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Stochastic resonance in a simple model of magnetic reversals
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We discuss the effect of stochastic resonance in a simple model of magnetic reversals. The model
exhibits statistically stationary solutions and bimodal distribution of the large scale magnetic field.
We observe a non trivial amplification of stochastic resonance induced by turbulent fluctuations,
i.e. the amplitude of the external periodic perturbation needed for stochastic resonance to occur is
much smaller than the one estimated by the equilibrium probability distribution of the unperturbed
system. We argue that similar amplifications can be observed in many physical systems where
turbulent fluctuations are needed to maintain large scale equilibria.
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THE PROBLEM

In this paper we discuss the effect of Stochastic Reso-
nance (SR) for a simple model of magnetic reversals. As
we will discuss later on, we show that the effect of SR
can be amplified for systems where statistically station-
ary states are observed, i.e. where metastable equilib-
ria are due to non linear equilibration between turbulent
fluctuations and non linear large scale effect. We argue
that this effect is relevant in many physical systems and
could be eventually observed experimentally.

Before defining more precisely the problem we want to
focus, it is worthwhile to review shortly the basic idea
behind SR. SR was introduced almost 30 years ago in
[1] and [2] within the framework of long term climate
theory. One can be understood the mechanism of SR in
the simple case of the stochastic differential equation:

dφ = (mφ− gφ3)dt+
√
σdW (t) (1)

where dW (t) is gaussian white noise δ−correlated in
time. Because of the noise, φ shows a bimodal probabil-
ity distribution peaked around ±φm where φ2

m = m/g.
The average transition time τ between the two peaks is
proportional to

τ ∼ exp
2gφ2

m

σ
(2)

It is well known that the transition time is a random vari-
able exponentially distributed for small σ. If we add on
the r.h.s of (1) a periodic perturbation Asin(ωt), some-
thing interesting can happen. For π/ω ∼ τ the behavior
of φ becomes nearly periodic, i.e. φ ”jumps” between the
two states ±φm periodically with period 2π/ω. This be-
havior can be understood in a number of different ways
and we refer the reader to the original papers [1] and
[2], see also [3] for a review on SR. For ω small and the

deterministic time scale 1/m much shorter than τ , the
condition for SR to occur [1] can be written as

Aφm

σ
∼ 2 (3)

In the simplified model (1), the equilibrium probability
distribution P (φ) is peaked around ±φm which are stable
stationary solutions of (1) for σ = 0. In many physical
systems, however, the probability distribution of the rel-
evant order parameter (let us still call it φ ) is bimodal al-
though there exists no stable stationary states: the peaks
in the probability distribution arise because non trivial
equilibration of internal dynamics which on the average
can be approximated by an effective equation similar to
(1). This implies that the peaks in the bimodal proba-
bility distribution should correspond to statistically sta-
tionary solutions. A particular interesting case is the one
where statistically stationary solutions are due to the bal-
ance between non linear terms and internal fluctuations.
In these cases, the effect of an external periodic perturba-
tion can change the magnitude of the fluctuations which,
in turn, change the parameters of the effective equation
(1) i.e. the value of φm. Because of (3), we can observe an
amplification of SR. Such a mechanism is indeed observed
in [4] for the case of two dimensiona Landau-Ginzburg
equation. It is the purpose of this paper to describe the
amplification of traditional SR in the case of a simplified
model of magnetic reversals. Our major point is that,
due to turbulent fluctuations in the presence of statisti-
cally stationary solutions, SR is strongly amplified. Our
example is just one of the many possible cases where
the same amplification of SR may be observed and the
present study outline the role of turbulent fluctuations in
amplification of SR. We argue that other cases, relevant
to turbulent flows and large scale dynamics of geophysical
flows, may show similar amplification.

http://arxiv.org/abs/1104.4417v1
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SIMPLE MODEL OF MAGNETIC REVERSALS

