the border between regime II and III can be approximated by a dimer model
(an estimate from below). Indeed, a dimer model takes into account only one lattice site to the right from
initially excited site (corresponding to the trapped state) and therefore describes the asymmetric energy
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Fig. 7. (a) The diagram of the three regimes of spreading in the parameter space (8, F) for Eq.. Empty and filled circles:
numerically obtained thresholds which separate the three different regimes I, II, III - lines connecting symbols are meant to
guide the eye for the boundaries. Black dashed line: threshold between II and III obtained from the dimer model. In the limit
of E — oo, all lines merge to the asymptotic limit 8 « E. (b) Single site excitation for F = 2. Second moment mg versus
time in log-log plots for different values of 8 inside the interval where an explosive delocalization of the trapped regime occurs:
B = 8.15,8.25,8.5 [(0) orange; (g) green; (r) red]. 8 =8 [(b), blue]: intermediate regime. 8 = 8.9 [(v), violet]: trapped regime.
Figure adapted from [Krimer et al.l [2009).

transfer during the explosion. As for the disordered case, we observe that nonlinearity destroys integrability,
introduces chaos, and ultimately leads to a subdiffusive spreading, so that the second moment grows as t*
with a < 1. Our preliminary numerical studies showed that the exponent « is not universal and depends
on the system parameters. The reason is that spreading of the wave packet takes place not anymore due to
pure incoherent transfer but becomes a complicated mixture of incoherent and coherent transfer processes.
The interplay of these two mechanisms is a subject of our future studies.

2.2.3. Single mode excitation

A single mode excitation ¢, (t = 0) = 0,9 also exhibits the three different regimes of spreading. However,
for small values of nonlinearity 5 a new intriguing feature of the short time dynamics follows [Krimer et al.,
2009]. Indeed, considering the resonant normal form one can conclude that a single mode excitation is the
exact solution, so that no other NM is going to be excited. However, the full set of equations (28] will
excite other NMs as well. These small perturbations may stay small or start to grow, depending on the
stability of the single mode solution. Performing the linear stability analysis of the single mode excitation
the stability intervals, which affect the short and long time dynamics, are obtained and observed upon
variation of the DC bias strength. In particular, if the single mode excitation is launched within a stability
window, we found that the wave packet is practically not spreading up to long time scales. However, a
small change of the DC bias value E tunes the system into an instability window leading to a subdiffusive
spreading on the accessible time scales, starting at short time scales.
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2.3. Nonlinear Aubry-André Chains

In quasiperiodic systems, the localized-delocalized transition discussed in Section may be probed by a
nonlinear interaction. Just as in Egs.(15}27)), this is done by addition of a cubic term in the dynamics of
Eq.:

oy

iy = Ceos(2mal) - Yy = dipr — i1 + Bln* (30)

Unlike the two previous discussed cases, the linear behavior of the second moment (introduced in
Sec. [2.1.1)) in the Aubry-André model was shown [Ketzmerick et al., [1997; [Hiramoto & Abe, 1988 to
follow

o (<2
my(t; B =0) =< t/2 (=2
0 (>2

The nonlinear effect on the above packet spreading has garnered much attention in recent years, including
experimental observations of the spreading in both Kerr photonics [Lahini et al., 2009] and ultracold atomic
clouds in optic traps |[Ringot et al., 2000; Deissler et al., 2010]. In [Ng & Kottos, [2007], the critical case of
¢ = 2 was observed to have short transient behaviors dependent on the nonlinearity before asymptotically
displaying an exponent similar to the linear behavior. In contrast, in |Larcher et al., 2009] all ¢ were
investigated. Starting from single-site excitations, they were able to develop the parametric space shown in
Fig. |8l In this figure, three spreading regimes are found to be dictated by the initial condition of the single-
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10 . Fig. 8. Parametric space for nonlinear spreading in the
s Aubry-André model. The blue squares are for an initial
8 > excitation with zero phase, while the red circles are for an
Q. excitation of m phase. The three regimes are discussed in
6 I detail within the text. Figure adapted from |Larcher et al.,
4 2009].
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site excitation. The blue square datapoints in the figure correspond to an initial condition of a zero phase,
while the red circles correspond to a 7 phase. The first two regions display (I) strong self-trapping (similar
to the § > 2 section of Fig. , and (IT) subdiffusive spreading, but with discrete breather structures being
seen. The main interest is within the localizing region (III), in which initial zero phases become self-trapped,
and initial 7 phases become subdiffusive - these dependencies were hinted within |[Johansson et al., [1995].
Larcher et al. then go on to investigate the exponents in the moments and participations, much as done
for the DNLS and KG models in [Flach et al., 2009]. Throughout, the spreading still remains subdiffusive.
Recent efforts have also seen experimental evidence to support such subdiffusive spreading [Lucioni et al.,
2010].

Almost all efforts in the Aubry-André model have been done for a single 'realization’ of the potential.
However, to develop a universal descriptions of spreading, moment averaging over realizations ought be
considered - while there is no randomness in Eq., one can introduce the idea of a ’realization’ by a
random lattice phase 6 : cos(2mal) — cos(2mal + 6) or perhaps over various incommensurate sets of .. As
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seen, particular attention needs paid in choosing the initial condition. With the introduction of nonlinearity,
the Aubry-André model remains a cornucopia of study.

