
LIMIT CYCLES OF DISCONTINUOUS PIECEWISE

LINEAR DIFFERENTIAL SYSTEMS

PEDRO TONIOL CARDIN1, TIAGO DE CARVALHO1 AND
JAUME LLIBRE2

Abstract. We study the bifurcation of limit cycles from the periodic
orbits of a 2−dimensional (respectively 4−dimensional) linear center in
Rn perturbed inside a class of discontinuous piecewise linear differential
systems. Our main result shows that at most 1 (respectively 3) limit
cycle can bifurcate up to first-order expansion of the displacement func-
tion with respect to the small parameter. This upper bound is reached.
For proving these results we use the averaging theory in a form where
the differentiability of the system is not needed.

1. Introduction

Discontinuous piecewise linear differential systems appear in a natural
way in control theory and in the study of electrical circuits. These systems
can present complicated dynamical phenomena such as those exhibited by
general nonlinear differential systems. One of the main ingredients in the
qualitative description of the dynamical behavior of a differential system is
the number and the distribution of its limit cycles.

The goal of this paper is to study, in Rn for all n ≥ 2, the existence of
limit cycles of the control system of the form

(1) ẋ = A0x+ εF (x),

with |ε| 6= 0 a sufficiently small real parameter, where A0 is equal to

A1
0 =




0 −1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



, or A2

0 =




0 −1 0 0 0 . . . 0
1 0 0 0 0 . . . 0
0 0 0 −1 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0




,

1991 Mathematics Subject Classification. Primary 34C05 34A34 34C14.
Key words and phrases. Limit cycles, bifurcation, control systems, averaging method,

discontinuous piecewise linear differential systems.

1

This is a preprint of: “Limit cycles of discontinuous piecewise linear differential systems”, Pedro
T. Cardin, Tiago de Carvalho, Jaume Llibre, Internat. J. Bifur. Chaos Appl. Sci. Engrg., vol.
21(11), 3181–3194, 2011.
DOI: [10.1142/S0218127411030441]

10.1142/S0218127411030441


2 P.T. CARDIN , T. DE CARVALHO AND J. LLIBRE

and F : Rn −→ Rn is given by F (x) = Ax + ϕ0(k
Tx)b, with A ∈ Mn(R),

k, b ∈ Rn\{0} and ϕ0 : R −→ R the discontinuous function

(2) ϕ0(x1) =

{
−1, if x1 ∈ (−∞, 0),
1, if x1 ∈ (0,∞),

where x = (x1, . . . , xn)
T . The independent variable is denoted by t, vectors

of Rn are column vectors, and kT denotes a transposed vector.
For this purpose first we will study the problem

(3) ẋ = A0x+ εFα(x),

where Fα is equal to F replacing ϕ0 by the piecewise linear function ϕα :
R −→ R given by

(4) ϕα(x1) =





−1 if x1 ∈ (−∞,−α),
x1
α

if x1 ∈ [−α,α],
1 if x1 ∈ (α,∞),

where α > 0, and after we will tend α to 0. The graphics of ϕ0 and ϕα are
illustrated in Figures 1 and 2, respectively.

1

−1

Figure 1. Graphic of ϕ0.

α−α
1

−1

Figure 2. Graphic of ϕα.

For ε = 0 and A0 = A1
0, system (3) becomes

(5) ẋ1 = −x2, ẋ2 = x1, ẋi = 0 for i = 3, . . . , n

and for ε = 0 and A0 = A2
0, system (3) becomes

(6) ẋ1 = −x2, ẋ2 = x1, ẋ3 = −x4, ẋ4 = x3, ẋi = 0 for i = 5, . . . , n.

We note that the origin of every plane xk = constant for k = 3, . . . , n in
the first case, and of every hyperplane k = 5, . . . , n in the second case, is
a global isochronous center for (5) and (6), respectively, i.e. all the orbits
contained in such a plane or hyperplane different from the origin are periodic
with the same period 2π.

A limit cycle of a differential system is an isolated periodic orbit in the set
of all periodic orbits of the system. The Poincaré map (or equivalently, the
displacement map) is a suitable tool for studying limit cycles of autonomous
systems (detailed explanations can be found in [5] or [6]; see also Section 2).
We recall that a limit cycle of a system corresponds to an isolated zero of
the displacement function.

Our main results are the following.
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Theorem 1. Consider A0 = A1
0. For n ≥ 2 at most one limit cycle of the

piecewise linear differential system (3) bifurcates from the periodic orbits of
system (5), up to first-order expansion of the displacement function of (3)
with respect to the small parameter ε. Moreover there are systems (3) having
exactly one limit cycle bifurcating from a circle centered at the origin of the
plane x3 = . . . = xn = 0.

Corollary 1.1. Consider A0 = A1
0. For n ≥ 2 at most one limit cycle of

the discontinuous piecewise linear differential system (1) bifurcates from the
periodic orbits of system (5), up to first-order expansion of the displacement
function of (1) with respect to the small parameter ε. Moreover there are
systems (1) having exactly one limit cycle.

Theorem 2. Consider A0 = A2
0. For n ≥ 4 at most three limit cycles of the

piecewise linear differential system (3) bifurcate from the periodic orbits of
system (6), up to first-order expansion of the displacement function of (3)
with respect to the small parameter ε. Moreover there are systems (3) having
exactly three limit cycles bifurcating from circles centered at the origin of the
plane x5 = . . . = xn = 0.

Corollary 2.1. Consider A0 = A2
0. For n ≥ 4 at most three limit cycles of

system (1) bifurcates from the periodic orbits of the discontinuous piecewise
linear differential system (6), up to first-order expansion of the displacement
function of (1) with respect to the small parameter ε. Moreover there are
systems (1) having exactly three limit cycles.

Theorems 1 and 2 are an extensions of the main results of [7] and [2]
respectively, where is done the case α = 1 for R4.

We emphasize that the bifurcation from ε = 0 to ε 6= 0 in Theorems 1
and 2 takes place for ε > 0 and for ε < 0 sufficiently small, i.e. on both
sides of the value ε = 0. We remark that in a Hopf bifurcation the limit
cycle only appears on one side of the bifurcation value of the parameter, but
in our case in which the limit cycles bifurcate from periodic orbits of the
period annulus of a center they appear on both sides of the parameter.