The question of transitions between statistically so-
lutions is central in the behavior of many out-of-
equilibrium systems in physics and geophysics [5–8]. As
one particular example addressed here, we note that nat-
ural dynamos are intrinsically dynamical. Complex mag-
netic field evolutions have been reported for many sys-
tems, including the Sun and the Earth [9]. Formally,
the coupled set of momentum and induction equations
are invariant under the transform: (u,B) → (u,−B)
so that states with opposite polarities can be generated
from the same velocity field (u and B are respectively
the velocity and magnetic fields). Such reversals have
been observed recently in laboratory experiments using
liquid metals, in arrangements where the dynamo cycle
is either favored artificially [10] or stems entirely from
the fluid motions [11, 12]. In these laboratory experi-
ments, as also presumably in the Earth core, the ratio of
the magnetic diffusivity to the viscosity of the fluid (mag-
netic Prandtl number PM ) is quite small. As a result, the
kinetic Reynolds number RV of the flow is very high be-
cause its magnetic Reynolds number RM = RV PM needs
to be large enough so that the stretching of magnetic
fields lines balances the Joule dissipation. Hence, the dy-
namo process develops over a turbulent background and
in this context, it is often considered as a problem of
‘bifurcation in the presence of noise’.
Building upon the above observations, we shortly re-

view here a recent model proposed in [13] which which in-
corporates hydromagnetic turbulent fluctuations (as op-
posed to ‘noise’) in a dynamo instability. We consider
an ‘energy cascade’ model i.e. a shell model aimed at
reproducing few of the relevant characteristic features of
the statistical properties of the Navier-Stokes equations
[14]. In a shell models, the basic variables describing the
‘velocity field’ at scale rn = 2−nr0 ≡ k−1

n , is a complex
number un satisfying a suitable set of non linear equa-
tions (here r0 = 2). There are many version of shell
models which have been introduced in literature. Here
we choose the one referred to as Sabra shell model. MHD
shell model – introduced in [15] – allow a description
of turbulence at low magnetic Prandtl number since the
steps of both cascades can be freely adjusted [16, 17]. We
consider a formulation extended from the Sabra hydro-
dynamic shell model:

dun

dt
=

i

3
(Φn(u, u)− Φn(B,B))− νk2nun + fn , (4)

dBn

dt
=

i

3
(Φn(u,B)− Φn(B, u))− νmk2nBn , (5)

where n = 1, 2, ... and

Φn(u,w) = kn+1[(1 + δ)un+2w
∗

n+1 + (2− δ)u∗

n+1wn+2]

+kn[(1− 2δ)u∗

n−1wn+1 − (1 + δ)un+1w
∗

n−1]

+kn−1[(2− δ)un−1wn−2 + (1− 2δ)un−2wn−1] , (6)

for which following [18] we chose δ = −0.4. For this value
of δ, the Sabra model is known to show statistical proper-
ties (i.e. anomalous scaling) close to the ones observed in
homogenous and isotropic turbulence. The model, with-
out forcing and dissipation, conserve the kinetic energy
EV = Σn|un|2, the magnetic energy EB = Σn|Bn|2 and
the cross-helicity Re(ΣnunB

∗

n). In the same limit, the
model has a U(1) symmetry corresponding to a phase
change exp(iθ) in both complex variables un and Bn.
The quantity Φn(v, w) is the shell model version of the
transport term ~v∇~w. The forcing term fn is given by
fn ≡ δ1nf0/u

∗

1, i.e. we force with a constant power in-
jection in the large scale. We want to introduce in eq.
(5) an extra (large scale) term aimed at producing two
statistically stationary equilibrium solutions for the mag-
netic field. For this purpose, we add to the r.h.s. of (5)
an extra term M2(B2), namely for n = 2 eq.(5) becomes:

dB2

dt
= F2(u,B)−M2(B2)− νmk22B2 (7)

where F2(u,B) is a short hand notation for
i/3(Φ2(u,B) − Φ2(B, u)). The term M2(B2) is
chosen with two requirements: 1) it must break the
U(1) symmetry; 2) it must introduce a large scale
dissipation needed to equilibrate the large scale mag-
netic field production. There are many possible ways
to satisfy these two requirements. Here we simply
choose M2(B2) = amB3

