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Oscillations in networks composed of Cyclic Negative Feedback systems (CNF systems) are
widely used to mimic many periodic phenomena occurring in systems biology. In particular,
the possible coexistence of different attractors permits to suitably describe the differentiating
processes arising in living cells. The aim of the manuscript is to characterize, through a spec-
tral based technique, the complex global dynamical behaviors emerging in arrays of diffusively
coupled CNF systems.
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1. Introduction

Cyclic Negative Feedback systems (CNF systems) are one of the most applied paradigms to model many
phenomena arising in systems biology: from gene regulation systems [Tyson & Othmer, 1978; de Jong,
2002] to metabolic [Morales & McKay, 1967] and cellular signal pathways [Kholodenko, 2000; Liu, 2002;
Wang et al., 2008]. CNF systems have the interesting property of admitting coexisting periodic solutions.
This property has been exploited to build models of circadian rhythms and developmental clocks during
morphogenesis [Sontag, 2005].

As shown in [Mallet-Paret & Smith, 1990], the Poincaré-Bendixson theorem holds for monotone CNF
systems. As a consequence, only equilibria, limit cycles, heteroclinic or homoclinic loops are admissible as
omega-limit sets of any bounded orbit. Hence, collections of CNF systems (and more generally nonlinear
oscillatory network models) with coexisting stable states allow physiologists to accurately model the cell
differentiation processes. The most interesting case, that goes by the name of hard excitation [Liu, 2002],
is when there is the concurrence between oscillatory and non-oscillatory states [Minorsky, 1974; Jovanic
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et al., 2008].
The study of the dynamical behavior of networks composed of CNF systems may be extremely impor-

tant to interpret several biological phenomena. Numerical simulations based on time-domain methods are
not suitable for detecting global dynamic behavior of complex networks with a large number of coexisting
attractors. Recently, an approach based on the Lyapunov function method, and more in general on control
theories, has been proposed in order to analyze the different attractors of gene regulatory networks that
can be represented as Lur’e systems [Wang et al., 2008]. Furthermore, some spectral techniques have been
successfully applied to unfold the global dynamical behavior of oscillatory networks [Gilli et al., 2004, 2005;
Lanza et al., 2008].

In this manuscript we focus on networks of diffusively coupled CNF systems. In the following such
structures are referred to as ’CNF arrays’.

We aim at studying the global dynamics of CNF arrays due to the couplings. In particular, under the
assumption of weak couplings we derive the global dynamical properties from the characteristics of the
single system’s attractors.

As first step, we show that CNF arrays with diffusive couplings that are constant and local (i.e. they
involve only the two nearest neighbors of each CNF system) are potentially equivalent to nonlinear networks
whose elements are fully connected (i.e. each subsystem is linked to all the others).

Furthermore, we consider the simplest CNF array composed of two compartments that interact through
diffusive couplings. By assuming that each uncoupled subsystem presents the coexistence of limit cycles
and equilibrium points, the following cases are possible depending on the basin of attraction where the
initial conditions are chosen:

(a) both uncoupled subsystems do not oscillate, i.e. the initial condition for each uncoupled subsystem is chosen
in such a way that both subsystems settle;

(b) both uncoupled subsystems oscillate, i.e. the initial condition for each uncoupled subsystem is chosen in
such a way that both subsystems oscillate;

(c) one uncoupled subsystem oscillates and the other does not oscillate, i.e. the initial condition for each
uncoupled subsystem is chosen in such a way that one subsystem converges toward an equilibrium point
and the other toward a limit cycle.

The effect of the coupling is pointed out when the two-compartment system is in the cases (a)-(c).
Finally, a describing function based technique is proposed to investigate CNF arrays with a large

number of elements and the spatial localized patterns that can occur due to the coupling.

2. Local and global coupling in one-dimensional array of CNF systems

Cyclic Negative Feedback systems (CNF systems) are described by the following set of nonlinear differential
equations [Tyson & Othmer, 1978; Arcak & Sontag, 2006, 2008]:

ẋ1 = −a1 x1 + f(xn)

ẋk = −ak xk + bk−1 xk−1, 2 ≤ k ≤ n (1)

where xk assumes only nonnegative values (hereinafter the index k, with k = 1, . . . , n, is used to label
each state variable of a single CNF system) and f ′(xn) < 0. Systems as (1) arise in a variety of mathe-
matical models of biological systems. For instance, the variables xk represent the concentrations of certain
molecules in the cells composing cellular control systems. In addition, the function f(·) suitably represents
the inhibition of x1 by the product xn (see Figure 1). The mitogen activated protein kinase (MAPK)
cascade model [Kholodenko, 2000] is a significant example of such type of systems. It can be proved [Arcak
& Sontag, 2008] that system (1) exhibits a global asymptotic stable equilibrium x∗ = (x∗1, . . . , x

∗
n) under

the condition (secant criterion)

b1 · · · bn−1f
′(x∗n)

a1 · · · an
< sec(π/n)n.

Furthermore, for these type of systems the Poincaré-Bendixson Theorem holds [Mallet-Paret & Smith,
1990], that is the coexistence between stable equilibria and periodic orbits is allowed.
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Fig. 1. (a) Example of a genetic regulatory network that can be modeled as a third order Cyclic Negative Feedback system,
where the variables are the concentrations of mRNA a, protein A, and metabolite K (representation adapted from [de Jong,
2002]). (b) Block diagram of a n-th order CNF system. Each variable xk(t) is activated by its previous neighbor xk−1(t), except
for x1(t) that is repressed by xn(t).

