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Abstract 

 

A simple scalar coupled map lattice model for excitable media is intensively analysed in this paper. 

This model is used to explain the excitability of excitable media, and a Hopf-like bifurcation is 

employed to study the different spatio-temporal patterns produced by the model. Several basic 

rules for the construction of these kinds of models are proposed. Illustrative examples 

demonstrate that the sCML model is capable of generating complex spatiotemporal patterns. 

 

Keywords: Scalar coupled map lattice model; excitable media; pattern generation 

1. Introduction 

Excitable media are a very important class of nonlinear spatio-temporal dynamic systems which 

widely exist in biological, physical, chemical and ecological systems. A wide variety of patterns 

have been observed in excitable media including solitary patterns, target-like patterns, spiral 

waves, and so on. Many studies have shown that an enormous and complex range of 

macroscopic behaviours can be generated using relatively simple microscopic models.  

 

Cells in excitable media can be characterised by three states: resting, excited and refractory. A cell 

in a resting state is stable for small perturbations while a perturbation with strength greater than 

a certain threshold can cause this cell to undergo a large excursion. Usually, the shape of the 

response does not depend on the perturbation strength, as long as the perturbation exceeds the 
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threshold. After this strong response, the system returns to its initial resting state. A subsequent 

excitation can be generated after a suitable length of time, called the refractory period, has 

passed. This property of excitable media is commonly called excitability. [Zykov, 2008] 

 

Several kinds of models have been proposed to describe excitable media including partial 

differential equations (PDE), coupled map lattice (CML), cellular automata (CA), and cellular 

neural networks (CNN). The most commonly used models are reaction-diffusion equations where 

the local dynamics interact with the diffusive transportation to generate complex patterns. 

Excitable media are most naturally represented as partial differential equations, where the 

evolution of cells in the excitable media is modelled by coupled differential equations of a 

reaction-diffusion structure. Examples of partial differential equation models include the FHN 

model [FitzHugh, 1955] the Oragonator model [Field et al., 1972], the predator-prey models, the 

Barkley model [Barkley, 1991] and so on. The advantages of PDE models lie in the close 

connection with real systems. However PDE models for excitable media are always nonlinear and 

can be very complex. Furthermore the number of differential equations required to represent a 

cell in the system may be large. For example, the DiFrancesco-Nobel model of Purkinje fibres has 

14 dimensions and over a hundred parameters [Difrancesco & Noble, 1985]. Therefore both 

simulation and identification of partial differential equation models is often a difficult task.  

 

Discretising time and space coordinates of partial differential models yields the coupled map 

lattice model on a discrete time and space lattice. Owing to the computational efficiency and 

richness of dynamical behaviour, coupled map lattice models have been widely used for the 

description, simulation, and identification of excitable media [Kawasaki et al., 1990]. A CML 

model for excitable media usually needs more than one variable and some of these variables may 

not be measurable in practical systems. Consequently, some of the difficulties of PDE models in 

identification of real systems also exist in CML models. 

 

Cellular automata defined on a discrete lattice can simplify the dynamic description of a system 

by mapping the system behaviour onto a few discrete states. In cellular automata models, the 
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continuous effects of diffusion are mapped to simple rules based on neighbourhood interactions. 

Typical cellular automata models include the Geenberg-Hasting model (GHM) [Greenberg & 

Hastings, 1978], Hodgepodge Machine Model (HMM), Cyclic Cellular Automata model, and the 

Gerhardt-Schuster-Tyson Model [Gerhardt et al., 1990]. On the one hand, cellular automata 

models are simple for the simulation of excitable media, on the other hand only a very limited 

number of parameters can be controlled when the neighbourhood is determined.  

 

Cellular neural networks which share the best features of both neural networks and cellular 

automata are another important class of model for excitable media. A CNN is made up of a 

massive collection of regularly spaced circuit items which communicate with each other through 

nearest neighbours. CNNs are large-scale nonlinear analogue circuits which process signals in real 

time[Chua & Yang, 1988]. Simulation applications of CNNs have been developed into a wide 

range of disciplines [Fortuna et al., 2001]. CNNs also provide a link between nonlinear differential 

equations and discrete cellular automata [Chua, 2007]. However, procedures are required to 

efficiently learn suitable template values for complex CNN applications. 