The proofs of Theorems 1 and 2 are based on the first-order averaging
method. We will present this method in Section 2, in the form obtained in
[1]. The advantage of this result is that the smoothness assumptions for the
vector field of the differential system are minimal. In particular, it can be
applied to piecewise linear differential systems, which are not C2 (not even
C1), as required in its classical version, see for instance, Theorem 11.5 of [8].
This non-differential application of the averaging method to control systems
was used for the first time in [2]. This method has been used frequently for
computing periodic orbits; see for instance [4]. From the paper [3] we can
study the stability of the limit cycles of Theorems 1 and 2; for more details
see remarks 4 and 5.

The proofs of Theorems 1 and 2 will be the subject of Sections 3 and 4
respectively. The first step in the study of system (3), Lemmas 1 and 4, is to
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reduce the number of parameters by a linear change of variables. The next
objective is to transform the system into one which is in the standard form
for applying the averaging theory. This is accomplished in Lemmas 2 and 5
through a change of variables related on the first integrals of systems (5) and
(6). The computation of the averaged function (see equation (8)) will be
also a special task. After that we must determine the number of its isolated
zeros. The relation between the averaging method and the displacement
function will be also discussed.

Reference [9] can be seen for a theoretical discussion about suitable trans-
formations of high dimensional differential systems which are small pertur-
bations of a center, into the standard form for averaging. The general idea
is to relate this change of variables on the first integral of the center.

We would like to add some comments related to our approach to the
problem of counting the limit cycles of piecewise linear differential systems.
We have chosen here to study bifurcation with respect to a small parame-
ter from the periodic orbits of a center, up to first-order expansion of the
displacement map. For some values of the coefficients, this is sufficient for
finding the exact number of limit cycles. But in some cases the first-order
expansion of the displacement map can be identically zero, then a higher
order averaging theory is needed. The study can be done by using second-,
third-, . . . order averaging theory. A key point in these studies is the relation
between the averaging theory and the displacement map due to the fact that
the displacement map of a piecewise linear differential system is analytic in
a neighborhood of a limit cycle.

2. First-Order Averaging Method

The aim of this section is to present the first-order averaging method
as obtained in [1]. Differentiability of the vector field is not needed. The
specific conditions for the existence of a simple isolated zero of the averaged
function are given in terms of the Brouwer degree. In fact, the Brouwer
degree theory is the key point in the proof of this theorem. We remind here
that continuity of some finite dimensional function is a sufficient condition
for the existence of its Brouwer degree (see [10] for precise definitions).

Theorem 3. We consider the following differential system

(7) ẋ(t) = εH(t, x) + ε2R(t, x, ε),

where H : R × D −→ Rn, R : R × D × (−εf , εf ) −→ Rn are continuous
functions, T-periodic in the first variable, and D is an open subset of Rn.
We define h : D −→ Rn as

(8) h(z) =
1

T

∫ T

0
H(s, z)ds,

and assume that:

(i) H and R are locally Lipschitz with respect to x;
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(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a such
that h(z) 6= 0 for all z ∈ V \{a} and dB(h, V, 0) 6= 0 (here dB(h, V, 0)
denote the Brouwer degree of h at 0).

Then, for |ε| > 0 sufficiently small, there exists an isolated T-periodic solu-
tion ψ(., ε) of system (7) such that ψ(0, ε) → a as ε→ 0.

Here we will need some facts from the proof of Theorem 3. Hypothesis
(i) assures the existence and uniqueness of the solution of each initial value
problem on the interval [0, T ]. Hence, for each z ∈ D, it is possible to
denote by x(., z, ε) the solution of (7) with the initial value x(0, z, ε) = z.
We consider also the displacement function ζ : D× (−εf , εf ) −→ Rn defined
by

(9) ζ(z, ε) =

∫ T

0
[εH(t, x(t, z, ε)) + ε2R(t, x(t, z, ε), ε)]dt.

From the proof of Theorem 3 we extract the following facts.

Remark 1. For every z ∈ D the following relation holds

x(T, z, ε) − x(0, z, ε) = ζ(z, ε).

The function ζ can be written in the form

ζ(z, ε) = εh(z) + ε2O(1),

where h is given by (8) and the symbol O(1) denotes a bounded function on
every compact subset of D × (−εf , εf ). Moreover, for |ε| sufficiently small,
z = ψ(0, ε) is an isolated zero of ζ(., ε).

Note that from Remark 1 it follows that a zero z of the displacement
function ζ(z, ε) at time T provides initial conditions for a periodic orbit
of the system of period T . We also remark that h(z) is the displacement
function up to terms of order ε. Consequently the zeros of h(z), when h(z)
is not identically zero, also provides periodic orbits of period T .

For a given systems there is the possibility that the function ζ is not
globally differentiable, but the function h is C1 when z > α, as we shall see
in Sections 3 and 4. In fact, only differentiability in some neighborhood of
a fixed isolated zero of h could be enough. When this is the case, one can
use the following remark in order to verify the hypothesis (ii) of Theorem 3.

Remark 2. Let h : D −→ Rn be a C1 function, with h(a) = 0, where D is
an open subset of Rn and a ∈ D. Whenever a is a simple zero of h (i.e. the
Jacobian Jh(a) of h at a is not zero), then there exists a neighborhood V of
a such that h(z) 6= 0 for all z ∈ V \{a} and dB(h, V, 0) ∈ {−1, 1}.

3. Proof of Theorem 1

In this section we assume that A0 = A1
0. The next lemma shows that

through a linear change of variables, it is possible to reduce the number of
parameters of system (3).
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Lemma 1. Assume that k21 + k
2
2 6= 0 if n = 2, and (k21 + k

2
2)k3 6= 0 if n > 2.

Then by a linear change of variables system (3) can be transformed into the
system

(10) ẋ = A1x+ εAx+ εϕα(x1)b,

where A ∈Mn(R) and b ∈ Rn are convenient functions of A and b. Moreover

(11) A1 =

(
0 −1
1 0

)

if n = 2, and

A1 =




0 −1 ε 0 . . . 0
1 0 ε 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0




if n > 2.