However, experimental observations reveal that some cellular reactions occur in specific locations inside
the cell, while the exchange of different chemical species is realized by diffusion through the common
extracellular medium. Such mechanisms are suitably modeled by the following set of reaction diffusion
equations:

ẋi
1 = − a1x

i
1 + f(xi

n) + T1∆x
i
1

ẋi
k = − akx

i
k + bk−1x

i
k−1 + Tk∆x

i
k, 2 ≤ k ≤ n (2)

where the index i, with i = 1, . . . ,M , denotes the i-th compartment (i.e. the single CNF system described
by (1)), Tk (k = 1, . . . , n) is the positive diffusion coefficient associated with the state variable xi

k and ∆xi
k

denotes the discretized Laplacian operator in R:

∆xi
k = xi−1

k + xi+1
k − 2xi

k.

Generally, in this context, Neumann (i.e. zero-flux) boundary conditions are considered.
In the sequel we investigate (2) in order to study the emergence of complex dynamical phenomena

under the assumption that the extracellular medium is weakly diffusive (i.e. Tk = ε≪ 1 ∀ k).
In particular, the following subsection is devoted to show that each element of the CNF array interacts

through dynamical links (i.e. the couplings are defined through dynamic operators) not only with its two
nearest neighbors, despite the diffusive couplings in (2) involve only the two nearest neighbors and are
constant.

2.1. Arrays composed of n
th-order CNF systems

By introducing the vector Xk = [x1
k, . . . x

M
k ]T ([ · ]T is the transpose vector) the following relations can be

derived from (2):
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Xk−1 =
1

bk−1
Mk−1Xk, 2 ≤ k ≤ n, (3)

where Mk−1 ∈ RM,M is defined as follows by taking into account the Neumann boundary conditions:

Mk−1 = (D + ak)I − εP, (4)

where D = d/dt is the first-order time derivative and

P =

















−1 1 0 · · · 0

1 −2 1
. . . 0

...
. . .

. . .
. . .

...

0
. . . 1 −2 1

0 · · · 0 1 −1

















. (5)

Therefore, we get recursively

Xk−1 =
n−1
∏

j=k−1

1

bj
MjXn, 2 ≤ k ≤ n. (6)

By substituting these relations into the first equation of (2), after some algebraic manipulation, we
obtain the following vector equation for the sole variable Xn = [x1

n, . . . x
M
n ]T :

M0





n−1
∏

j=1

1

bj
· Mj



Xn = f(Xn), (7)

where f(Xn) = [f(x1
n), . . . , f(xM

n )]T and M0 is given by (4) with k = 1.
Equation (7) can be interpreted as the Lur’e representation of (2) in terms of the sole variables Xn. By

using such representation, it is possible to show that the couplings among the Lur’e variables Xn involve
not only the two nearest neighbors and are in general dynamical, i.e. they concern the time derivative
operator D.

For this purpose and without any loss of generality, let us consider ap = 1 for all p = 1, . . . , n, and
bq = 1 for all q = 1, . . . , n− 1:

ẋi
1 = −xi

1 + f(xi
n) + ε(xi+1

1 + xi−1
1 − 2xi

1) (8)

ẋi
k = −xi

k + xi
k−1 + ε(xi+1

k + xi−1
k − 2xi

k) 2 ≤ k ≤ n.

It follows that relation (6) simplifies and reduces to Xk = Mn−kXn, 1 ≤ k ≤ n− 1, where

M = (D + 1)I − εP; (9)

therefore, the Lur’e form of (8) results to be:

MnXn = f(Xn). (10)

In order to derive the properties of (10) we need to understand the structure of matrix Mn.

Lemma 1. Let M be a m×m tridiagonal matrix. Then, for k < m−1, Mk is a band matrix with bandwidth
2k + 1. For k ≥ m− 1, Mk is a dense matrix.

Proof. For the sake of simplicity, let us consider tridiagonal matrices whose elements on the superdiagonal
and on the subdiagonal are constants, i.e. M = aU + bL + Λ where Λ ∈ Rm,m is a diagonal matrix,
L = UT and U ∈ Rm,m is an upper shift matrix defined as Uij = δi+1,j .

Exploiting the results in [Andrews, 1990], it follows that:
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Mk = (aU + bL + Λ)k =
∑

k1,k2,k3≥0

k1+k2+k3=k

k!

k1!k2!k3!
(aU)k1(bL)k2Λk3

= akUk + bkLk + Λk + · · · (11)

By noting that Uk
ij = δi+k,j and Lk

ij = δi,j+k, we can conclude that Mk is a band matrix with bandwidth

2k + 1 for k < m − 1. On the other hand, Mk is a dense matrix for k ≥ m − 1 since Um−1
ij = δi+m−1,j ,

Lm−1
ij = δi,j+m−1, and Um = Lm = 0. �

Proposition 1. Let us consider the array, described by (8), composed of M CNF systems of order n. Then,
the each system is coupled at most with 2n+ 1 other elements of the network. Furthermore, if M ≤ n+ 1,
then the CNF array is fully connected (i.e. each system is linked to all the others).

Proof. By applying the previous Lemma to the matrix M defined in (9), we get that Mn is a band matrix
with bandwidth 2n+ 1. Furthermore, for n ≥M − 1, Mn is a dense matrix, that is each equation of (10)
involve all the variables Xn = [x1

n, . . . x
M
n ]T . It follows that the array is fully connected (each CNF system

is linked to all the others). �

Corollary 2.1. Let us consider an array of M CNF systems of order n, such as (8). Then, the sphere of
influence of each system is composed of at most 2n+ 1 systems.

Remark 2.1. It is worth recalling that (2) and (8) can be seen as the spatial discretization of reaction-
diffusion partial differential equations

∂u(x, t)

∂t
= g(u(x, t)) + ε∆u(x, t), t ∈ R+, x ∈ I ⊂ R.

Proposition 1 states that, although the coupling in (2) and (8) is local and it involves only the two nearest
neighbors, actually it concerns 2n + 1 elements of the network (where n is the order of the dynamical
system). This means that, although we use a finite difference scheme on three nodes for the Laplacian
operator, nevertheless the discretization globally involves 2n+ 1 nodes.