 

Excitable media have been widely and intensively studied including theoretical analysis, 

experiments and numerical simulations. Researchers exploited excitable media in two basic 

directions: forward problems and inverse problems. The forward problem is given a transition 

rule characterise the global behaviour of the system, which is from microscopic model to 

macroscopic phenomena. The forward research also includes the theoretical analysis and 

numerical simulation of excitable media. The inverse problem is given a description of some 

behaviour find a rule which replicates these behaviours. This is a process from macroscopic 

phenomena to microscopic model. As one of the most important tools to investigate the inverse 

problems, identification of a model directly from observed patterns is crucial for the study of 

excitable media. Coca and Billings[2001] identified a spatiotemporal system directly from data 

using a coupled map lattice model. Pan and Billings[2008] identified the Turing patterns using a 

similar model. Zhao and Billings et al. [2007] identified a practical pattern acquired from a real 

Belousov-Zhabotinsky reaction using a type of cellular automata model, the Greenberg-Hasting 
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model (GHM). Wei and Billings et al. [2009] identified a practical BZ pattern using a lattice 

dynamical wavelet neural network (LDWNN) model.  

 

A new scalar coupled map lattice model (sCML) was recently proposed [Guo et al., 2010] which 

has the merits of both coupled map lattice and cellular automata. In the present paper the 

simple sCML model will continue to be studied. Section 2 introduces the general form of a sCML 

model and two examples identified from spatio-temporal patterns are given. The analysis of the 

sCML models is studied in Section 3 to illustrate how sCML models generate different patterns. 

Section 4 shows how to construct a sCML model based on several simple rules. Illustrative 

examples are given in Section 5 to demonstrate the application of the new results. Conclusions 

are finally given in Section 6. 

2. General Form of the Scalar Coupled Map Lattice (sCML) Model 

A lattice dynamical system (LDS) is a spatially extended dynamical system composed of a finite or 

infinite number of interacting dynamical systems, each assigned to a node, named as a cell, of a 

one- or multi-dimensional lattice of integers representing a discretisation of the physical space. 

The dynamics of a LDS can be viewed as a combination of local dynamics, involving the local 

state-space variables assigned to every cell, and spatial interactions [Billings & Coca, 2002]. 

 

An autonomous lattice dynamical system can be represented using a general CML model as 

     k ln nk kl ly f p q y  (1) 

Where  kly  represents the state-space variables assigned to the cell with a spatial coordinate 

ml Z  of an m-dimensional lattice; inp  is a temporal shift operator and inq  is a 

multi-valued spatial shift operator. 

 

As a simplification of the general CML model, the lattice equations can be assumed to be evolving 

on a uniform lattice, that is, the CML model is spatially invariant over the entire lattice.  Define 
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   k kly y  by dropping the spatial index l  and a LDS can be investigated by studying the 

dynamics of one specified cell. 

 

In general, each cell can be coupled with all the other cells in the lattice. This represents a 

globally coupled LDS. Very often, however, the spatial interactions are restricted to only a finite 

set of neighbouring cells. In a reaction-diffusion model, these interaction effects are represented 

by the diffusion terms denoted as  2 k y , where 
2  is the Laplace operator defined as 

 
2

2
2

1

,
m

i i

y
y t

x




x . The Laplace operator in two dimensions can be approximated using a finite 

difference method as 

 
 

         

 
1 2 1 2 1 2 1 2 1 2

1 2

1 1 1 1 1
1, 1, , 1 , 1 ,2

, 2

k k k k k
l l l l l l l l l lk

l l

y y y y y
y

dl

    
      

   (2) 

 

It is natural to consider a measurement system for the excitable media system. The measurement 

variable may be a nonlinear function of the state-space variables, that is,     z k h k y . A 

scalar coupled map lattice model can then be defined as 

     2, dr mmz k f p z p z   (3) 

where, z represents the only component measured from practical patterns; p is a temporal shift 

operator; 
2  is the Laplace operator, which represents the diffusion of component z; f  is a 

nonlinear function of z at previous times, and the diffusion of z at previous times. 

 

Two sCML models have been separately identified from a simulated spatio-temporal pattern and 

from a real Belousov-Zhabotinsky pattern [Guo et al., 2010]. These two models, the simulated 

pattern model and the real pattern model, are given as (4) and (5) below. 