2 . From a physical point of view,
symmetry breaking also occurs in real dynamos since the
magnetic field is directed in one preferential direction
which changes sign during a reversal. Also, large scale
dissipation must be responsible of the equilibration
mechanism of the large scale field. The choice of a
non linear equilibration is made here to highlight the
the existence of a non linear center manifold for the
large scale dynamics. In other words, eq.(4) with
M2(B2) = amB3

2 is supposed to describe the ‘normal
form’ dynamics of the large scale magnetic field. Note,
that our assumption on M2 does not necessarily imply
a time scale separation between the characteristic time
scale of B2 and the magnetic turbulent field. Finally,
since the system has an inverse cascade of helicity, we
set B1 = 0 as boundary condition at large scale in order
to prevent non stationary behavior.
The free parameters of the model are the power input

f0, the magnetic viscosity νm and the saturation parame-
ters am. Our numerical simulations have been done with
n = 1, 2.., 25. Actually, the parameter f0 could be elim-
inated by a suitable rescaling of the velocity field. We
shall keep it fixed to f0 = 1− i. In this system, a possi-
ble estimate of Reynolds numbers is RV =

√

〈EV 〉/k2ν =
√

〈EV 〉r0/4ν and RM =
√

〈EV 〉r0/4νm.
For very large νm, the magnetic field does not grow.

Then, for νm lower than some critical value, 〈B2〉 as well
as EB increases for decreasing νm. Eventually, 〈|B2|〉 sat-
urates at a given value while EB still increases, showing
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FIG. 1: Time behavior of B2r for three different values of νm
(displayed on the left side) and constant ν. The blue segment
in the upper panel shows 100td, where td is the dissipative
time scale computed as td = 1./(k2

2νm). One time unit in
the figure corresponds to the large scale eddy turnover time
1./(k1|u1|). Numerical simulations have run for much longer
than the time intervals shown here – in the complete time
series there is no asymmetry in between the ±B2 states.

that for νm small enough a fully developed spectrum of
Bn is achieved. This type of behavior is in agreement
with previous studies of Taylor-Green flows [19, 20], s2t2
flows in a sphere [21] or MHD shell models [22].
The onset of dynamo implies that there exists a net flux

of energy from the velocity field to the magnetic field. At
the largest scale, the magnetic field B2 is forced by the
velocity field due to the terms F2(u,B). The quantity
S ≡ R[F2(u,B)B∗

2 ] in (10) is the energy pumping due
to the velocity field which is independent on B2 and am.
Thus, from eq.(13) we can obtain:

1

2

d|B2|2
dt

= S − am|B2|2(B2
2r −B2

2i)− νmk22 |B2|2 (8)

where B2r and B2i are the real and imaginary part of
B2. For large νm, the amplitude of B2 is small and the
symmetry breaking term proportional to am is negligible.
Under this condition, and with the boundary condition
constrains, we expect from (8) or (10) that the behavior
of B2 is periodic, as it has been observed in the numerical
simulations. On the other hand for relatively small νm,
the non linear equilibration breaks the U(1) symmetry
and B2i becomes rather small and statistically station-
ary solutions can be observed with B2

2r =
√

S/am. In
[13], it is discussed a systematic study of the magnetic
reversal as a function of νm. In figure 1, we show three
different time series of the B2r = Re(B2) as a function
of time for three different, relatively large, values of the
magnetic diffusivity. The figure highlights the two major
informations, namely the obervation of reversals between
the two possible large scale equilibria and the dramatic
increase of the time delay between reversals for increasing
νm values. Note that this long time scale, as observed in

the upper panel of figure 1, is much longer than the char-
acteristic time scale of B2 near one of the two equilibrium
states. The system spontaneously develops a significant
time scale separation, for which given polarity is main-
tained for times much longer than the magnetic diffusion
time. In figure 2 we show the average reversal time as a
function of νm.
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FIG. 2: Average persistence time τ as a function of the mag-
netic viscosity νm for am = 0.1 and ν = 10−7. The green line
corresponds to the fit given by equation (12). In the insert
we plot 1/ ln(τ ) and its error bars versus νm to highlight the
linear behavior predicted by (12). Note that the error bars
are smaller than the symbol size except for the very last point