Remark 2.2. The results shown previously can be naturally extended to the study of a bidimensional
equation of reaction-diffusion. Also in this case it is possible to derive matricial relations such as (7) and
(10), where the matrices involved take into account the possible different boundary conditions (Dirichlet,
Neumann or periodic ones). Therefore, it is possible to show that also in a bidimensional array, although
the coupling is constant and concerns only the four nearest neighbors, nevertheless it globally links more
nodes and involves dynamic operators.

2.2. Case-study: Arrays composed of 3rd-order CNF systems

Let us consider the following simple third order cyclic negative feedback system [Jovanic et al., 2008]:

ẋ1 = −x1 + f(x3)

ẋ2 = −x2 + x1 (12)

ẋ3 = −x3 + x2

where

f(x) = e−10(x−1) + 0.1sgn{25(x− 1)}min{1, |25(x− 1)|}.
It is easy to see that (12) has x1 = x2 = x3 = 1 as equilibrium point. Furthermore, since f ′(1) = −7.5,

the secant criterion permits us to conclude that the equilibrium is asymptotically stable. In addition, as
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Fig. 2. Single CNF system attractors. The stable limit cycle attracts the trajectories shown in green and blue. The stable
equilibrium point (1, 1, 1) attracts the trajectory depicted in red. The saddle limit cycle is located between the trajectories shown
in blue and red.

it can be seen in Fig. 2, a stable periodic orbit coexists with the equilibrium point (1, 1, 1), and they are
separated by a saddle limit cycle [Jovanic et al., 2008].

System (12) can be easily recast in a Lur’e form

L(D)x3(t) = f [x3(t)] (13)

where L(D) = (D + 1)3. In addition, the following linear relations among the variables hold:

x1(t) = L1(D)x3(t) (14)

x2(t) = L2(D)x3(t), (15)

with L1(D) = (D+ 1)2 and L2(D) = (D+ 1). From (8) and (10), we know that arrays of M CNF systems
admit the following Lur’e description

M3X3 = f(X3), (16)

where M ∈ RM,M is defined in (9). In this section, we are interested in explicitly evaluate M3 in order to
characterize the couplings in (16).

From the expression for matrix M given in (9) and with P previously defined in (5), it easily follows
that

M3 = (D + 1)3I − 3(D + 1)2εP + 3(D + 1)ε2P2 − ε3P3

= L(D)I − 3L1(D)εP + 3L2(D)ε2P2 − ε3P3. (17)

The application of Proposition 1 permits us to conclude that each CNF system is coupled with at most
7 other systems. Furthermore, such couplings are dynamical due to the presence of the operators L1(D)
and L2(D).

3. Dynamical behaviors due to the interactions among CNF systems

Many complex spatio-temporal phenomena arising in biological systems, modeled as a collection of cyclic
negative feedback systems (CNF systems), can be interpreted by pointing out the effects of the interactions
among the constituent elements. The first part of this section is devoted to study the simplest array
composed of only two 3rd-order CNF systems. In the second part a describing function based technique is
proposed to investigate one-dimensional array with an arbitrary number of 3rd-order CNF systems.
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3.1. Dynamics of two interacting 3rd-order CNF systems

We are interested in studying the following two-compartment version of system (12) (i.e. two-element
network):

ẋ1 = −x1 + f(x3) + ε(y1 − x1)

ẋ2 = −x2 + x1 + ε(y2 − x2)

ẋ3 = −x3 + x2 + ε(y3 − x3)

ẏ1 = −y1 + f(y3) + ε(x1 − y1) (18)

ẏ2 = −y2 + y1 + ε(x2 − y2)

ẏ3 = −y3 + y2 + ε(x3 − y3),

where the couplings are supposed to be weak (ε = 10−4 [Jovanic et al., 2008]). It is worth observing that
(18) can be written as

Ẋ = F (X) + εG(X,Y )

Ẏ = F (Y ) + εG(Y,X)

where X = (x1, x2, x3)
T , Y = (y1, y2, y3)

T ,

F (X) =





−x1 + f(x3)
−x2 + x1

−x3 + x2



 and G(X,Y ) =





y1 − x1

y2 − x2

y3 − x3



 . (19)

With simple algebraic calculations, the Lur’e expression for (18) can be derived:

L(D)x3(t) = f [x3(t)] +H(D)(y3(t) − x3(t)) (20)

L(D)y3(t) = f [y3(t)] +H(D)(x3(t) − y3(t)) (21)

with

L(D) = (D + 1)3 (22)

H(D) = ε[3(D + 1 + ε)2 + ε2]. (23)

Each uncoupled CNF system (ε = 0) of the two-elements network described by (20)-(21) can converge
toward the equilibrium point (1, 1, 1) or the stable limit cycle by choosing appropriately the initial condi-
tions. In the following subsections, by exploiting spectral techniques, we will study the effect of the coupling
in the following cases: (a) the two uncoupled systems are in the equilibrium point; (b) the two uncoupled
systems are both oscillating; (c) the uncoupled system (20) oscillates while the uncoupled system (21) is
in the equilibrium point.

3.1.1. Non-oscillating CNF systems

It is easy to see that the configuration where each element of (20)-(21) is in the equilibrium point P =
(1, 1, 1) is still a steady state for the global system. We are now interested in studying its stability depending
on the coupling strength ε.