 

2 3

2 3

2 2

( ) 1.7981 ( 1) 1.88849 ( 1) 1.70921 ( 1)

0.820409 ( 2) 1.83072 ( 2) 1.65721 ( 2)

0.459467 ( 1) 0.42561 ( 2)

z k z k z k z k

z k z k z k

z k z k

     

     

     

 (4) 
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5 4

5 3 5 2 2

3 2

2 6 4

( ) 0.95013 ( 1) 0.0424791 ( 2) 1.86899 10 ( 1)

5.73529 10 ( 1) ( 2) 6.28918 10 ( 1) ( 2)

0.00310803 ( 1) 0.118357 ( 1) 0.185982 ( 1) ( 2)

0.00779509 ( 1) ( 2) 3.0084 10

z k z k z k z k

z k z k z k z k

z k z k z k z k

z k z k z



 



      

       

      

    
5 3 2

3 2

2 2

( 2)

2.71051 10 ( 1) ( 2) 0.0068082 ( 1) ( 2)

0.00207884 ( 2) 0.0712825 ( 2)

0.743265 ( 1) 0.354318 ( 2)

k

z k z k z k z k

z k z k

z k z k





      

   

     

 (5) 

The local dynamics of model (4) and model (5) are illustrated in Fig 1 (a) and (b). Fig 1 shows the 

excitability of both models, that is, a cell in a resting state is stable for a small perturbation 

(shown by the blue curves) while a perturbation with strength greater than a certain threshold 

can cause this cell to undergo a large excursion (shown by the red curves). 

 

(a)                                (b) 

Fig 1 Local dynamics of the sCML models 

(a) local dyanmics of model (4) (b) local dynamics of model (5) 

Blue curves represent excitability for a small perturbation and red curves for a large perturbation 

3. Analysis of the sCML model 

3.1 Decomposition of the sCML model 

Assume the general sCML model (3) is of a reaction-diffusion structure, that is, the delayed states 

rmp z  and time-delayed diffusion terms  2dmp z  affect the evolution of the state separately. 

Therefore sCML model (3) can be rewritten of the form 
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       2dr mmz k R p z D p z    (6) 

Where function  rmR p z  represents the reaction part and function   2dmD p z  

represents the diffusion part of the sCML models. Obviously, both model (4) and (5) are of the 

reaction-diffusion form given in (6).  

 

Define a G-function of the sCML model (6) as 

      1r rm mg p z R p z z k    (7) 

Then model (6) can be rewritten as 

         21 dr mmz k z k g p z D p z      (8) 

The left hand side of equation (8) represents the change of component  z k  over the 

sampling time;  rmg p z  is the G-function which represents the contribution of the local 

dynamics to the evolution of excitable media. Term   2dmD p z  represents the 

contribution of the diffusion part. 

 

Define F-functions of model (6) as the partial derivatives of the G-function  rmg p z  with 

respect to   1,2, , rz k i i m  , that is 

    
rm

i

g
f p z

z k i



 

 (9) 

The F-functions describe how the previous states  z k i  affect the evolution of an excitable 

media. 

 

Rewriting model (4) in the form of (8), the G-function is given as 

 
  3

2 2 3

0.7981 ( 1) 0.820409 ( 2) 1.65721 ( 2)

1.83072 ( 2) 1.88849 ( 1) 1.70921 ( 1)

rmg p z z k z k z k

z k z k z k

     

     
 (10) 

Calculating the F-functions of model (4) with respect to  1z k  and  2z k  according to 
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formula (9) yields 

 
  
  

2
1

2
2

0.7981 2 1.88849 ( 1) 3 1.70921 ( 1)

0.820409 2 1.83072 ( 2) 3 1.65721 ( 2)

r

r

m

m

f g p z z k z k

f g p z z k z k

      

       
 (11) 

F-functions of model (4) are illustrated in Fig 2. In this example, 1f  and 2f  reduce to 

functions of only one variable in model (4) that is     1 1 1rmf p z f z k   and 

    2 2 2rmf p z f z k  . Observe that F-functions 1f  and 2f  are similar in shape but take 

opposite signs. 

 

Fig 2 F-functions of model (4) 

Consider sCML model (5) which was identified directly from real Belousov-Zhabotinsky reaction 

data. Repeating the same calculation, the G-function and F-functions of model (5) are given as 

(12) and (13) separately. 