For a proof see Lemma 1 of [7].
A system equivalent to system (10), which will be in the standard form

for applying the averaging theory, will be obtained in the next lemma by a
proper change of the variables.

Lemma 2. Changing the variables (x1, x2, x3, . . . , xn) to (θ, r, x3, . . . , xn) by
using x1 = r cos θ and x2 = r sin θ, system (10) is transformed into a system
of the form

(12)

dr

dθ
= εH1(θ, r, x3, . . . , xn) +O(ε2),

dxj
dθ

= εHj−1(θ, r, x3, . . . , xn) +O(ε2),

for j = 3, . . . , n where

H1 = cos θF1 + sin θF2,

Hj = aj1r cos θ + aj2r sin θ + bjϕα(r cos θ) +
n∑

k=3

ajkxk,

and for i = 1, 2 we have that Fi = ai1r cos θ + ai2r sin θ + ϕα(r cos θ)bi +∑n
k=3 aikxk. We take ε0 sufficiently small, n arbitrarily large and Dn =

(1/n, n). Then the vector field of system (12) is well defined and continuous
on R × Dn × Rn−2 × (−ε0, ε0). Moreover this system is 2π-periodic with
respect to the variable θ and locally Lipschitz with respect to the variable r.

Proof. System (10) in the variables (θ, r) becomes

ṙ = εH1(θ, r, x3, . . . , xn),

θ̇ = 1 +
ε

r
(cos θF2 − sin θF1),

ẋj = εHj−1(θ, r, x3, . . . , xn) for j = 3, . . . , n.
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We note that for |ε| sufficiently small θ̇(t) > 0 for each t when (θ, r) ∈ R×Dn.
Now we eliminate the variable t in the above system by considering θ as
the new independent variable. It is easy to see that the right-hand side
of the new system, for every fixed α, is well defined and continuous on
R×Dn×(−ε0, ε0), it is 2π-periodic with respect to the independent variable
θ and locally Lipschitz with respect to r. Form (12) is obtained after an
expansion with respect to the small parameter ε. �

Here A = (aij) if n = 2, and if n > 2 then aij is the element of the row i
and column j of the n× n matrix

A+




0 0 1 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



.

Our next step is to find the corresponding function (8), so we must com-
pute

(13) hj(r, x3, . . . , xn) =
1

2π

∫ 2π

0
Hj(θ, r, x3, . . . , xn)dθ,

for j = 1, . . . , n− 1.
For each r > 0 we define

I0(r) =

∫ 2π

0
ϕα(r cos θ)dθ,

I1(r) =

∫ 2π

0
ϕα(r cos θ) cos θdθ,

I2(r) =

∫ 2π

0
ϕα(r cos θ) sin θdθ,

where ϕα is the piecewise linear function given by (4).

Lemma 3. The integrals I0, I1 and I2 satisfy I0(r) = I2(r) = 0 for all
r > 0, and

(14) I1(r) =





πr

α
if r ≤ α,

πr

α
+

2

r

√
r2 − α2 − 2r arctan

(√r2 − α2

α

)
if r > α.
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Proof. Whenever 0 < r ≤ α we have that |r cos θ| ≤ α and |r sin θ| ≤ α for
all θ ∈ [0, 2π). Then ϕα(r cos θ) = r cos θ/α for every θ. Thus

I0(r) =
r

α

∫ 2π

0
cos θdθ = 0,

I1(r) =
r

α

∫ 2π

0
cos2 θdθ =

πr

α
,

I2(r) =
r

α

∫ 2π

0
sin θ cos θdθ = 0.

We fix now r > α and consider θc ∈ (0, π/2) such that cos θc = α/r. Then
we can write

I0(r) =

∫ θc

0
dθ +

r

α

∫ π−θc

θc

cos θdθ −
∫ π+θc

π−θc

dθ+

r

α

∫ 2π−θc

π+θc

cos θdθ +

∫ 2π

2π−θc

dθ,

I1(r) =

∫ θc

0
cos θdθ +

r

α

∫ π−θc

θc

cos2 θdθ −
∫ π+θc

π−θc

cos θdθ+

r

α

∫ 2π−θc

π+θc

cos2 θdθ +

∫ 2π

2π−θc

cos θdθ,

I2(r) =

∫ θc

0
sin θdθ +

r

α

∫ π−θc

θc

sin θ cos θdθ −
∫ π+θc

π−θc

sin θdθ+

r

α

∫ 2π−θc

π+θc

sin θ cos θdθ +

∫ 2π

2π−θc

sin θdθ.

Straightforward computations lead to the following expressions:

I0(r) = 0,

I1(r) =
πr

α
+

2

r

√
r2 − α2 − 2r arctan

(√r2 − α2

α

)
,

I2(r) = 0,

where we use that sin θc =
√
r2 − α2/r and θc = arctan(

√
r2 − α2/α). �

In short, from (13) we get that

(15)
h1(r, x3, . . . , xn) =

1

2π
[πra11 + b1I1(r) + πra22],

hj−1(r, x3, . . . , xn) = aj3x3 + . . .+ ajnxn,

for j = 3, . . . , n.

Proposition 1. Suppose that

(i) the determinant of the minor of the matrix A = (aij) erasing the
first two rows and the first two columns is not zero (of course this
condition is only required if n > 2), and



LIMIT CYCLES OF DISCONTINUOUS DIFFERENTIAL SYSTEMS 9

(ii)
(a11 + a22 + (b1/α))

b1
∈ (Kα, 1), where Kα = 0 when Mα =

max

{
α,α

√
2

1 + α

}
is α, or Kα =

2

π
arctan

( √
1− α

1 + α

)
when

Mα = α

√
2

1 + α
.

Then system (10) for |ε| 6= 0 sufficiently small has exactly one limit cycle
bifurcating from the circle of radius rα centered at the origin of the plane
x3 = . . . = xn = 0, where rα is the unique solution in the interval (Mα,∞)
of the equation

arctan
(√r2 − α2

α

)
−

√
r2 − α2

r2
=
π(a11 + a22 + (b1/α))

2b1
.