The evaluation in the equilibrium point of the Jacobian matrix for system (18) yields:

J =

















−1 − ε 0 f ′(1) ε 0 0
1 −1 − ε 0 0 ε 0
0 1 −1 − ε 0 0 ε
ε 0 0 −1 − ε 0 f ′(1)
0 ε 0 1 −1 − ε 0
0 0 ε 0 1 −1 − ε

















(24)
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where f ′(1) = −7.5. It is worth noting that the characteristic polynomial of the Jacobian matrix J can be
represented as:

det(J − λI) = P (λ)Q(λ, ε), (25)

where

P (λ) = 1 − f ′(1) + 3λ+ 3λ2 + λ3 (26)

is the characteristic polynomial of the Jacobian matrix for the uncoupled system (12) and

Q(λ, ε) = 1 − f ′(1) + 6ε+ 12ε2 + 8ε3 + 3(1 + 4ε+ 4ε2)λ+ 3(1 + 2ε)λ2 + λ3. (27)

The application of the Routh-Hurwitz criterion to Q(λ, ε) permits us to conclude that the stability of
the equilibrium point for the coupled system (18) depends only on the stability of the equilibrium in the
uncoupled one (12), and not on the coupling itself. Hence, from the analysis of P (λ) it follows that the
equilibrium point is always stable. The explicit calculations can be found in the appendix.

3.1.2. Oscillating CNF systems

In order to study the two-elements network when the uncoupled systems are in the oscillatory regime,
we exploit the method based on the joint application of the Malkin’s theorem and the describing function
technique [Gilli et al., 2005]. Such method allows us to derive the dynamical evolution of the phase variables
(i.e. the equation that describes the phase variation of each oscillator, due to the weak coupling). The steps
of the procedure proposed in [Gilli et al., 2005] for obtaining the phase equations are summarized below:

a) The hyperbolic limit cycle of each uncoupled system is approximated up to the first harmonic term (i.e.
describing function approach). If we focus on (20) (with ε = 0) we get:

x3(t) ≈ x̂3(t) = A+B sin(ωt) (28)

where A denotes the bias, ω and B the angular frequency and the amplitude of the first harmonic, respec-
tively. It follows that the approximated limit cycle is:

γI(t) ≈ γ̂I(t) =





x̂1(t)
x̂2(t)
x̂3(t)



 =





L1(D) x̂3(t)
L2(D) x̂3(t)

x̂3(t)



 =





(D + 1)2x̂3(t)
(D + 1)x̂3(t)

x̂3(t)



 (29)

where

x̂1(t) = (D + 1)2x̂3(t) = (D + 1)2[A+B sin(ωt)] = A+B(1 − ω2) sin(ωt) + 2Bω cos(ωt)

x̂2(t) = (D + 1)x̂3(t) = (D + 1)[A+B sin(ωt)] = A+B sin(ωt) +Bω cos(ωt),

having reminded that D = d/dt is the time-derivative operator.
It is worth noting that since the oscillators are assumed to be identical, the limit cycle trajectory γ̂II of
the system (21) (with ε = 0) is also identical.
The parameters A, B and ω are the solution of the following describing function system:

L(0)A = FA(A;B)

Re [L(jω)]B = FB(A;B) (30)

Im [L(jω)] = 0,

where the output of the nonlinear function f [x3(t)] is approximated up to the first harmonic as well, as
follows:

f [x̂3(t)] ≈ FA(A;B) + FB(A;B) sin(ωt).

In particular, from the expression of L(D) in (22) we easily deduce

L(jω) = (jω + 1)3 = 1 − 3ω2 + jω(3 − ω2)
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and from the last condition of (30) we obtain

Im [L(jω)] = ω(3 − ω2) = 0.

It follows that the approximated angular frequency of the limit cycles γ̂I and γ̂II is

ω =
√

3. (31)

b) According to [Hoppensteadt & Izhikevich, 1997], the phase equation can be derived by solving the adjoint
problem related to (12). Let us denote with Q(t) = (q1(t), q2(t), q3(t))

T the solution of the adjoint problem

Q̇(t) = −[DF (γ(t))]TQ(t) (32)

QT (0)F (γ(0)) = 1. (33)

The idea of [Gilli et al., 2005] is to approximate this quantity up to the first harmonic as well, via the
describing function approximation.
In order to determine Q(t) the Jacobian matrix DF (γ(t)) needs to be evaluated. From (12) it is easy to
see that

DF (γ(t)) =





−1 0 f ′[x3(t)]
1 −1 0
0 1 −1



 . (34)

Exploiting the expression of the operator L(D) and (34), after some algebraic manipulations, it is possible
to see that the following Lur’e variational equation holds for q1(t):

L(−D)q1(t) = f ′[x3(t)]q1(t), (35)

while for the other variables the following linear relationships hold:

q2(t) = (1 −D)q1(t)

q3(t) = (1 −D)2q1(t). (36)

The results obtained in [Gilli et al., 2005] permit us to conclude that the first harmonic approximation for
q1(t) presents only the term in cosine: q1(t) ≈ q̂1(t) = δ1 cos(ωt).
Furthermore, from (36), for the other variables we get the following approximated expression

q2(t) ≈ q̂2(t) = δ1ω sin(ωt) + δ1 cos(ωt)

q3(t) ≈ q̂3(t) = 2δ1ω sin(ωt) + δ1(1 − ω2) cos(ωt).

The coefficient δ1 is derived using the normalization condition in (33). Taking into account the first harmonic
approximations for the functions xi(t) and qi(t) achieved before, it yields

Q̂T (0)F (γ̂(0)) = (q̂1(0), q̂2(0), q̂3(0))





−x̂1(0) + f̂ [x̂3(0)]
−x̂2(0) + x̂1(0)
−x̂3(0) + x̂2(0)





= (δ1, δ1, δ1(1 − ω2))(−A− 2Bω + FA, Bω,Bω)T

= −δ1ω3B = 1;

therefore, we obtain

δ1 = − 1

Bω3
, (37)

having exploited from the describing function technique that L(0)A = FA and L(0) = 1.
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c) Finally, an approximated analytical expression of the phase equations is obtained (see [Hoppensteadt &
Izhikevich, 1997; Gilli et al., 2005] for more details):

φ′I ≈ ω

2π

∫ 2π
ω

0
Q(t)TG

(

γ

(

t+
φ− φI

ω

))

dt

=
ω

2π

∫ 2π
ω

0

3
∑

i=1

q̂i(t)

[

ŷi

(

t+
φII − φI

ω

)

− x̂i (t)