 

  5 4

5 3 5 2 2

3 2

2 6

0.0499 ( 1) 0.0424791 ( 2) 1.86899 10 ( 1)

5.73529 10 ( 1) ( 2) 6.28918 10 ( 1) ( 2)

0.00310803 ( 1) 0.118357 ( 1) 0.185982 ( 1) ( 2)

0.00779509 ( 1) ( 2) 3.0084 10

rmg p z z k z k z k

z k z k z k z k

z k z k z k z k

z k z k z



 



       

       

      

     4

5 3 2

3 2

( 2)

2.71051 10 ( 1) ( 2) 0.0068082 ( 1) ( 2)

0.00207884 ( 2) 0.0712825 ( 2)

k

z k z k z k z k

z k z k




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 (12) 
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1
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3 5.73529 10 ( 1) ( 2)

2 6.28918 10 ( 1) ( 2) 3 0.00310803 ( 1)

2 0.118357 ( 1) 0.185982 ( 2) 2 0.00779509 ( 1) ( 2)

2.71051 10 ( 2) 0.0068082

rmf p z z k

z k z k

z k z k z k

z k z k z k z k

z k z









     

    

       
        

   

 
2

5 3
2

5 2

2 6 3

5 2

2

( 2)

0.0424791 5.73529 10 ( 1)

2 6.28918 10 ( 1) ( 2) 0.185982 ( 1)

0.00779509 ( 1) 4 3.0084 10 ( 2)

3 2.71051 10 ( 1) ( 2) 2 0.0068082 ( 1) ( 2)

3 0.00207884 ( 2) 2

rm

k

f p z z k

z k z k z k

z k z k

z k z k z k z k

z k











    

      

     

        

    0.0712825 ( 2)z k 

 (13) 

Fig 3 shows the F-functions of model (5). It is easy to see that F-functions 1f  and 2f  are again 

of the similar shape and take opposite signs. 

 

(a)                                     (b) 

Fig3 F-functions of model (5) 

(a)     1 1 , 2f z k z k   (b)     2 1 , 2f z k z k   

If  1z k  and  2z k  always take close values,     1 1 , 2f z k z k   and 

    2 1 , 2f z k z k   will only take values near the cross-sections along 

   1 2z k z k   , namely,   
   1

1 2

rm

z k z k
f p z k

  
 and   

   2
1 2

rm

z k z k
f p z k

  
.  
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Fig4 Cross-sections of F-functions along z(k-1)=z(k-2) 

The cross-sections of 1f  and 2f  in (13) along    1 2z k z k    are shown in Fig 4. 

Comparing the curves in Fig 2 and Fig 4, it is easy to observe that the F-functions (or 

cross-sections of F-functions) of both model (4) and model (5) are of similar shapes although 

these two models were identified from two totally different systems.  

3.2 Analysis of Excitability 

 

Fig 5 analysis of sCML models 

Enlarging the F-functions in Fig 2 (and Fig 4) to produce Fig 5 where a and d are the points of 

intersection for 1f  and the real axis; b and c are the points of intersection for 2f  and the real 

axis satisfying a < b < c < d. Here, e is the point at which 1f  and 2f  reach the maximum and 

minimum almost simultaneously, and which divides the curves into left and right parts. Based on 

Fig 5, the sCML model will be analysed in two different aspects: the excitability and the 
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contribution of variables. 

 

The shapes of 1f  and 2f  guarantee the excitable behaviour of the spatio-temporal system. 

Observe that    1 20 0f f , which makes the zero point locally stable against a small 

disturbance. This coincides with the excitability property. However when the perturbation is large 

enough, the system will leave the equilibrium point and undergoes a long excursion to return to 

the equilibrium point. Assuming    1 2z k z k dx    , when dx is large enough, 

     1 21 2f z k f z k     in the region [b, e] while      1 21 2f z k f z k     in 

the region [e, c]. This means  z k  will increase and then decrease back to the equilibrium 

state and this is a relatively longer journey compared with the case when the process is disturbed 

by a small disturbance. 

3.3 Analysis of the Contribution of Variables 

In Fig 2 (and Fig 4), the two intersections of function   1 1f z k
 

and the real axis determine 

a special interval which is shown as [b, c] in Fig 5.  In this interval   1 1f z k  always takes a 

positive value while   2 2f z k  takes a negative value. According to the definition of the 

F-function in (9), this means that  z k  increases with  1z k  increasing but decreases with 

 2z k  increasing. In other words,  1z k  plays the role of an activator and  2z k  

plays the role of an inhibitor in the interval [b, c]. Hence the system is of an activator-inhibitor 

structure in [b, c].  