Proof. In order to have that the system hi(r, x3, . . . , xn) = 0 for i = 1, . . . , n−
1 has isolated solutions − otherwise the Jacobian on them becomes zero and
we cannot apply Theorem 3 for studying the limit cycles of system (10) for
|ε| 6= 0 sufficiently small − it is required for n > 2 that the determinant of
the matrix B obtained from the minor of the matrix A by erasing the first
two rows and the first two columns is not zero. Then from the equations
hi(r, x3, . . . , xn) = 0 for i = 2, . . . , n− 1 we get that x3 = . . . = xn = 0. For
r > α, from equation h1(r, x3, . . . , xn) = 0 we obtain

fα(r) = arctan
(√r2 − α2

α

)
−

√
r2 − α2

r2
=
π(a11 + a22 + (b1/α))

2b1
.

Note that with the previous hypotheses,

(16) det

(
∂(h1, . . . , hn−1)

∂(r, x3, . . . , xn)

)
= 0

if and only if h′1(r, x3, . . . , xn).det(B) = 0, or equivalently r = r0α = α

√
2

1 + α
.

Also f ′(r) = 0 if and only if r = r0α.
Take α < 1. So the function

fα : (r0α,∞) →
(

arctan

( √
1− α

1 + α

)
−

√
1− α2

2α
,
π

2

)

is a diffeomorphism and there exist a unique solution rα > r0α such that

fα(rα) =
π(a11 + a22 + (b1 α))

2b1
.

For α ≥ 1 we have fα : (α,∞) → (0, π/2) and the result follows as
above. �

Therefore Theorem 1 follows directly from Theorem 3 and Proposition 1.
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Remark 3. Note that for r ≤ α we have h1(r, x3, . . . , xn) = 0 if and only
if a11 + a22 + (b1/α) = 0. Since in the hypothesis (ii) of Proposition 1 we
exclude this possibility then there is not limit cycles for r ≤ α.

Proof of Corollary 1.1. Using the previous notations let α tends to 0. So we
have

(17) lim
α→0

rα ≥ lim
α→0

r0α = 0.

But limα→0 rα 6= 0. In fact, consider the function

gα(r) = fα(r)−
π(a11 + a22 + (b1/α))

2b1
.

Remember that rα is a zero of this function. So

lim
α→0

rα = 0 = lim
α→0

r0α ⇒ 0 = lim
α→0

gα(rα) = lim
α→0

gα(r
0
α),

but a straight calculus shows that

lim
α→0

gα(r
0
α) = −∞,

which is a contradiction, and so limα→0 rα 6= 0.
We can conclude that there exists a unique limit cycle of radius r0 > 0 for

the discontinuous system (1) with A0 = A1
0. Note that ϕ0 = limα→0 ϕα. �

Remark 4. Using the main result of [3] the stability of the limit cycles
associated with the solution (rα, 0, . . . , 0) is given by the eigenvalues of the
matrix

∂(h1, . . . , hn−1)

∂(r, x3, . . . , xn)

∣∣∣
(r,x3,...,xn)=(rα,0,...,0)

.

4. Proof of Theorem 2

In this section we assume that A0 = A2
0. As in section 3, the next lemma

shows that through a linear change of variables, it is possible to reduce the
number of parameters os system (3).

Lemma 4. Assume that for n > 4, (k21 + k22)k5 6= 0 or (k23 + k24)k5 6= 0.
Then by a linear change of variables, system (3) can be transformed into the
system

(18) ẋ = A1x+ εAx+ εϕα(x1)b,

where A ∈Mn(R) is an arbitrary matrix and b = e1 or b = e3. Moreover

A1 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



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if n = 4, and

A1 =




0 −1 0 0 ε 0 . . . 0
1 0 0 0 ε 0 . . . 0
0 0 0 −1 ε 0 . . . 0
0 0 1 0 ε 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 . . . 0




if n > 4.

Proof. For the case n = 4 see the proof of Lemma 3.1 of [2]. So, we consider
n > 4. Since the linear change of variables x = Jy, with J an invertible
matrix, transforms system (3) into

ẏ = J−1A0Jy + εJ−1AJy + εϕα(k
TJy)J−1b,

we have to find J such that

(19) J−1A0J = A1,

(20) kT = eT1 J
−1,

(21) J−1b = b.

We denote by zij, for i, j = 1, . . . , n the elements of the matrix J−1. Using
equations (19) and (20), easy computations show that J−1 is given by

J−1 =




k1 k2 k3 k4 k5 k6 k7 . . . kn
−k2 k1 −k4 k3 −k5 −k6 −k7 . . . −kn
z31 z32 z33 z34 k5 k6 k7 . . . kn
−z32 z31 −z34 z33 −k5 −k6 −k7 . . . −kn
0 0 0 0 −k5ε−1 −k6ε−1 −k7ε−1 . . . −knε−1

0 0 0 0 z65 z66 z67 . . . z6n
0 0 0 0 z75 z76 z77 . . . z7n
...

...
...

...
...

...
...

. . .
...

0 0 0 0 zn5 zn6 zn7 . . . znn




.

If we take z31 = z32 = z34 = 0, z33 = z66 = · · · = znn = 1, zij = 0 for
i = 6, . . . , n, j = 5, . . . , n (except for z66, . . . , znn), k1 = b1/(b

2
1 + b22) and

k2 = b2/(b
2
1 + b22) in the expression of J−1, then equation (21) is satisfied

with b = e1. In this case we obtain a matrix J−1 whose determinant is
−(k21 + k22)k5/ε.

On the other hand, if we take z32 = z33 = z34 = 0, z31 = z66 = · · · =
znn = 1, zij = 0 for i = 6, . . . , n, j = 5, . . . , n (except for z66, . . . , znn),
k3 = b3/(b

2
3 + b24) and k4 = b4/(b

2
3 + b24) in the expression of J−1, then

equation (21) is satisfied with b = e3. In this case we obtain a matrix J−1

whose determinant is −(k23 + k24)k5/ε.
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By hypothesis at least one of the above expressions for the determinant
of J−1 is nonzero. Hence there exists the change of variables x = Jy. This
completes the proof of Lemma 4. �

An equivalent system in the standard form for applying the averaging
theory, will be found in the next lemma doing a convenient change of vari-
ables.