]

dt

=
3

2
δ1(1 − ω2)B sin(φII − φI) + 3δ1ωB(cos(φII − φI) − 1) (38)

φ′II ≈ ω

2π

∫ 2π
ω

0
Q(t)TG

(

γ

(

t+
φ− φII

ω

))

dt

=
ω

2π

∫ 2π
ω

0

3
∑

i=1

q̂i(t)

[

x̂i

(

t+
φI − φII

ω

)

− ŷi (t)

]

dt

=
3

2
δ1(1 − ω2)B sin(φI − φII) + 3δ1ωB(cos(φI − φII) − 1). (39)

Introducing the phase shift between the two oscillators as a new variable χ = φI − φII , system (38)-(39)
can be easily recast as follows:

χ′ = −3δ1(1 − ω2)B sinχ. (40)

It is worth observing that this equation admits as equilibrium configurations only χ = φI − φII = {0, π}.
Therefore, the two oscillators can oscillate only in-phase or anti-phase. Furthermore, being ω2 = 3 and
δ1 < 0, we can conclude that χ = 0 is the unique stable steady state for these phase equations.

3.1.3. Interaction between one oscillating CNF system and a non-oscillating one

Let us consider the case in which the two CNF systems start from initial conditions belonging to different
basins of attraction (namely, (20) converges toward a limit cycle while (21) converges toward an equilibrium
point). Under the assumption that the coupling is sufficiently weak, it is possible to observe that (21)
develops new oscillations, with equal period but very different amplitude with respect to the limit cycle of
the other system.

For studying such case it is not possible to apply the method exploited in the previous subsection
because the Malkin’s theorem holds only if all the uncoupled systems are oscillating with commensurable
frequencies. The global dynamical behavior of the two-compartments network (20)-(21) can be approxi-
mately investigated by applying the describing function technique.

The states of the two CNF systems are represented through a bias term and a single harmonic with a
suitable phase:

x3(t) ≈ x̂3(t) = A1 +B1 sin(ωt)

y3(t) ≈ ŷ3(t) = A2 +B2 sin(ωt+ ψ) (41)

where Ai are the bias terms, ω is the angular frequency, Bi are the amplitudes of the harmonic terms, and
ψ denotes the phase shift between x3(t) and y3(t).

The output of the nonlinear function can be represented by a Fourier series truncated to the first
harmonic as well:

f [x3(t)] ≈ FA
1 (A1;B1) + FB

1 (A1;B1) sin(ωt)

f [y3(t)] ≈ FA
2 (A2;B2) + FB

2 (A2;B2) sin(ωt+ ψ). (42)

By substituting the approximated expressions (41) and (42) in (20)-(21), and equating the terms of
the same harmonic order we get the following set of nonlinear algebraic equations:
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L(0)A1 = FA
1 (A1;B1) +H(0)(A2 −A1) (43)

Re [L(jω)]B1 = FB
1 (A1;B1) + Re [H(jω)]B2 cosψ − Im [H(jω)]B2 sinψ − Re [H(jω)]B1 (44)

Im [L(jω)]B1 = Im [H(jω)]B2 cosψ + Re [H(jω)]B2 sinψ − Im [H(jω)]B1 (45)

L(0)A2 = FA
2 (A2;B2) +H(0)(A1 −A2) (46)

Re [L(jω)]B2 = FB
2 (A2;B2) + Re [H(jω)]B1 cosψ + Im [H(jω)]B1 sinψ − Re [H(jω)]B2 (47)

Im [L(jω)]B2 = Im [H(jω)]B1 cosψ − Re [H(jω)]B1 sinψ − Im [H(jω)]B2. (48)

It is worth noting from (23) that for weak coupling (ε << 1) it yields

H(0) = ε(3(1 + ε)2 + ε2) ∼ 3ε (49)

Re [H(jω)] = ε(3(1 + ε2) + ε2 − 3ω2) ∼ 3ε(1 − ω2) (50)

Im [H(jω)] = 6ε(1 + ε)ω ∼ 6εω. (51)

Under the assumption that ε = 10−4 [Jovanic et al., 2008], it is reasonable to assume B2 ≈ ε and
B1 ≈ B̄1, where B̄1 denotes the amplitude of the limit cycle of the uncoupled system obtained by solving
(30). As a consequence, by substituting (50)-(51) in (45) and neglecting the terms of order higher than ε,
we obtain ω(3−ω2)B̄1 ≈ −6εωB̄1, i.e., the approximated frequency of the limit cycle is: ω ≈

√
3 + 6ε. The

same procedure provides the phase shift ψ from equation (48)

tanψ ≈ 2ω

1 − ω2
= −

√
3

√
1 + 2ε

1 + 3ε
. (52)

Notice that the remaining unknowns A1 = A1(ε) and A2 = A2(ε) can be found simply solving equations
(43) and (46).

Table 1 shows that the numerical solution of the algebraic nonlinear system (43)-(48) and the solution
under the assumption B2 ≈ ε and B1 ≈ B̄1 are very close. In addition, it is worth observing that the
two systems oscillate out-of-phase, i.e. ψ is not 0 or π. Similar results hold by increasing ε up to a critical
value after which the two systems oscillate in-phase, i.e. the two-compartment network converges toward
the global oscillation described in the previous subsection.