 

Since the responses of an excitable media system are independent on the strength of the 

perturbation only if the perturbation exceeds a certain threshold the system responses in Fig 1 

roughly show the range of the state space S  in which  z k  takes values. Comparing Fig 2 

(and Fig 4) with Fig 1, it is easy to see that the interval between the intersections of 1f  and the 
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real axis is close to the state space S . That is, roughly speaking,  1z k  acts as an activator 

and  2z k  acts as an inhibitor in S . 

4. Construction of sCML Models 

The analysis results discussed in the preceding section will now be used to inform the 

construction of simple sCML models. Construction of a new sCML model is essentially an inverse 

routine of the analysis. The model will be constructed to possess the properties of excitable 

media. The F-functions   rm
if p z k  defined in (9) of the shapes in Fig 5 should be 

constructed first of all. Obviously, different sCML models can be constructed by selecting 

different model structures and properly setting the corresponding coefficients. In this section 

only the simplest model will be considered. Several basic rules are proposed to construct a simple 

sCML model.  

4.1 Construction of F-functions   rm
if p z k   

For simplicity, assume   1
rmf p z k  and   2

rmf p z k  are of the simplest form 

     1 1 1rmf p z k f z k  and      2 2 2rmf p z k f z k , that is 1f  is a function 

of  1z k and 2f  a function of  2z k . In order to make the F-functions of the shape in 

Fig 5, the simplest structure that can be taken are second order polynomials. Denote the 

intersections between the derivative curves and the real axis as a, b, c, and d, where 

a b c d   . F-functions 1f  and 2f  can then be constructed as 

         1 1 1 1af z k A z k b z k c        (14) 

         2 2 2 2if z k A z k a z k d       (15) 

Where aA  and iA  determine the amplitude of the functions.  

aA  and iA  should be chosen to make 1f  and 2f  close enough.  Moreover, aA  and iA  

cannot be large numbers because the amplitudes of functions 1f  and 2f   are related to the 
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change rate of  z k  in a sample interval otherwise the final model will be numerically unstable. 

The parameter a should be set to be very close to b, and c should be set close to d. This is 

because the difference between a and b is related to the excitation threshold. The threshold 

should be a very small value so that the resting cells can be excited owing to the diffusion effect. 

The state set S  where  z k S  can be determined by appropriately setting the distance 

between b and c. 

4.2 Construction of G-function  rmg p z  

Model (4) and model (5) indicate that an excitable media can be described by a model with only 

one component and only first and second order time-delays of the components are needed.  In 

this section the assumption that the evolution of a cell is only affected by  1z k ,  2z k , 

and the associated diffusions will continue to be used to construction a simple sCML model. 

Based on this assumption, a total derivative of the G-function can be constructed 

              1 21 , 2 1 1 , 2 2dg f z k z k dz k f z k z k dz k         (16) 

The G-function can then be calculated by Integrating both side of equation (16). 

 
    

             1 2

1 , 2

1 , 2 1 1 , 2 2

g z k z k

f z k z k dz k f z k z k dz k C

 

         
 (17) 

The constant of integration C can be taken as zero to make (0, 0) a fixed point of the system. For 

excitable media the zero fixed point should be locally stable so that the system will return to the 

equilibrium state after a small disturbance occurs. 

4.3 Selection of the Diffusion Coefficients and the Final Model 

To properly select the diffusion coefficients, two principles should be considered. Firstly, the 

diffusion should be large enough to excite the resting cells. Secondly, when an inhibitor diffuses 

faster than an activator, the equilibrium point may lose the stability because of the Turing 

bifurcation [Gierer & Meinhard, 1972; Turing, 1952] and then the system cannot be an excitable 

media system any more. Therefore the inhibitor is assumed to have a smaller diffusion rate as 

compared with activator so that spiral patterns can be generated. That is, the diffusion coefficient 



14 

 

1d  of  1z k  takes a larger value than the diffusion coefficient 2d  of  2z k . 

 

Until now all parts which a sCML model need have been constructed. Collecting all the results 

together gives the final sCML model takes the form 

 

           
       
   2 2

1 2

1 1 1 1

2 2 2

1 2

a

i

z k z k A z k a z k d dz k

A z k b z k c dz k

d z k d z k

        

     

     


  (18) 

where a b c d    and 1 2d d . 