2.4. Quantum Kicked Rotor

Realizations of Bose-Einstein condensation of dilute gases has opened new opportunities for experimental
study of dynamical systems in the presence of many-body interactions. In the mean field approximation,
these many-body interactions in the Bose-Einstein condensates are represented by adding a nonlinear term
in the corresponding Schrédinger model equation |[Benvenuto et al., [1991]:

) 102 < S
Z% :_587915—ﬁ|¢|21/}+]€005 (9)1/sz_:oo5(t_mT) ) (31)

where the notation is the same as Eq. , except here with the new parameter ﬁ, which describes the
nonlinear coupling.

The influence of nonlinearity on quantum localization in the nonlinear quantum kicked rotor can
be studied by direct numerical simulation of the corresponding model, Eq.. The correct approach to
approximate the evolution of the nonlinear Schrédinger equation is to evaluate the nonlinear term in the
position representation [Benvenuto et al.,|[1991]. Namely, for the numerical integration of Eq., the lowest
order split method can be used and the evolution operator U can be approximated by the time-ordered
product of the evolution operators over small time steps 7'/L (with integer L) |Bandrauk & Shen| 1993|:

A

U (T) = exp ik cos ) ﬁ exp (ﬁi) exp (iB (r/1) | (6.57/L) D | (32)
j=1

In this model the phase is acquired at each instant by the wavefunction, which involves all the Fourier

components, and the phase factor of the nth Fourier component is (5 / 271') Yom 1[):1 +n¢m' The typical values

of the number of steps per period are between 8 -10° and 5 - 10°. Therefore, this model is computationally
quite expensive to study the effects of strong nonlinearities and the dynamics of the system over long time
[Rebuzzini et al., 2005].

Another much simpler model of the quantum kicked nonlinear rotor - which allows faster performance
and more efficient numerical computations - was introduced by Shepelyansky [Shepelyansky, [1993]. The
dynamics of this model is given by the following map:

A (t+T) = (=)™ Jnm (k) A (t) exp (—i;TmQ +iB |Am|2> , (33)
m

This map is almost the same as that without nonlinearity, Eq.. The only difference is that the change
of the phase in the Fourier harmonics A, between two kicks, which now depends on the amplitude of
the harmonics, A¢,, = 6 ]AmIQ. The parameter of the nonlinear coupling 8 in the nonlinear Schrodinger

equation Eq. and the nonlinear parameter 8 in Eq. are connected by the relation § = Tﬂ~ /27.
Numerical results of the quantum kicked rotor model in the presence of nonlinearity show that the
dynamics is affected by nonlinearity. In the resonant regime, where the parameter 7' is rational, the nonlin-
earity only affects the prefactor in the parabolic growth law, and the resonant regime persists [Rebuzzini
et al.,2005]. On the other hand, in the localized regime (irrational T') simulations demonstrate that nonlin-
earity destroys quantum localization. Namely, in the presence of strong enough nonlinearity, subdiffusive
spreading is observed [Shepelyansky, 1993]. This effect of nonlinearity in the quantum kicked rotor is sim-
ilar to those obtained in the models with disorder, as discussed in the previous sections. In the case of
the quantum kicked rotor, the role of disorder is played by the quasiperiodic sequence {%TmQ}, which is
obtained for irrational T'. Replacement of this quasiperiodic sequence with a truly random one shows no
change in the behavior of the system. This favors the expectations that the influence of nonlinearity can
be described by the same theory developed in the context of the models with disorder. Preliminary results
show that the compactness index (¢ (see Sec. , which quantifies the wave packet sparsity, oscillates
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around values of 12 for the quantum kicked rotor model. This means that the wave packet spreads in
a compact fashion. In addition, preliminary results indicate different subdiffusive spreading regimes with
respect to the values of the coefficient of nonlinearity 8 and the strength of the kick k. We expect that
these results can be explained by the existence of different spreading regimes of the wave packet, as in
Sec. the strong chaos, the weak chaos regime, and the crossover regime between. Currently, our recent
efforts have been dedicated to establishing more clear and reliable results.

3. Outlook

A variety of linear wave equations support wave localization. Many of them were experimentally studied in
recent times. The localization phenomenon relies on the phase coherence of waves. Therefore, destruction
of phase coherence - dephasing - leads to a loss of wave localization. Nonlinear wave equations are in
general nonintegrable, and therefore admit dynamical chaos. Dynamical chaos in turn leads to a loss of
correlations - and therefore dephasing. Consequently wave propagation in nonlinear wave equations will
generically lead to delocalization. We discussed a number of results on wave packet propagation which
support this conclusion. Nonlinearity is the result of wave interactions, and a generic phenomenon in
many physical realizations as well. Therefore, future experimental studies are expected to confirm these
predictions.

Besides wave packet propagation, conductivity measurements are informative as well. In particular,
the temperature dependence of the heat conductivity has been recently related directly to the properties
of wave packet propagation |Flach et al.l 2011].

There are many future research directions the mind can take. Extensions to higher lattice dimensions
are of interest. Two-dimensional lattices are numerically feasible, while three-dimensional cases need most
probably the support of supercomputers. The interplay of nonlinearity with mobility edges and critical
states can be expected to be intriguing as well. Quantizing the above nonlinear field equations remains a
challenging enterprise.
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