Hypothesis B2 ≈ ε and B1 ≈ B1 Solution of (43)-(48)
A1 = 1.0901 A1 = 1.0902
B1 = 0.2347 B1 = 0.2344
A2 = 0.9912 A2 = 0.9913
B2 = 10−4 B2 = 9.67 · 10−5

ω = 1.7322 ω = 1.7322
ψ = −1.0471 ψ = −1.0476

3.2. Arrays with a large number of 3th-order CNF systems

The methodology proposed in the previous subsection is not suitable for analyzing the dynamics in arrays
with a large number of CNF systems, because it would require to exploit a DF representation like (41)
for each state variable xi

n defined in (8). By focusing on one-dimensional arrays composed of 3th-order M
CNF systems, we have to investigate the following Lur’e equation:

M3X = f(X), (53)

where, with respect to expression (16), we have dropped the subscripts for simplicity of notation. The
assumption of weak couplings allows us to write the solution of (53) as

X = X + εX̃, (54)
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where X is a stable attractor (either equilibrium point or limit cycle) of the uncoupled system (ε = 0).
Furthermore, in order to emphasize the contributions of the couplings, we can represent (17) as M3 =
L(D)I + εM̃(D), as well. Therefore, equation (53) becomes:

(L(D)I + εM̃(D))(X + εX̃) = f(X + εX̃), (55)

with

M̃(D) = −3(D + 1)2P + 3(D + 1)εP2 − ε2P3. (56)

Linearizing f(·) in a neighborhood of X = [x1, . . . , xM ]T and neglecting the terms of order greater than ε,
we obtain the following set of variational equations in the unknowns X̃ = [x̃1, . . . , x̃M ]T :

L(D)x̃i − f ′(xi)x̃i = −(M̃(D)X)i i = 1, . . . ,M, (57)

where

(M̃(D)X)i =
∑

k∈Ni

M̃i,k(D)xk,

where with Ni = {max(1, i− 3), . . . ,min(i+ 3,M)} we denote the sphere of influence of system i. Notice
that Ni is composed of at most seven systems, since Lemma 1 implies that M̃ is at most eptadiagonal.

Depending on the choice of the initial conditions for each subsystem (i.e. in the basin of attraction of
the equilibrium point or in the limit cycle one), different complex dynamics can arise. For example, it is
known that a CNF system near the equilibrium point, if sufficiently close to a system that oscillates, is
able to develop a small amplitude limit cycle. On the other hand, if a system starts from the same basin
of attraction of the neighbors of its sphere of influence, then it will not change its dynamics (except for an
initial phase shift when they are all oscillating, due to the different choice of the initial conditions for each
system). This behavior can be explicitly derived exploiting a spectral approach, as follows.

By exploiting the describing function technique [Mees, 1981], each variable of X, solution to (53) when
ε = 0, can be represented up to the first harmonic as

x̄i =
1

∑

r=−1

Q
(r)
i ejrωit. (58)

More specifically, since for each compartment (i = 1, . . . ,M) we have a coexistence of two attractors
(namely, the equilibrium point and the limit cycle), then ωi is equal either to zero or to ω, being ω the
angular frequency of the periodic solution. Consequently,

f ′(xi) =

1
∑

r=−1

S
(r)
i ejrωit. (59)

Since the right-hand side of equation (57) can be viewed as an external forcing term, the perturbation x̃i

will assume the form

x̃i =
1

∑

r=−1

R
(r)
i ejrωpt (60)

with ωp = ω if at least one of its neighbors or itself is chosen in the basin of attraction of the limit cycle,
ωp = 0 otherwise.

Proposition 2. Let us consider an array of M diffusively coupled CNF systems. Thus, for each system i,
with 1 ≤ i ≤M , we have the following results:

(i) if all the systems in its neighborhood (i.e., all k ∈ Ni) are sufficiently close to the same attractor (namely,
either equilibrium point or limit cycle) before the coupling, then x̃i ≡ 0;

(ii) otherwise, if at least one of its neighbors or itself is on a different attractor, then x̃i 6= 0.
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Proof. It is easy to notice that when ωp = 0, i.e. when all the systems in the neighborhood are on the
equilibrium point, then equation (57) simply becomes:

L(0)R
(0)
i − S

(0)
i R

(0)
i = −

∑

k∈Ni

M̃i,k(0)Q
(0)
k , (61)

with Q
(0)
k = x̄k(0) = 1 ∀ k ∈ Ni and M̃i,k(0) = −3L1(0)Pik + 3εL2(0)P 2

ik − ε2P 3
ik; therefore, we get

R
(0)
i = − 1

L(0) − S
(0)
i

∑

k∈Ni

M̃i,k(0). (62)

Since the sum of entries of any row of matrices P, P2 and P3 is zero, from (62) we obtain R
(0)
i = 0, that

is xi(t) = x̄i(t) = 1. This means that the system does not change its dynamics due to the coupling.
On the other hand, when ωp = ω, following the notation exploited in [Corinto et al., 2008], equation

(57) can be recast in the following form:

1TL(D)E(t)Ri − 1
T
E(t)Si ∗ Ri = −1T

∑

k∈Ni:ωk=ω

M̃i,k(D)E(t)Qk −
∑

k∈Ni:ωk=0

M̃i,k(0)Q
(0)
k , (63)

where

1 = [1, 1, 1]T

1 = [1, 1, 1, 1, 1]T

Qi = [Q
(−1)
i , Q

(0)
i , Q

(1)
i ]T ∈ C 3

Ri = [R
(−1)
i , R

(0)
i , R

(1)
i ]T ∈ C 3

Si = [S
(−1)
i , S

(0)
i , S

(1)
i ]T ∈ C 3

E(t) = diag[e−jωt, 1, ejωt] ∈ C 3,3

E(t) = diag[e−2jωt, e−jωt, 1, ejωt, e2jωt] ∈ C 5,5

and Si ∗ Ri ∈ C 5 is the convolution of Si and Ri. Since the harmonics with order higher than one are
not taken into account, such convolution product can be approximated in terms of the Hermitian Toeplitz
matrix:

Ti =







S
(0)
i S

(−1)
i 0

S
(1)
i S

(0)
i S

(−1)
i

0 S
(1)
i S

(0)
i






,

where Ti = T
†
i with T

†
i the conjugate transpose matrix. As a consequence we obtain

f ′(xi)x̃i = 1
T
E(t)Si ∗ Ri

∼= 1TE(t)T†
iRi.