 

Equation (18) is the simplest sCML model where the F-functions are a second order polynomial 

of only one variable. Of cause more complex sCML models, for example a model like (5), can be 

constructed to satisfy some specific requirements by appropriately choosing the F-functions. 

However, even the simplest sCML model can generate complex patterns such as spiral waves and 

expanding target patterns. This will be illustrated in the next section. 

5. Illustrative Examples 

In this section, illustrative examples will be constructed following the rules developed in the last 

section. The excitability and bifurcations of this model will then be analysed. The simulations 

show that this simple model can generate complex spatio-temporal patterns. 

5.1 Construction of a sCML Model 

Following the procedure in Section 4, a sCML model is constructed as follows. 

 

       
     
   

2 3

2 3

2 2

1.7557 1 0.1979 1 0.024 1

0.7633 2 0.1952 2 0.0237 2

0.2 1 0.1 2

z k z k z k z k

z k z k z k

z k z k

     

     

     

 (19) 

by setting the parameters in (14) and (15) as 

 1.53, 1.5, 7, 7.03, 0.072, 0.071a ia b c d A A         (20) 

and the diffusion coefficients as  
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 1 20.2, 0.1d d    (21) 

In a spatially homogeneous condition where the diffusion effect is absent, the behaviours of the 

system will be dominated by the local dynamics of the system. Dropping the diffusion part of the 

model initially and simulating the model under perturbations of different strengths. The local 

dynamics of model (19) is illustrated in Fig 6 which shows the dynamical system damps off a 

small-strength perturbation but undergoes a long term response for the stronger perturbation. 

Fig 6 (b) shows the phase portrait of the dynamical system. Observe that in the phase portrait 

  ( 1),z k z k starting from pint (0, 0.4) leaves the symmetry line    1z k z k   (the 

black line) first and then returns back to the symmetry line. From Fig 5, 

     1 21 2f z k f z k    increases with the difference    1 2z k z k    increasing 

in region [b, c]. This means a perturbed cell is excited quickly from the resting state and then 

refracts slowly from the excited state. 

  

(a)                                     (b) 

Fig 6 local dynamics of system (19) 

(a) responses to different perturbations (b) phase portrait 

5.2 Local Stability of the Resting State 

Define        1 21 ,z k z k z k z k    and  1 2

T
z zz . The local dynamics of model (19) 

can then be rewrite as the state-space equations. 
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      
      

1 1 1 2

2 2 1 2

1 , 1

1 , 1

z k g z k z k

z k g z k z k

   


  
 (22) 

Where  

 

      
          

     

1 1 2 2

2 3
2 1 2 2 2 2

2 3
1 1 1

1 , 1 1

1 , 1 1.7557 1 0.1979 1 0.024 1

0.7633 1 0.1952 1 0.0237 1

g z t z k z k

g z t z k z k z k z k

z k z k z k

    
        


     

 (23) 

The fixed points of dynamical system can be calculated by solving the equation 

     k kz g z  (24) 

Here,  0 0
Tz  is the only root of equation (24), which corresponds to the resting state of 

an excitable media. The local stability of the fixed point can be analysed by considering the 

characteristic values of the following Jacobian matrix at the fixed point. 

 

1 1

1 2

2 2

1 2

g g

z z
J

g g

z z

  
   
  
   

 (25) 

Substituting (23) into (25) yields 

 
0 1

0.7633 1.7557
J

 
   

 (26) 

The characteristic equation of J can be written as 

    2 det 0tr J J     (27) 

where tr(J) =1.7557 is the trajectory of J and det(J) =0.7633 is the determinant of J.  

Solving (27) yields 1 0.9634   and 2 0.7923  . The resting state (0, 0) is locally stable 

because 1,2 1  . 

5.3 Bifurcation Analysis of the Constructed sCML Model 

A dynamical system loses stability at a fixed point as a pair of complex conjugate eigenvalues of 

the linearization around the fixed point cross the unit circle in the Z-plane. When this occurs, a 

limit cycle arises from the fixed point and a Hopf bifurcation happens. The sCML model may 
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undergo similar bifurcations when the parameters are slightly perturbed. From Fig 5 maintaining 

the relationship a b c d   , if the distance between b and c is shortened, the fixed point at 

(0, 0) may lose stability and a limit cycle may be born.  