In order to develop a theoretical framework aimed at
understanding the result shown in figure 2, we assume,
in the region where 〈|B2|2〉 is independent on νm, that
B2i ∼ 0 and that the term F2(u,B) can be divided into
an average forcing term proportional to B2r and a fluc-
tuating part:

F2(u,B) = βB2 + φ′ (9)

where β depends on f0 and φ′ is supposed to be uncor-
related with the dynamics of B2 , i.e. 〈[φ′B∗

2 ]〉 = 0. Note
that in the context of the mean-field approach to MHD,
the first term βB2 would correspond to an ‘alpha-effect’.
Using (9), we can rewrite the equations for B2 as follows:

dB2

dt
= βB2 − amB3

2 + φ′ . (10)

where we neglect the dissipative term since β ≫ νmk22
in the region of interest. eq.(10) must be considered an
effective equation describing the dynamics of the mag-
netic field B2 and its reversals, and the fluctuations φ′

incorporates the turbulent fluctuations from the velocity
and magnetic field turbulent cascades. It is the effect
of φ′ which makes the system ‘jump’ between the two
statistically stationary states. Using (8) we can obtain
β =

√
Sam while the two statistical stationary states can

be estimated as ±B0, B
2
0 = β/am.
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FIG. 3: Solutions of eq. (13 as compared to the behavior of
B2r obtained from (4)-(5) for νm = 0.00026. The choice of
σ in (13) is chosen to reproduce the mean transition time τ
close to the solution of (4)-(5)

Interpreting eq.(10) as an effective stochastic differen-
tial equation, we can predict τ to be

τ ∼ exp

(

β2

amσ

)

= exp

(

S

σ

)

, (11)

where σ is the variance of the noise φ′ acting on the
system. In [13] it is suggested that σ = A(ν∗m − νm)/uL
which leads to

τ ∼ exp

(

C

ν∗m − νm

)

, (12)

where C is a constant independent of νm. This func-
tional form is displayed in figure 2; it agrees remarkably
with the observed numerical values of τ for a rather large
range. In the insert of figure 1 we show 1/ log(τ) as a
function of νm to highlight the linear behavior predicted
by eq.(12). The physical statement represented by (12)
is that the average reversal time should show a critical
slowing down for relatively large νm. In other words, we
expect that fluctuations around the statistical equilibria
increase as RM increases. The increase of fluctuations
may not be monotonic for very large RM , which explains
why we are not able to fit the entire range of νm shown
in figure (1).

THE EFFECT OF SMALL PERIODIC FORCING

As shown in the previous section, eq.(10) can be con-
sidered an effective stochastic differential equation. More
precisely, we can approximate the reversals of magnetic
field B2r by using eq. (1) with φ ≡ B2r and suitable val-
ues of m and g such that φm corresponds to the magni-
tude of the observed statistically stationary states in the
probability distribution of B2r. Finally we must choose
σ in (1) such that the average transition time is equal
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FIG. 4: Numerical solutions of (14) for different values of
the external periodic forcing Asin(2πt/ω). For A = 0.4 the
dynamics of φ starts to behave periodically

to the one observed for the magnetic reversals (see fig-
ure (3)). For our purpose, we choose νm = 0.00026 so
that the average transition time is order 4000. Then the
effective equation (1) is

dφ = φ(φ2
m − φ2)dt+

√
σdW (t) (13)

where φm = 1.51 and σ = 0.34 are the numerical values
chosen in (13) for the dynamics of φ to be close to the
observed numerical behavior of B2r. In figure (3) we
show the behavior of the numerical solution of (13) as
compared to the time behavior of B2r computed for νm =
0.00026. Hereafter we refer to eq. (13) as ”double well”
model while we use the term ”mhd” for eq.s (4)-(5).