It is worth noting that the expression of matrix Ti depends on the different attractor where the i-th
uncoupled system is. For instance, if it is on the equilibrium point, then Ti reduces to a diagonal matrix,

since S
(−1)
i = S

(1)
i = 0.

Finally, recalling that a linear operator G(D) applied to E(t) yields the following matrix

G(D)E(t) = Ω(ω)E(t) = E(t)Ω(ω)

with Ω(ω) = diag[G(−jω), G(0), G(jω)] ∈ C 3,3, equation (63) becomes

1TΩ(L)(ω)E(t)Ri − 1TE(t)T†
iRi = −1T

∑

k∈Ni:ωk=ω

Ω
(M)
i,k (ω)E(t)Qk −

∑

k∈Ni:ωk=0

M̃i,k(0)Q
(0)
k , (64)
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where Ω(L)(ω) = diag[L(−jω), L(0), L(jω)] and Ω
(M)
i,k (ω) = diag[M̃i,k(−jω), M̃i,k(0), M̃i,k(jω)]. Exploiting

the property that Qk = [0, Q
(0)
k , 0]T for k such that ωk = 0, and regarding that the determinant of the

matrix Ω(L)(ω) − T
†
i is not zero, the set of algebraic equations (64) in the unknown Ri can be readily

solved:

Ri = −(Ω(L)(ω) − T
†
i )

−1
∑

k∈Ni

Ω
(M)
i,k (ω)Qk i = 1, . . . ,M. (65)

If we assume that Qk = Q for all k ∈ Ni, that is if we suppose that all the systems in the sphere of
influence of the i-th one are on the limit cycle, then

∑

k∈Ni

Ω
(M)
i,k (ω)Qk =





∑

k∈Ni

Ω
(M)
i,k (ω)



Q

=



−3Ω(L1)(ω)
∑

k∈Ni

Pik + 3Ω(L2)(ω)ε
∑

k∈Ni

P 2
ik − ε2

∑

k∈Ni

P 3
ik



Q, (66)

where Ω(L1)(ω) = diag[L1(−jω), L1(0), L1(jω)] and Ω(L2)(ω) = diag[L2(−jω), L2(0), L2(jω)]. Again, re-
calling the properties of matrix P, we can conclude that Ri = 0, that is xi(t) ≡ x̄i(t). Thus, in this case,
the coupling does not produce evident changes in the dynamics of system i. On the other hand, if there
exists at least one Qk (k ∈ Ni) different from the others, then Ri 6= 0 and we will get a contribution from
the dynamics of the neighbors. �

By exploiting this technique, it is possible to investigate the complex dynamical behaviors that take
place in an array of CNF systems. In fact, once set the basin of attraction of each subsystem, by solving
(65) for every i = 1, . . . ,M , we are able to detect all the small amplitude limit cycles that might arise.
Furthermore, we can determine the order (in terms of ε) of the perturbations due to the coupling.

It is worth noting that in an array of M diffusively coupled CNF systems the number of possible choices
of the basin of attraction for the initial conditions of each system is M = 2M . However, this number can
be reduced due to the symmetry properties of the coupling. It is possible to prove [Gilli et al., 2004] that
the maximum number of independent choices is

M =















2M/2 +
2M − 2M/2

2
if M is even

2(M+1)/2

2
+

2M − 2(M+1)/2

2
if M is odd.

Among these, two cases are trivial. If all the CNF systems in the array are in the equilibrium point,
then they will not change their dynamics, since this configuration is stable for the global system (as we
have seen in Section 3.1). Furthermore, if all the CNF systems are in the basin of attraction of the limit
cycle, exploiting the Malkin’s theorem we are able to derive the phase equation for the entire system. In
all the other conditions, the brute application of the describing function technique to the entire array is
numerically too onerous, but the approach we have proposed before gives good results.

From all the possible M choices for the initial conditions, let us suppose that all the subsystems are in
the equilibrium point, before the coupling, except the central one that is oscillating. This is an interesting
case since it leads to remarkable spatio-temporal patterns. As we have seen above, we expect that the
subsystems in the neighborhood of the central one will develop a small amplitude limit cycle. Moreover,
the amplitude of this new oscillation will depend on the distance from the active system. Once we apply
the describing function technique to the uncoupled system, it is straight forward to calculate the vectors Ri

exploiting (65), and therefore to obtain an expression for (54). In Figure 3 the amplitudes of the different
elements in an array of M = 11 third order CNF systems of the form (12) are represented. The elements
that are close to the central one that is oscillating develop small-amplitude limit cycles. In Figure 4 it is
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Fig. 3. Amplitudes of each of the 11 nodes in the array, from the simulations in the time-domain (solid line) and the
approximations exploiting (65) (dashed line). The coupling here is chosen as ε = 10−4.
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Fig. 4. Amplitudes for the oscillating central node and the two nearest-neighbors on its left side at different values of the
coupling strength ε (simulations in the time-domain in solid line, approximations exploiting (65) in dashed line).

possible to observe the amplitude value as function of the coupling parameter ε for the oscillating element,
and for the two nearest-neighbors on its left side. The different order of magnitude between the time-domain
simulations and the solutions of (65) is mainly due to the describing function approximation. Moreover,
the error produced by this approximation up to the first harmonic is propagated along the chain because
of the action of the operator M̃(D). Better results might be obtained with an harmonic balance approach.
Nevertheless, the qualitative behavior of the decreasing amplitudes has been adeguately detected.

It is interesting to observe that the configuration in Figure 3 has an analogy with the discrete breathers
observed in many reaction-diffusion systems [Flach & Gorbach, 2008]. In fact, as in that type of patterns,
we recognize time-periodic spatial-localized solutions, with oscillations that show a rapid spatial decay of
the amplitudes along the chain.