 

Shortening the distance between point b and c by setting 

1.53, 1.5, 4, 4.03a b c d      . The maximums of the amplitude of F-functions will be 

less than half of the corresponding values in model (19). This means the evolution speed of the 

new system will significantly drop. Therefore reset 0.1719, 0.1682a iA A   so that the new 

system can evolve at an appropriate rate. A new sCML model can then be given as 

 

       
     
   

2 3

2 3

2 2

2.0314 1 0.2149 1 0.0573 1

1.0372 2 0.2103 2 0.0561 2

0.2 1 0.1 2

z k z k z k z k

z k z k z k

z k z k

     

     

     

 (28) 

Repeating the local stability analysis to give the Jacobian matrix 

 
0 1

1.0372 2.0314
J

 
   

 (29) 

The characteristic equation is 

    2 det 0tr J J     (30) 

where tr(J) =2.0314, det(J) =1.0372.  

Solving (30) yields 1,2 1.0107 0.1252i   . But now the fixed point (0, 0) is locally unstable 

because 1,2 1  . This means the excitable media system loses stability at point (0, 0) when the 

parameters are adjusted from model (19) to model (28). Simulating the local dynamics of model 

(28), the system response to a perturbation and the phase portrait are illustrated in Fig 7 (a) and 

(b). Observe that state     1 ,z k z k  leaves initial point (0, 0.4) and finally approaches a 

stable limit cycle which is of a different topology from the fixed point in model (19). This means a 

Hopf-like bifurcation occurs where a fixed point turns into a limit cycle as the parameters are 

adjusted. 
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Fig 7 local dynamics of system (28) 

(a) responses to an perturbation (b) phase portrait 

A similar bifurcation happens when the values of c and d in model (19) are maintained but the 

values of a and b are reduced. The different regions in the parametric space b-c are shown in 

figure 8 where 0.03a b  , 0.03d c  . In region 2, a stable equilibrium at (0, 0) exists. In 

region 3 a stable limit cycle exists. In region 1 and 4, the system is unstable at (0, 0), that is the 

response of the system to an initial perturbation will not be convergent to any bounded set. 

 

Fig 8 Parametric regions of the sCML model (19) 

 

This bifurcation may not be a strict Hopf bifurcation because usually more than one parameter 

will change when the bifurcation happens. This kind of bifurcation is important for excitable 

media. Different patterns would be observed if the model is simulated before and after the 
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Hopf-like bifurcation. For example, spiral patterns will be generated before the Hopf-like 

bifurcation, while target-like patterns will be generated after the bifurcation. If  z k  

represents the concentration of a component in an excitable medium, the bifurcation will be 

coincident with the real dictyostelium discoideum experiment [Lee et al., 1996]. Lee and 

co-workers showed that using the density as a control parameter, spiral waves dominated the 

pattern when the density was high whereas circular waves were dominant in the pattern at low 

densities. 

5.4 Simulation of the Designed sCML Models (19) and (28) 

Combining the local dynamics with the diffusion effects, different patterns can be generated by 

simulating the sCML models. The sCML model (19) was simulated on a 256X256 square lattice 

with a periodic boundary condition where a von Neumann neighbourhood was selected to 

describe the diffusion of components. The simulation was started from a purely random initial 

state. A snap shots of the simulated pattern at k=500 is illustrated in Fig 9 (a) which shows a 

typical spiral pattern. 

 

For different values of the parameters, the sCML model exhibits different spatio-temporal 

patterns. Resetting the parameters as model (28) and simulating the model on the same lattice, 

this time with a zero initial condition and a spot disturbance in the centre produces typical 

expanding target-like patterns. A snap shot of the simulated patterns at t=500 is shown in Fig 9 

(b). 

  

(a)                      (b) 

Fig 9 Simulation of sCML models 

(a) the pattern generated by simulating model (19) (b) the pattern generated by simulating 
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model (28) 

6. Conclusions 

Scalar coupled map lattice models are a new class of model for the description, identification and 

analysis of excitable media. Guo and co-workers [2010] showed the power of the new sCML 

model in identification. The current paper was presented as detailed analysis of the sCML model 

from different aspects to reveal the advantages of the new SML model in the interpretation of 

the excitable media. 

 

The new sCML model possesses several significant advantages. This model can easily be 

identified from real data since only one component is needed. It has been shown that the model 

can easily be constructed based on several simple rules. The model can be used to analyse the 

behaviours of excitable media and to build a connection between the physical phenomena and 

the model parameters. It has been shown how new pattern formations can arise so that different 

spatio-temporal patterns can be generated by appropriately adjusting the parameters. 
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