Lemma 5. Changing the variables (x1, x2, . . . , xn) to (θ, r, ρ, s, x5, . . . , xn)
by using

x1 = r cos θ, x2 = r sin θ, x3 = ρ cos(θ + s), x4 = ρ sin(θ + s),

system (18) is transformed into a system of the form

(22)

dr

dθ
= εH1(θ, r, ρ, s, x5, . . . , xn) +O(ε2),

dρ

dθ
= εH2(θ, r, ρ, s, x5, . . . , xn) +O(ε2),

ds

dθ
= εH3(θ, r, ρ, s, x5, . . . , xn) +O(ε2),

dxj
dθ

= εHj−1(θ, r, , ρ, s, x5, . . . , xn) +O(ε2),

for j = 5, . . . , n where

H1 = cos θF1 + sin θF2,

H2 = cos(θ + s)F3 + sin(θ + s)F4,

H3 =
1

r
cos θF2 −

1

r
sin θF1 −

1

ρ
cos(θ + s)F4 +

1

ρ
sin(θ + s)F3,

Hj−1 = aj1r cos θ + aj2r sin θ + aj3ρ cos(θ + s) + aj4ρ sin(θ + s) +

+ bjϕα(r cos θ) +

n∑

k=5

ajkxk,

and for i = 1, . . . , 4 we have that Fi = ai1r cos θ+ai2r sin θ+ai3ρ cos(θ+s)+
ai4ρ sin(θ+ s)+ϕα(r cos θ)bi+

∑n
k=5 aikxk. We take ε0 sufficiently small, n

arbitrarily large and Dn = (1/n, n) × (1/n, n)× R. Then the vector field of
system (22) is well defined and continuous on R ×Dn × Rn−4 × (−ε0, ε0).
Moreover this system is 2π-periodic with respect to the variable θ and locally
Lipschitz with respect to the variable r.

Proof. System (18) in the variables (θ, r, ρ, s, x5, . . . , xn) becomes

θ̇ = 1 +
ε

r
(cos θF2 − sin θF1),

ṙ = εH1(θ, r, ρ, s, x5, . . . , xn),
ρ̇ = εH2(θ, r, ρ, s, x5, . . . , xn),
ṡ = εH3(θ, r, ρ, s, x5, . . . , xn),
ẋj = εHj−1(θ, r, ρ, s, x5, . . . , xn) for j = 5, . . . , n.

We note that for |ε| sufficiently small θ̇(t) > 0 for each t when (θ, r, ρ, s,
x5, . . . , xn) ∈ R×Dn ×Rn−4. Now we eliminate the variable t in the above



LIMIT CYCLES OF DISCONTINUOUS DIFFERENTIAL SYSTEMS 13

system by considering θ as the new independent variable. It is easy to see
that the right-hand side of the new system, for every fixed α, is well defined
and continuous on R×Dn ×Rn−4 × (−ε0, ε0), it is 2π-periodic with respect
to the independent variable θ and locally Lipschitz with respect to r. Form
(22) is obtained after an expansion with respect to the small parameter
ε. �

Here A = (aij) if n = 4, and if n > 4 then aij is the element of the row i
and column j of the n× n matrix

A+




0 0 0 0 1 0 . . . 0
0 0 0 0 1 0 . . . 0
0 0 0 0 1 0 . . . 0
0 0 0 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 . . . 0




.

We will apply Theorem 3 to system (22). Now we will find the cor-
responding function (8). We will denote it by h : Dn × Rn−4 → Rn−1,
h = (h1, h2, . . . , hn−1)

T . For each i = 1, . . . , n − 1 the component hi is
defined by the formula

hi(r, ρ, s, x5, . . . , xn) =

∫ 2π

0
Hi(θ, r, ρ, s, x5, . . . , xn)dθ

where Hi are like in Lemma 5.
In order to calculate the expression of h, we will use the following formulas

∫ 2π

0
cos2 θdθ = π,

∫ 2π

0
sin2 θdθ = π,

∫ 2π

0
cos(θ + s) sin(θ + s)dθ = 0,

∫ 2π

0
cos θ cos(θ + s)dθ = π cos s,

∫ 2π

0
cos θ sin(θ + s)dθ = π sin s,

∫ 2π

0
sin θ cos(θ + s)dθ = −π sin s,

∫ 2π

0
sin θ sin(θ + s)dθ = π cos s,

∫ 2π

0
cos2(θ + s)dθ = π,

∫ 2π

0
sin2(θ + s)dθ = π,

∫ 2π

0
cos θ sin θdθ = 0.

For each r > 0 we consider the functions I0, I1 and I2 defined in section 3.
Their expressions were obtained in Lemma 3. Thus we obtain the following
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expressions for the components of h

(23)

h1 = c1r + (c2 cos s+ c3 sin s)ρ+ b1I1(r),
h2 = (c5 cos s+ c6 sin s)r + c7ρ+ b3 cos sI1(r),

h3 = c4 + (c2 sin s− c3 cos s)
ρ

r
+ (c5 sin s− c6 cos s)

r

ρ
+

+ b3 sin s
I1(r)

ρ
,

hj−1 = aj5x5 + . . .+ ajnxn,

for j = 5, . . . , n, where the coefficients ci are given by c1 = (a11 + a22)π,
c2 = (a13 + a24)π, c3 = (a14 − a23)π, c4 = (a21 − a12 − a43 + a34)π, c5 =
(a31 + a42)π, c6 = (a41 − a32)π and c7 = (a33 + a44)π.

In order to have that the system hi(θ, r, ρ, s, x5, . . . , xn) = 0 for i =
1, . . . , n− 1 has isolated solutions it is required for n > 4 that the determi-
nant of the matrix B obtained from the minor of the matrix A by erasing
the first four rows and the first four columns is not zero. Then from the
equations hi = 0 for i = 4, . . . , n− 1 we get that x5 = . . . = xn = 0.

Our next step is to study the solvability of the system

(24)
h1(r, ρ, s, x5, . . . , xn) = 0,
h2(r, ρ, s, x5, . . . , xn) = 0,
h3(r, ρ, s, x5, . . . , xn) = 0.

Of course any isolated 2π-periodic solution of (22) with |ε| 6= 0 sufficiently
small, corresponds to a limit cycle of (18).