Formally, a discrete breather solution in a finite chain of M -systems can be represented in Fourier
series as [Flach & Gorbach, 2008]

Xl(t) =
∑

k

Akle
jkΩbt ∀ l ∈ [0,M ] (67)

with the property Ak,l→0 = Ak,l→M → 0, since the oscillation is localized in space. By evaluating the
coefficients Ri in (65), it is possible to prove that this precisely holds for the stationary solution of the
configuration we are considering. Let us suppose to denote with the index c = (M +1)/2 the central vertex
of the array that is in the oscillatory regime with angular frequency equal to ω, and let us represent our
solution xi(t) as

xi(t) =
1

∑

r=−1

V
(r)
i ejrωt. (68)
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Exploiting (54), (58) and (60), it follows that V
(r)
i = Q

(r)
i + εR

(r)
i ∀ r ∈ {−1, 0, 1}. Furthermore, let us

introduce the correspondent vector Vi = [V
(−1)
i , V

(0)
i , V

(1)
i ]T ∈ C 3.

Thus, we will have Q
(−1)
k = Q

(1)
k = 0 and Q

(0)
k = 1, for all k 6= c. It is easy to show that in this case

V
(±1)
c±1 ∼ ε, V

(±1)
c±2 ∼ ε2, V

(±1)
c±3 ∼ ε3, while from Proposition 2 we have that V

(±1)
c±l ≡ 0 for l > 3. As example,

let us evaluate in details Rc+3, and therefore the order of magnitude (in term of ε) of Vc+3. Exploiting (5)
and (56), we get:

Rc+3 = (ΩL(ω) − T†
c)

−1
c+6
∑

k=c







M̃c+3,k(−jω̄)Q
(−1)
k

M̃c+3,k(0)Q
(0)
k

M̃c+3,k(jω̄)Q
(1)
k







= (ΩL(ω) − T†
c)

−1













M̃c+3,c(−jω̄)Q
(−1)
c

c+6
∑

c+1

M̃c+3,k(0) + M̃c+3,c(0)Q(0)
c

M̃c+3,c(jω̄)Q
(1)
c













= (ΩL(ω) − T†
c)

−1







−ε2Q(−1)
c

ε2 − ε2Q
(0)
c

−ε2Q(1)
c .







Thus, from (54) we conclude that V
(±1)
c+3 ∼ ε3.

4. Conclusion

We have considered arrays composed of diffusively coupled Cyclic Negative Feedback systems. Under
the suitable conditions each uncoupled system exhibits the coexistence of different stable states, namely
equilibrium points and periodic orbits. We have investigated the effect of coupling on the global dynamics.
In particular, under the assumption of weak coupling we have derived the global dynamical properties from
the single system’s attractors.

First of all, we have shown that CNF arrays with diffusive couplings that are constant and local (i.e.
they involve only the two nearest neighbors of each CNF system) are potentially equivalent to nonlinear
networks whose elements are fully connected (i.e. each system is linked to all the others). Secondly, we
have considered the simplest CNF array composed of two subystems. We have shown that if both systems
are in the steady state before coupling, then this configuration remains stable for any value of coupling.
On the other hand, if the two systems are both in the same oscillatory state and the coupling is sufficiently
weak, then they remain in the basin of attraction of the oscillatory state. Instead, if the two uncoupled
CNF systems are in two different attractors (i.e. system I is in an oscillatory regime while system II in
the stable equilibrium point), under the assumption of weak coupling, system I remains oscillatory while
system II develops a small amplitude limit cycle. In order to detect the two different limit cycles of system
I and II, a describing function technique approach for the global system has been proposed.

Finally, a methodology based on the perturbation of the solution given by the describing function
technique has been developed to investigate the global dynamical behavior in CNF arrays with a large
number of systems.

The proposed analysis can be extremely useful to interpret biological phenomena in bio-inspired net-
works composed of a large number of CNF elements.
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Appendix. Application of the Routh-Hurwitz criterion for two non-oscillating CNF
systems

Let us consider two coupled third order CNF systems as in (18). In order to study the stability of the
configuration where both the CNF systems are on the equilibrium point P = (1, 1, 1), we have to analyze
the characteristic polynomial of the Jacobian matrix, whose expression can be found in (25).

Let us write the polynomial Q(λ, ε) in (27) in the following way:

Q(λ, ε) = λ3 + c1λ
2 + c2λ+ c3

where c1 = 3(1 + 2ε), c2 = 3(1 + 4ε+ 4ε2) and c3 = 8ε3 + 12ε2 + 6ε− f ′(1) + 1.
The application of the Routh-Hurwitz criterion [Gradshteyn et al., 2000] to polynomial Q(λ, ε) leads to:

∆1 = c1 = 3(1 + 2ε) > 0

∆2 =

∣

∣

∣

∣

c1 1
c3 c2

∣

∣

∣

∣

= 64ε3 + 96ε2 + 48ε+ 8 + f ′(1)

∆3 =

∣

∣

∣

∣

∣

∣

c1 1 0
c3 c2 c1
0 0 c3

∣

∣

∣

∣

∣

∣

= c3∆2.

Since f ′(1) = −7.5, we have ∆2 > 0 and ∆3 > 0. It is worth noting that this result is independent
of the value of the coupling strength ε although the polynomial coefficients are function of ε. Since all
the coefficients ∆i are strictly positive, we can conclude that the polynomial Q(λ, ε) has only roots with
negative real part.

Exploiting the same criterion to the polynomial P (λ), where

P (λ) = λ3 + c1λ
2 + c2λ+ c3

with c1 = 3, c2 = 3 and c3 = −f ′(1) + 1, we get:

∆1 = c1 = 3 > 0

∆2 =

∣

∣

∣

∣

c1 1
c3 c2

∣

∣

∣

∣

=

∣

∣

∣

∣

3 1
−f ′(1) + 1 3

∣

∣

∣

∣

= 8 + f ′(1) > 0

∆3 = c3∆2 > 0;

therefore we can conclude that also this polynomial admits only roots with negative real part. Thus, the
configuration of two non-oscillating CNF systems is always stable.
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