Following our discussion in the introduction, we can
use (3) to estimate the amplitude of an external periodic
forcing Asin(ωt) applied on the r.h.s of (13) with 2π/ω =
4000. It turns out that (3) gives A ∼ 0.5 for SR to occur.
This agrees very well with the numerical results shown
in figure (4) where we plot the numerical solution of

dφ = φ(φ2
m − φ2)dt+

√
σdW (t) +Asin(2π/ωt) (14)

with A = 0.1 (upper panel) A = 0.2 (middle panel) and
A = 0.4 (bottom panel). A more quantitative descrip-
tion can be obtained by looking at the average Fourier
amplitude PA ≡ 〈|φ̂(ω)|〉 and plotting PA as a function
of A. This is done in figure (6) (red circles).
We now turn our attention to the system (4)-(5) which

describes the magnetic reversals within the simplified
model discussed in the previous section. We add to the
equation of motion of B2r an external periodic forcing
Asin(2πt/ω) with the same period 2πt/ω = 4000 chosen
for the numerical simulations of figure (3). In figure (5)
we show the behavior of B2r as a function of time for
A = 0.08 and compared it against the solution of (14) for
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FIG. 5: Upper panel: numerical behavior of B2r obtained
from (4)-(5) when an external forcing Asin(2πt/ω) is added
to r.h.s. of (5) for n = 2. The blue curve shows the periodic
forcing. Lower panel: solution of (14) with A = 0.1.
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FIG. 6: The average Fourier amplitude PA ≡ 〈|φ̂(ω)〉 as a
function of A for eq. (14) (red circles). The blue triangles
refer to the same quantity computed for the eq.s (4)-(5): the
response function is much larger than for the case of stochastic
differential equation (14).

the same A. We can clearly observe SR in the mhd equa-
tions (4)-5) while for eq.(14) the effect of A is too small.
In figure (6) we show the the average Fourier amplitude
PA ≡ 〈|B̂2r(ω)|〉 and plotting PA as a function of A com-
paring the result with the same quantity computed for
the stochastic differential equation (14). The conclusion
is that SR is amplified in the mhd equations (4)-(5) by
almost a factor 5!

We remark that the effect shown in figure (5) is higly
non trivial, i.e. it is not trivial to figure out an effec-
tive stochastic differential equation similar to (13) which
shows the same sensitivity to the external perturbation
A. Using a different language, borrowed by statistical
field theory, we can say the the effective eq. (13) is de-
scribed in terms of renormalized parameters which de-
pends on the turbulent fluctuations. Since the statisti-

cally stationary states are due (on the average) to non
linear equilibration between the fluctuating forcing term
F2(u,B) and the large scale term amB3

2 , the effect of
external perturbation changes (probably in a non lin-
ear way) the amount of fluctuations which fix the values
of the renormalized parameter in (13). Another impor-
tant point to remark is that the behavior observed in
our simplified mhd model can be blindly parameterized
as ”stochastic nose”, i.e. although turbulence is quali-
tatively acting as a noise in the dynamics, the turbulent
fluctuations are correlated to the statistical equilibria in a
way which is hardly to parameterize as an external noise.

CONCLUSION

In this paper we have shown a relatively simple ex-
ample of amplification of SR in a system characterized
by statistically stationary states. It is interesting to re-
mark that, in our system, the large scale magnetic field
is fluctuating in time around some state which is fully
maintained by the turbulent energy flux from the velocity
field (i.e. the dynamo instability). The effect on exter-
nal perturbation changes this equilibria and amplifies the
susceptibility of the system. The amplification observed
shows that turbulent fluctuations cannot be parameter-
ized as ”noise” independent of statistical equlibria.
We argue that there may exist many different phys-

ical systems where similar effects can be observed. In
particular, it will be interesting to explore whether such
a strong sensitivity to external perturbation is relevant
in geophysical flows where many theories of large scale
multiple equilibria have been proposed in the past. Also,
concerning the climate theory, our simple but non triv-
ial example, shows how non linear fluctuations could be
coupled to external forcing in a rather non intuitive way.
This may open the possibility to reconsider SR in cli-
mate theory in the framework of more complex models
where internal turbulent fluctuations of climate dynamics
are explicitly taken into account and simulated. Finally,
within the application of our present result in the case
of dynamo instability, we argue whether a similar effect
could be observed experimentally, i.e. whether by apply-
ing a small external forcing a large SR is observed for
relatively low value of the external amplitude.
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