Lemma 5 states that the hypotheses of Theorem 3 are fulfilled for system
(22), where the function h is given by (23). Using also Remark 2 we conclude
that, for |ε| sufficiently small, and for each simple zero (r∗, ρ∗, s∗, 0, . . . , 0) ∈
Dn×Rn−4 of h, there exists an isolated 2π-periodic solution ϕ(., ε) of system
(22) such that ϕ(0, ε) → (r∗, ρ∗, s∗, 0, . . . , 0) as ε → 0. In short we have
proved the next result.

Proposition 2. From each periodic orbit of system (6), which corresponds
to a simple zero of h in Dn ×Rn−4, a branch of limit cycles bifurcates from
system (18).

For a proof of the next result see Lemma 3.4 of [2].

Lemma 6. The displacement function of system (18) for the transversal
section x2 = 0, written in the coordinates of Lemma 5, has the form

εh(r, ρ, s, x5, . . . , xn) +O(ε2).

The proof of the following result will be the subject of the next section.
We note that, in order to find the zeros of h in Dn×Rn−4 (or equivalently, to
find the zeros (r∗, ρ∗, s∗) ∈ Dn of system (24), because x5 = · · · = xn = 0),
it is sufficient to look for them in (0,∞) × (0,∞) × [0, 2π). This is due
to the fact that n can be chosen arbitrarily large, and h, as well as the
transformation of Lemma 5 are 2π-periodic with respect to the variable s.
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Proposition 3. Let h̃ : (Mα,∞) × (0,∞) × R → R3 be the function h̃ =
(h1, h2, h3) whose components are given by (23), where

Mα = max

{
α,α

√
2

1 + α

}
, ci, for i = 1, . . . , 7 are arbitrary real parameters,

b1, b3 ∈ {0, 1} with b1b3 = 0 and b21 + b23 6= 0. Then

(i) h̃ is of class C1;

(ii) the maximum number of isolated zeros of h̃ in (Mα,∞)× (0,∞)×R
is three.

(iii) Suppose that 0 < α < 1. For

c1 = −2 +
8(−1 + α)π

9α
, c2 = c1, c3 = 0, c4 = −21c1

20
, c5 = 0,

c6 = −c1
2
, c7 =

c1
2
, b1 = 1, b2 = b3 = b4 = 0,

the function h̃ has exactly three simple zeros.
(iv) Suppose that α ≥ 1 and α 6= 3. For

c1 = 1− 3

α
, c2 = c1, c3 = 0, c4 = −21c1

20
, c5 = 0,

c6 = −c1
2
, c7 =

c1
2
, b1 = 1, b2 = b3 = b4 = 0,

the function h̃ has exactly three simple zeros.
(v) Suppose that α = 3. For

c1 = −1

2
, c2 = c1, c3 = 0, c4 = −21c1

20
, c5 = 0,

c6 = −c1
2
, c7 =

c1
2
, b1 = 1, b2 = b3 = b4 = 0,

the function h̃ has exactly three simple zeros.

The conclusion of Theorem 2 follows from Lemmas 4 and 6 and Proposi-
tions 2 and 3.

5. Proof of Proposition 3

Function h̃ is a composition of some elementary functions and function
I1. A direct study of I1 shows that it is of class C1 on (α,∞). Thus, since
Mα ≥ α, statement (i) holds. We will divide the proof of the statement (ii)
into several lemmas. Two auxiliary results will be given at the beginning,
followed by a discussion with respect to different values of the coefficients.

The following notations will be used

d(s) = b3 cos s(c2 cos s+ c3 sin s)− b1c7,

k1(s) = (c5b1 − c1b3) cos s+ c6b1 sin s,

k2(s) = −c2c5 cos2 s− (c2c6 + c3c5) cos s sin s− c3c6 sin
2 s+ c1c7,

f(s) = c4d(s)k1(s) + (c2 sin s− c3 cos s)k
2
1(s)+

(c5 sin s− c6 cos s)d
2(s) + b3d(s)k2(s) sin s.
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For studying the zeros of h̃ it will be necessary to study the zeros of f .

Lemma 7. The function f : [0, 2π) → R can have at most six isolated
zeros. Moreover they appear in pairs of the form s∗ together with ξ∗ = s∗+π(
mod 2π) and when b1 = 0 and b3 = 1 two of them are s∗ = π/2 and
ξ∗ = 3π/2.

For a proof see Lemma 4.1 of [2].

The following result will be needed in the sequel.

Lemma 8. We consider the equation

(25) I1(r) =
c

α
r, r > 0,

where I1(r) is like before and c is a real parameter. Then we have the
following situations

(I) Assume that α ≥ 1.
(I-i) If π(1 − α) < c < π, then (25) has a unique solution

r∗ > α.
(I-ii) If c = π, then (25) has the interval (0, α] as the set of

solutions.
(I-iii) If c > π or c ≤ π(1 − α), then (25) has no solution.

(II) Assume that α < 1 and denote by Q(α) the number

Q(α) = π + (1 + α)

√
1− α

(1 + α)
− 2α arctan

√
1− α

(1 + α)
.

(II-i) If π(1 − α) < c < π, then (25) has a unique solution

r∗ > α
√

2/(1 + α).

(II-ii) If c = π, then (25) has (0, α]∪{r∗}, where r∗ > α
√

2/(1 + α),
as the set of solutions.

(II-iii) If π < c < Q(α), then (25) has exactly two solutions

r∗1 < α
√

2/(1 + α) and r∗2 > α
√

2/(1 + α).
(II-iv) If c = Q(α), then (25) has a unique solution r∗ =

α
√

2/(1 + α).
(II-v) If c > Q(α) or c ≤ π(1− α), then (25) has no solution.

Proof. It is easy to see that the result holds for r ∈ (0, α], since in this case

I1(r) =
π

α
r. For r > α equation (25) becomes

πr

α
+

2

r

√
r2 − α2 − 2r arctan

(√r2 − α2

α

)
=
c

α
r.

Introducing the new variable u =
√
r2 − α2/α, we obtain the equivalent

equation

α arctan u− (π − c)

2
− u

1 + u2
= 0, u > 0.
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We study the graphic of this function on the interval (0,∞). Then we can
see:

(I) If α ≥ 1 then the equation has solution if and only if π(1−α) < c < π.
In this case the solution u∗ > 0 is unique.

(II) If α < 1 then the equation has solution if and only if π(1 − α) <
c ≤ Q(α). Moreover, if π(1 − α) < c ≤ π, then the solution u∗ >√

(1− α)/(1 + α) is unique. If π < c < Q(α), then there exists two

solutions u∗1 <
√

(1− α)/(1 + α) and u∗2 >
√

(1− α)/(1 + α). If

c = Q(α) then the solution u∗ =
√
(1− α)/(1 + α) is unique.

This completes the proof of the lemma. �
The next three lemmas study the zeros of h̃.

Lemma 9. The function h̃ can have at most three isolated zeros (r∗, ρ∗, s∗) ∈
(Mα,∞) × (0,∞) × R, where Mα is like in Proposition 3, with d(s∗) 6= 0.

When b1 = 0, b3 = 1 and c1 = 0, then h̃ has at most two such zeros. If
b1 = 0, b3 = 1 and c1 = 0, then h̃ has no such zeros.

Proof. We have that the two first equations of system (24) and (??) are
equivalent to

(26) ρ =
k1(s)

d(s)
r,

(27) I1(r) =
k2(s)

d(s)
r,

where d, k1 and k2 are defined at the beginning of this section. Replacing
(26) and (27) in h3 we obtain that h3 = 0 is equivalent to f(s) = 0, where
f also was defined at the beginning of this section.

Fix a zero s∗ of f . We wish to study the solvability of (27) with respect
to r > Mα.

By Lemma 8 there exists an isolated solution r > Mα of (27) if and only
if

(28)
π

α
− π <

k2(s
∗)

d(s∗)
<
π

α
when α ≥ 1, or

(29)
π

α
− π <

k2(s
∗)

d(s∗)
<
Q(α)

α
when α < 1,

and in these cases it is unique. Note that we are excluding the case c = Q(α).
Also, for a fixed r∗, corresponding to some s∗, whenever

(30)
k1(s

∗)
d(s∗)

> 0,

we can uniquely find ρ∗ satisfying (26). We will verify that condition (30) is
satisfied only for at most half of the zeros of f . In order to do this, we note
that k1(s + π) = −k1(s), d(s + π) = d(s), and we remind that the zeros of
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f appear in pairs, s∗ together with s∗ + π. Thus, condition (30) is satisfied

either for s∗, or for s∗ + π, unless k1(s
∗) = 0. Hence, function h̃ can have at

most three isolated zeros (r∗, ρ∗, s∗) ∈ (Mα,∞)× (0,∞)×R with d(s∗) 6= 0.
If b1 = 0, b3 = 1 and c1 = 0 then k1 = 0, so (30) cannot be satisfied for

any s. If b1 = 0, b3 = 1 and c1 6= 0, then k1(s) = −c1 cos s. By Lemma (7)
two of the zeros of f are s∗ = π/2 and s∗ = 3π/2, which cannot provide any
solution since (30) does not hold. �

Lemma 10. When b1 = 1, b3 = 0, c7 = 0, the function h̃ can have at most
two isolated zeros in (Mα,∞)× (0,∞) × R.

Proof. In this case d = 0, so we cannot apply Lemma 9. We can prove that
system (24) is equivalent to

(31) I1(r) =
(
−c1 − q(s)

ρ

r

)
r,

(32) k1(s) = 0,

(33) p1(s)
(ρ
r

)2
+ c4

ρ

r
+ p2(s) = 0,

where q(s) = c2 cos s+c3 sin s, p1(s) = c2 sin s−c3 cos s and p2(s) = c5 sin s−
c6 cos s. For a fixed s, equation (33) provides at most two isolated values of
ρ/r. By Lemma 8 for fixed s and fixed ρ/r, if r > Mα then equation (31)
gives at most one isolated value for r. If k1 = 0 then system (31)–(33) has
no isolated solution. If k1 6= 0, then we denote by s∗ and ξ∗ = s∗ + π, the
zeros of k1. Substituting s

∗ and ξ∗ in (33) we obtain

p1(s
∗)
(ρ
r

)2
+ c4

ρ

r
+ p2(s

∗) = 0

and

p1(s
∗)
(ρ
r

)2
− c4

ρ

r
+ p2(s

∗) = 0,

respectively. These two equations can have together at most two positive
solutions ρ/r. We conclude that h̃ can have at most two isolated zeros. �

Lemma 11. When b1 = 0, b3 = 1 and c7 6= 0 the function h̃ can have at
most two isolated zeros (r∗, ρ∗, s∗) ∈ (Mα,∞) × (0,∞) × R with d(s∗) = 0.

Moreover either c1 = 0, or h̃ has at most one isolated zero.

Proof. Whenever b1 = 0, system (24) is equivalent to

(34) q(s)
ρ

r
= −c1,

(35) cos s
I1(r)

r
= −q̃(s)− c7

ρ

r
,

(36) c4 + p1(s)
ρ

r
+ p2(s)

r

ρ
+ sin s

I1(r)

ρ
= 0,
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where q̃(s) = c5 cos s+c6 sin s and q, p1 and p2 are like in the proof of Lemma
10. In this case d(s) = q(s) cos s. We study the cases when d(s∗) = 0, i.e.
either q(s∗) = 0 and equation (34) is degenerate, or cos s∗ = 0 and equation
(35) is degenerate. If (34) is degenerate, but (35) is not, then we can write
I1(r)/r as a function of s and ρ/r. Discussion is similar now to the one done

in the proof of Lemma 10. The conclusion will be that h̃ can have at most
two isolated solutions (r∗, ρ∗, s∗) with r∗ > Mα and d(s∗) = 0, and they can
be found knowing that

(37) c2 cos s
∗ + c3 sin s

∗ = 0,

cos s∗p1(s
∗)
(ρ
r

)2
+p3(s

∗)
ρ

r
− c6 = 0,

I1(r)

r
= − q̃(s∗)

cos s∗
− c7

cos s∗
ρ

r
,

where p3(s) = c4 cos s − c7 sin s. In this case, equations (34) and (37) say
that necessary conditions for the existence of isolated solutions are c1 = 0
and c22 + c23 6= 0, respectively.

It remains to study when equation (35) is degenerate, i.e. if s∗ = π/2 or
s∗ = 3π/2. When we replace these values in (34) and (35) we obtain

c3
ρ

r
= −c1, c7

ρ

r
= −c6,

and
c3
ρ

r
= c1, c7

ρ

r
= c6,

respectively. From each system we can obtain at most one isolated value of
ρ/r, but it is easy to see that only one of them is positive. Thus, h̃ can have
at most one zero with s∗ = π/2 or 3π/2, and c1 6= 0 is a necessary condition
for the existence of such zero. �

In order to conclude that h̃ can have at most three zeros in Dn, three
different cases will be considered.

(i) If b1 = 1, b3 = 0, c7 6= 0, then d(s) = c7 6= 0 for all s ∈ [0, 2π). The
conclusion follows by Lemma 9;

(ii) If b1 = 1, b3 = 0, c7 = 0, then we apply Lemma 10;
(iii) If b1 = 0, b3 = 1, c7 6= 0 then the conclusion holds by Lemmas 9 and

11.

We will now prove statements (iii)−(v) of Proposition 3.
For the values of the coefficients given in statement (iii), the components

of function h̃ are

h1 =
(
−2 +

4(−1 + α)π

5α

)
(r + ρ cos s) + I1(r),

h2 =
(
−1 +

2(−1 + α)π

5α

)
(ρ− r sin s),

h3 =
(
−2 +

4(−1 + α)π

5α

)(
−21

20
+
r cos s

2ρ
+
ρ sin s

r

)
,
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and the equation f(s) = 0 is equivalent to

21 sin s− 20 sin3 s− 10 cos s = 0.

With the notation x = cos s, equation f(s) = 0 becomes

1− 61x2 + 360x4 − 400x6 = 0.

This polynomial equation has six solutions x1,2 = ±
√
5/5, x3,4,5,6 =

±
√
(7± 2

√
11)/20, and all are in the interval (−1, 1).

We obtain that f has the following zeros, s1 = arccos(
√
5/5), s2,3 =

arccos(
√

(7± 2
√
11)/20), ξ1,2,3 = s1,2,3 + π.

One can prove that condition (29) is satisfied for every zero of f , but

condition (30) is satisfied only for the zeros s1, s2 and s3 of f . Then, h̃ has
exactly three zeros. Since ρ∗ = r∗ sin s∗ and r∗ > α is the unique solution of
(27) we conclude, using the software Mathematica, that J

h̃
(r∗, ρ∗, s∗) = 0 if

and only if α is approximately 4.89655. But in the statement (iii) we have
that 0 < α < 1 and so J

h̃
(r∗, ρ∗, s∗) 6= 0.

For the values of the coefficients given in statement (iv), the components

of function h̃ are

h1 =
α− 3

α

(
r + ρ cos s

)
+ I1(r),

h2 =
3− α

2α

(
r sin s− ρ

)
,

h3 =
3− α

α

(21
20

− ρ

r
sin s− r

2ρ
cos s

)
,

and the equation f(s) = 0 is equivalent to

21 sin s− 20 sin3 s− 10 cos s = 0.

The zeros of f were obtained above.
One can prove that condition (28) is satisfied for every zero of f , but

condition (30) is satisfied only for the zeros s1, s2 and s3 of f . Then, h̃ has
exactly three zeros. Since ρ∗ = r∗ sin s∗ and r∗ > α is the unique solution of
(27) we conclude, using the software Mathematica, that J

h̃
(r∗, ρ∗, s∗) = 0 if

and only if α = 3. But in the statement (iv) we have that α > 1 and α 6= 3
so J

h̃
(r∗, ρ∗, s∗) 6= 0.

For the values of the coefficients given in statement (v), the components

of h̃ are given by

h1 = −r
2
− ρ cos s

2
+ I1(r),

h2 = −ρ
4
+
r sin s

4
,

h3 =
21

40
− ρ sin s

2r
− r cos s

4ρ
,

and the equation f(s) = 0 also is equivalent to

21 sin s− 20 sin3 s− 10 cos s = 0.
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The zeros of f were obtained above.
One can prove that conditions (28) (for α = 3) is satisfied for every zero of

f , but condition (30) is satisfied only for the zeros s1, s2 and s3 of f . Then

h̃ has exactly three zeros. Using the software Mathematica we conclude that
J
h̃
(r∗, ρ∗, s∗) 6= 0 which the hypothesis of the statement (v).
This concludes the proof of Proposition 3. �
Taking xi = 0, for i = 5, . . . , n, we conclude directly that the map h has

exactly three zeros in (Mα,∞)× (0,∞) × R× Rn−4.

Remark 5. Using the main result of [3] the stability of the limit cycles
associated with the solution (r∗, ρ∗, s∗, 0, . . . , 0) is given by the eigenvalues
of the matrix

∂(h1, . . . , hn−1)

∂(r, ρ, s, x5, . . . , xn)

∣∣∣
(r,ρ,s,x5,...,xn)=(r∗,ρ∗,s∗,0,...,0)

.

Proof of Corollary 2.1. By Lemma 9 we have that rαi > Mα where rαi for
i = 1, 2, 3 is the radius of the limit cycles when ε → 0. Now let α tends to
0. So we have

(38) lim
α→0

rαi ≥ lim
α→0

Mα = 0.

But limα→0 r
α
i 6= 0. In fact consider the function

gα(r) = α arctan
(√r2 − α2

α

)
− (π − c)

2
− α

√
r2 − α2

r2

given in Lemma 8. Remember that rαi for i = 1, 2, 3 are zeros of this function.
So

lim
α→0

rαi = 0 = lim
α→0

Mα ⇒ 0 = lim
α→0

gα(r
α
i ) = lim

α→0
gα(Mα) =

−π + c− 1

2
,

and this last number is equal to zero if and only if c = π+1. Looking again
at Lemma 8 we can see that, when α tends to zero, we have π < c ≤ π + 1,
and c = π + 1 implies that c = Q(0). But this case was excluded in the
proof of Lemma 9. So c 6= π + 1 and limα→0 r

α
i 6= 0.

We can conclude that, for each rαi there exists a unique limit cycle of
radius r0i > 0 (when ε → 0), i = 1, 2, 3, for the discontinuous system (1)
with A0 = A2

0 and ϕ0 = limα→0 ϕα. �
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